Original Article

Evaluating the Efficacy and Safety of Neonatal Chyme Reinfusion Therapy: A Feasibility Study using a Novel Medical Device

Authors and Affiliations

E. Ludlow¹,²,³, T. Harrington³,⁴, R. Davidson³, J. Davidson³, K. Aikins⁴, G. O’Grady²,³, I. Bissett²,³

1. Te Whatu Ora Counties Manukau
2. Department of Surgery, The University of Auckland
3. The Insides Company
4. Te Whatu Ora Te Toka Tumai Auckland

Corresponding Author

Professor Ian Bissett
Department of Surgery
University of Auckland, Private Bag 92019, Auckland Mail Centre, 1142, New Zealand.
Email: i.bissett@auckland.ac.nz, Phone: +64 21 347 442

Author Contributions

E. Ludlow: Validation, Formal Analysis, Writing- Original Draft
T. Harrington: Validation, Data Curation
R. Davidson: Conceptualisation, Methodology, Validation, Resources
J. Davidson: Formal Analysis, Resources
K. Aikins: Validation, Writing – Review & Editing

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
G. O’Grady: Conceptualisation, Methodology, Writing – Review & Editing
I. Bissett: Writing – Review & Editing, Supervision

Authors
Emma Ludlow – MNur
Taylor Harrington – BScN
Robert Davidson - BE
John Davidson – PhD BE
Kimberly Aikins - FRACS
Greg O’Grady –PhD, FRACS
Ian Bissett – MD, FRACS

Conflict of Interest
E. Ludlow is an employee and shareholder in The Insides Company
T. Harrington contracts to The Insides Company
R. Davidson, J. Davidson, G. O’Grady, and I. Bissett are Founders of The Insides Company

Funding
The study was funded by a grant from Cure Kids to hire a research nurse and assist with research and development costs associated with The Insides Neo. Devices were supplied by The Insides Company.

Key words
Distal feeding, chyme recycling, pediatrics
Abstract

Objectives

Neonatal and pediatric intestinal failure related to enterostomy is an infrequent but burdensome condition associated with substantial morbidity and mortality. This study presents the development and clinical validation of a novel device to resolve these problems, by formalizing a safe and efficient enterostomy chyme reinfusion technique.

Study Design

A novel neonatal chyme reinfusion device was designed and manufactured (termed the ‘The Insides Neo’, The Insides Company, New Zealand), prior to validation in a feasibility study in tertiary neonatal intensive care centres. Neonates with double enterostomy were recruited and commenced on chyme reinfusion therapy using the novel device to test safety, efficacy, tolerability, and usability within nursing workflows. Device and clinical outcomes were recorded along with nursing feedback.

Results

Ten neonates were recruited across two centres, with a median usage duration of 37.5 (range 12-84) days. Following initiation of therapy, rate of weight gain increased from mean 68.8 ± 37.4 to 197 ± 25.0 g/week (p=0.024). Of the 7/10 neonates on PN at commencement of therapy, 4/7 were able to wean and achieve enteral autonomy. All neonates tolerated the device with uniformly positive nursing feedback and minimal time to learn and incorporate the novel device into nursing workflows. There were no device-related adverse events.
Conclusions

A novel device was developed and validated to be safe and effective at performing chyme reinfusion therapy in neonates. This device is anticipated to improve the clinical care and outcomes neonatal patients with double enterostomies.
Background

Intestinal failure in neonatal and paediatric populations is an infrequent but burdensome condition associated with significant morbidity and mortality. Intestinal failure is defined as an impairment in gut function, resulting in an inability to absorb macronutrients, water, and electrolytes [1,2]. Short bowel syndrome secondary to massive intestinal resection is the most common cause of paediatric intestinal failure, with up to 50% of cases due to necrotising enterocolitis (NEC), especially in premature neonates [3-6]. A small bowel double enterostomy is often performed in these cases at the time of resection, contributing to an insufficient functional gut length and high output losses via the enterostomy [3]. Studies have shown that reinfusing chyme collected from the proximal limb of the enterostomy to the distal limb is a beneficial therapeutic option in neonates [3, 7-9, 11]. These benefits include supporting nutrition and growth, normalisation of fluid balance and electrolytes, and weaning from parenteral nutrition leading to enteral autonomy, improved gut maturation, and benefits to liver function [3, 11, 13]. Studies in adults have also demonstrated that chyme reinfusion therapy (CRT) is safe and beneficial [10].

CRT has been growing in popularity due to numerous benefits, however it is a complex process, requiring nurses to dedicate considerable time to manual collection, decanting and filtration before reinfusion of chyme. In addition, manual chyme reinfusion techniques can lead to an increased prevalence of ostomy appliances failing due to pouch modifications. A systematic review completed in 2020 looked at evidence of use of CRT with double enterostomy in pediatric and neonatal groups, highlighting that CRT has been employed erratically in Neonatal Intensive Care Units (NICU) worldwide [11]. However, techniques and studies have been highly variable, with heterogenous indication criteria, methods, materials, and equipment employed, and
with wide-ranging clinical outcomes [11]. Severe adverse events have been rare but have included intestinal perforation and haemorrhage [11]. Stoop et al. recently concluded in a systematic review limited robust evidence for prescribing pediatric CRT, due to small study numbers and varied administration of the therapy [12]. This lack of uniformity also creates practical challenges for the health care professionals, most of whom do not consider the current practices user-friendly.

The aim of this work was to develop and validate a novel clinical device to overcome these problems, by formalizing a safe and efficient chyme reinfusion technique, while improving nursing workflows for therapy administration. This paper describes the first in-human use of the device, capturing clinical evaluation data, usability outcomes, and initial safety and efficacy data.
Methods

Development of novel device

This project was a collaboration between engineers and clinicians to design a chyme reinfusion device that fit with common ostomy appliances and consumables available in most NICUs and maintained, if not reduced, contact with the neonate in relation to stoma care. The device needed to address the issues outlined above, to create a safe and effective tool to perform chyme reinfusion to improve patient outcomes and nursing workflows. Device design references were sourced from literature, empirical experience, and feedback from clinicians on prototypes [11,12].

Impact of innovation

The device was named The Insides Neo (The Insides Company, New Zealand) and performs CRT as per the description in Figure 1. It is an easy-to-use directional flow device which connects to three standard off-the-shelf components: i) an ostomy appliance; ii) an ENFit syringe; iii) and a traditional soft, flexible enteral feeding / nasogastric tube. The tube is inserted in the distal enterostomy to allow CRT when appropriate. The device is then secured at the bottom of the ostomy appliance and contains a bidirectional flow valving system to enable and facilitate CRT through a single access point. The use of a syringe driver is recommended to control the rate of reinfusion, thus reducing the likelihood of reflux. Use of the device in a neonatal patient can be seen in Figure 2 upon request.

The device design thus overcomes several limitations that have been identified with performing manual CRT with neonates [11,12]. The Insides Neo is easy to assemble
and fits with a widely available ostomy appliance, so no modification to the ostomy appliance is required. Contact with chyme and the neonate when performing CRT is greatly reduced, together with time required, in comparison to manual CRT.

Feasibility study

The feasibility study evaluated how the novel device fitted into nursing clinical workflows, the safety and efficacy of the device, and achieved initial clinical data including weight gain and the resumption of enteral nutrition and weaning from parenteral nutrition. This study was approved by the New Zealand Health and Disability Ethics Committee. All parents of the neonates enrolled provided informed consent, including for the publication of medical photographs.

Primary and secondary outcomes

The primary outcomes were to validate the safety, effectiveness, and tolerability of the stoma refeeding device. Secondary outcomes were to evaluate the usability of the device in a neonatal intensive care unit (NICU) setting, and adherence to chyme reinfusion therapy protocols by the NICU staff via an anonymous feedback form. Secondary outcomes included obtaining initial clinical data from the novel chyme reinfusion device, including change in weight gain rate, nutrition support therapy, and surgical reinterventions.

Survey methods
A feedback form with 10 questions, designed for the study, was maintained at the cot-side of each neonate refeeding. Nurses caring for the patients were asked to complete this form and return it anonymously to a box. It was specified that one feedback form per nurse was to be completed over the course of their experience, with a prerequisite of having some prior experience with manual CRT to allow workflow comparisons. The feedback form consisted of 10 questions utilising a Likert scale for answers. Possible responses to the question ranged from 1 through 5 (1. Totally disagree, 2. Disagree, 3. Neither disagree nor agree, 4. Agree, 5. Totally agree).

Set-up and data collection

Clinical teams assessed when patients would be clinically ready to commence CRT, independent of the study investigators. The cot side nurse then intubated the distal limb with the feeding tube and applied the ostomy appliance with the device assembled into the ostomy bung. Continuous reinfusion of the neonate’s chyme commenced and increased at a tolerable rate, as judged by the nursing team based on patient comfort and chyme reflux. Titration of nasogastric feeds and PN decisions were again made by the clinical teams, independent of study investigators. The ostomy appliance (and device) were changed if it leaked, or on a schedule of up to every 4 days, informed by standard practices in adult chyme reinfusion devices [10]. Continuous reinfusion of chyme continued up to the day of enterostomy reversal, with post operative outcomes recorded by the research nurse.

Standard of care weight charts, and nutrition support records were stored in digital clinical report forms, against an anonymous study participant number. Biometric,
adverse events, and side effects during therapy were recorded daily with consultation with clinical staff and monitored via weekly visits by the research nurse.

Analysis

Data was analysed both quantitatively and qualitatively to address the primary and secondary outcomes. Weight gain before vs after therapy was compared by the paired Student’s t-test, with a significance threshold of p<0.05.
Results

Neonate characteristics

Patient recruitment is detailed in Figure 3. Of 46 screened patients with ostomies, 10 were eligible and consented, with 36 excluded due to incorrect disease indications (n=21), transfer or death (n=9), inaccessible distal limb (n=3) and inability to fit the prescribed stoma appliance due to prolapse (n=3). Characteristics of the included neonates including disease aetiologies are outlined in Figure 3 and Table 1. Adjusted age and age when CRT was commenced for each neonate are available upon request from the corresponding author. Of the ten neonates, six were female. All had a double barrel enterostomy formed in the small bowel with one neonate having the distal limb originating from the ascending colon. The neonates were all in a tertiary NICU setting with 1:1 nursing.

Device and Clinical outcomes

Device and parenteral nutrition (PN) use for each neonate is outlined in Table 2. The median device use period was 37.5 (range 12-84) days. CRT was administered through to the morning of enterostomy reversal in all neonates. Chyme was reinfused continuously via the use of a syringe driver, with all chyme that was contained in the stoma bag being reinfused. Specifically, chyme was collected every 4 - 6 hours and then reinfused over the following corresponding 4 - 6 hour period. All chyme was effectively reinfused, with negligible volume loss when an ostomy appliance leaked or was replaced.
Neonate discomfort and amount of refluxed chyme flowing back into the ostomy appliance was used to judge CRT tolerance, which was variable. Some neonates with a history of feed intolerance were started on a half rate for 24 hours before moving to the full rate, as demonstrated in Table 2. Surplus chyme from the neonate receiving chyme reinfusion at a half rate was discarded over that 24-hour period only.

The mean daily weight gain prior to commencing CRT was 68.8 ± 37.4 g/week (individual results per Table 1). Following CRT, all neonates had substantial improvements in their daily weight gain, increasing to 197 ± 25.0 g/week (p=0.024) (Table 2). Neonatal weight gain before and after CRT are shown in Figure 4. Examples of weight trajectories before vs after CRT for two neonates are shown in Figure 5. In addition, of 7 neonates dependent on PN at commencement of CRT, 4 were able to wean off, in a median time of 28.5 (range 14-59) days, thereby increasing weight gain while become enterally autonomous with oral feeds and CRT until the time of enterostomy reversal.

All neonates had their enterostomies reversed, with one suffering a distal limb prolapse that led to an early reversal decision. Although surgical feedback was not included in the protocol, a surgeon provided summary verbal feedback, describing that during enterostomy reversal, the calibre of the proximal and distal limbs matched, enabling easier suturing, stating “The quality of the distal bowel was stunning”.

None of the neonates experienced ileus after reversal surgery. The median time to first bowel movement post-reversal was one day (range 1-3 days). Two patients
suffered anastomotic leaks, one of which was managed conservatively, the other requiring reformation of enterostomy (Supplementary Table 1). This latter subject had multiple congenital comorbidities that have impacted their recovery, but at the time of writing is being prepared to start CRT again.

Case Vignettes

Two individual case studies written by a NICU nurse are available upon request from the corresponding author. The case studies demonstrate individual outcomes for the neonates and provide the nursing experience of using the device to administer CRT and manage a neonate with a double enterostomy in intestinal failure.

Device Usability

Ostomy appliance use

Overall, the frequency of ostomy appliance changes was not impacted by the initiation of CRT. Half of the neonates were reported to have difficult abdominal landscapes, which made keeping an ostomy appliance in place and intact challenging. Those neonates continued to have ostomy appliance leaks, including occasional peristomal excoriation that is consistent with frequent leaks, which did not change following the initiation of CRT. Comparatively, the other half of the neonates with easier abdominal landscapes were able to maintain wear times of 4 days, their peristomal skin remained healthy, and their ostomy appliances and the devices were changed on a schedule.

Nursing Usability Assessment
Overall, 10 feedback forms were completed and returned by the cot side nurses with the results outlined in Table 3. As demonstrated in Table 3, there was a uniformly positive impact on nursing workflow with the device easy to learn and implement. There was one technical error where a feeding tube was cut prior to being inserted into the distal limb. This required a short period of gut rest out of caution, before recommencing CRT.

Safety Data

There were no minor or major adverse events attributable to the device. One neonate had unidentified sepsis requiring gut rest during CRT; this neonate returned a positive blood culture of klebsiella with no known source.
Discussion

This study has introduced a novel device (‘The Insides Neo’) to enable efficient and safe CRT in neonates who have double barrel enterostomy. The device was designed to resolve several limitations of chyme reinfusion identified in previous systematic reviews [11,12], and was manufactured to medical device standards to enable a straightforward and standardized CRT technique. The device was validated within a NICU setting to be safe and effective, and with improved nursing workflows.

The Insides Neo device was designed to fit with off-the-shelf ostomy appliances to reduce contact with chyme in comparison to manual CRT, which was found successful in the validation study. Device efficacy was clearly demonstrated by the successful performance of CRT in all patients over a median of more than five weeks, allowing accelerated weight gain and cessation of PN in a majority of subjects. This is a particularly significant outcome of this clinical study, given that PN is accompanied by significant risks including line sepsis, venous thrombosis, and liver impairment, and is an expensive therapy, costing on average $164-239 per bag in US NICU settings, without considering the adjacent costs of PN therapy [15,16]. Therefore, the use of the device in this trial would be expected to lead to cost savings of $USD1,148 - 1,673 / week in weaned patients from PN bags alone, and likely substantial additional savings in treating complications, with a mean cost attributable to blood stream infections secondary to PN of $USD16,141 [16].

A further benefit of chyme reinfusion was advanced maturation of the distal (defunctioned) intestine, which enabled improve post-operative outcomes, including
rapid return of bowel function (median 1 day) and no cases of ileus. Mismatch of an atrophied or growth-restricted defunctioned distal bowel segment presents a surgical challenge during restoration of continuity [8,14], and anecdotal feedback in this study provided positive indications that CRT can completely resolve this problem. This could be further assessed in future studies by including formal surgical feedback and comparisons of bowel morphology at the time of surgical restoration, and formally assessing surgical complication rates with and without CRT.

The novel device dramatically improved nursing workflows in this study, as evidenced by highly positive responses in related usability domains, as these nurses were able to compare against their prior experiences with manual CRT. Manual CRT typically leads to complexities in modifying ostomy appliances and requires a significant time burden, which in return, impacts parental contact with their child. Both tertiary NICUs in this study chose to administer CRT via continuous reinfusion rather than bolus to reduce reflux which also had a positive impact on nursing time. A limitation of this analysis was that the secondary tertiary site included in this study had not previously performed manual CRT, so nurses from this site did not supply anonymous feedback forms. It would be valuable in future to understand the learning and application process from a novice perspective. It was, however, subjectively noted that there was an easier transition to go from manual CRT to the device at our primary study site, vs all staff starting and learning CRT with the device at the secondary site, likely due to background information and benefits of CRT in general.

Potential CRT-related complications and adverse events highlighted by the Bhat et al., 2020 systematic review were not seen in this study [11], with no device-related
morbidity observed. A previous three-arm randomised controlled trial by Lee et al. in 2023, investigating manual CRT on neonates with high output enterostomies, normal output enterostomies, and controls did have a similarly low number of events to this study, while highlighting the inefficiencies around previous CRT administration techniques [14]. These recent studies called attention to the robust weight gain and intestinal adaptation seen with neonates who are distally reinfused, in comparison to non-reinfused neonates, as seen dramatically again in our current data. These findings urge a standardized protocol and administration practices for CRT, which this study has shown can be effectively based on device innovation.

In conclusion, this study has presented a novel ‘Insides Neo’ device for performing CRT in neonates with double enterostomies, demonstrating safe, effective, and clinically beneficial outcomes in an initial clinical study. The device has now received regulatory approvals in New Zealand, Australia, Europe, and the USA, and is ready for clinical use. With increasing awareness and adoption, we anticipate that this innovation will enable the compelling clinical benefits of CRT to become widely available to neonates, while improving the nursing workflows and reducing costs of care.

Acknowledgements

The research team would like to thank the Auckland NICU and Waikato NICU teams who participated in this feasibility study.
Abbreviations

NEC – Necrotising enterocolitis
CRT – Chyme Reinfusion Therapy
PN – Parenteral Nutrition
EN – Enteral Nutrition
NICU – Neonatal Intensive Care Unit
References

15. Hartman C, Shamir R, Simchowitz V, Lohner S, Cai W, Decsi T, the ESPGHAN/ESPEN/ESPR/CSPEN working group on pediatric parenteral...
doi.org/10.1016/j.clnu.2018.06.956

281-292. doi.org/10.2165/11594980-000000000-00000
List of Figures and Tables

Figure 1. Diagram of chyme reinfusion therapy with The Insides Neo

Figure 2. Request pictures of device in use with a Neonate from corresponding author

Figure 3. Patient recruitment flow diagram

Table 1. Neonate characteristics

Table 2. Device use and clinical outcomes

Figure 4. Graph showing neonatal weight gain before and after commencing chyme reinfusion therapy

Figure 5. Fenton graphs demonstrating weight trajectories for two neonates

Table 3. Nursing feedback form results

Supplementary Table 1. Clinical outcomes of stoma closure
Figure 1.

A. Shows the three components of The Insides Neo that fit within a standard ostomy appliance. In this image, the plunger of the syringe is withdrawn, drawing chyme into the syringe, through The Insides Neo.

B. To deliver bolus CRT: Depression of the syringe plunger directs chyme back through The Insides Neo, into the flexible feeding tube and into the distal limb of the enterostomy.

C. To deliver continuous CRT: Connect the full syringe (from A,) to a syringe driver and reinfuse over the following 4-6 hours via an extension set. During this time, chyme from the proximal limb is collecting in the ostomy appliance, ready to be withdrawn into the newly emptied syringe.
Figure 3. Patient recruitment flow diagram
<table>
<thead>
<tr>
<th>Neonate no.</th>
<th>Sex</th>
<th>Ethnicity</th>
<th>Aetiology</th>
<th>Distal small bowel length (cm)</th>
<th>Weight at baseline prior to starting CRT (g)</th>
<th>Average weekly weight gain prior to CRT (g/week)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>F</td>
<td>NZ European</td>
<td>Mid gut volvulus</td>
<td>40</td>
<td>1160</td>
<td>77</td>
</tr>
<tr>
<td>2.</td>
<td>M</td>
<td>Pacifica</td>
<td>Spontaneous bowel perforation</td>
<td>10</td>
<td>1230</td>
<td>176</td>
</tr>
<tr>
<td>3.</td>
<td>M</td>
<td>Indian</td>
<td>NEC</td>
<td>0 (distal limb in ascending colon)</td>
<td>1135</td>
<td>60</td>
</tr>
<tr>
<td>4.</td>
<td>F</td>
<td>Pacifica</td>
<td>Milk curd obstruction</td>
<td>25</td>
<td>1900</td>
<td>120</td>
</tr>
<tr>
<td>5.</td>
<td>M</td>
<td>NZ European</td>
<td>Milk curd obstruction</td>
<td>60</td>
<td>2550</td>
<td>177</td>
</tr>
<tr>
<td>6.</td>
<td>F</td>
<td>Māori</td>
<td>NEC</td>
<td>5</td>
<td>2000</td>
<td>110</td>
</tr>
<tr>
<td>7.</td>
<td>F</td>
<td>NZ European</td>
<td>NEC</td>
<td>2</td>
<td>3667</td>
<td>161</td>
</tr>
<tr>
<td>8.</td>
<td>M</td>
<td>Asian</td>
<td>Meconium ileus cyst</td>
<td>20</td>
<td>1800</td>
<td>24</td>
</tr>
<tr>
<td>9.</td>
<td>F</td>
<td>Māori</td>
<td>NEC</td>
<td>45</td>
<td>1250</td>
<td>29</td>
</tr>
<tr>
<td>10.</td>
<td>F</td>
<td>Asian</td>
<td>Gastrochisis</td>
<td>0 (distal micro colon)</td>
<td>2340</td>
<td>-219</td>
</tr>
</tbody>
</table>

Mean | N/A | N/A | N/A | 21 | 1903 | 68.8

Table 1. Neonate characteristics
<table>
<thead>
<tr>
<th>Neonate no.</th>
<th>Duration of device use (days)</th>
<th>Baseline PN volume (mL/24Hr)</th>
<th>Time to wean from PN (days)</th>
<th>Reduction in PN volume if not weaned (mL/24Hr)</th>
<th>Oral nutrition source</th>
<th>Average weekly weight gain on CRT (g/week)</th>
<th>Average continuous reinfusion rate (mL/Hr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>12</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>*EBM then Pepti-Junior</td>
<td>219</td>
<td>14</td>
</tr>
<tr>
<td>2.</td>
<td>31</td>
<td>240</td>
<td>No reduction</td>
<td>Neocate</td>
<td></td>
<td>308</td>
<td>8</td>
</tr>
<tr>
<td>3.</td>
<td>62</td>
<td>204</td>
<td>14</td>
<td>**FEBM</td>
<td></td>
<td>179</td>
<td>3</td>
</tr>
<tr>
<td>4.</td>
<td>30</td>
<td>582</td>
<td>30</td>
<td>*EBM then Pepti-Junior</td>
<td></td>
<td>292</td>
<td>5</td>
</tr>
<tr>
<td>5.</td>
<td>19</td>
<td>90</td>
<td>No reduction</td>
<td>Pepti-Junior</td>
<td></td>
<td>199</td>
<td>7</td>
</tr>
<tr>
<td>6.</td>
<td>55</td>
<td>N/A</td>
<td></td>
<td>Pepti-Junior</td>
<td></td>
<td>180</td>
<td>2.5</td>
</tr>
<tr>
<td>7.</td>
<td>84</td>
<td>550</td>
<td>49</td>
<td>Neocate</td>
<td></td>
<td>40</td>
<td>9</td>
</tr>
<tr>
<td>8.</td>
<td>34</td>
<td>N/A</td>
<td></td>
<td>**FEBM</td>
<td></td>
<td>145</td>
<td>3.5</td>
</tr>
<tr>
<td>9.</td>
<td>48</td>
<td>196</td>
<td>Variable</td>
<td>*EBM and Pepti-Junior</td>
<td></td>
<td>145</td>
<td>6</td>
</tr>
<tr>
<td>10.</td>
<td>41</td>
<td>156</td>
<td>27 before gut rest</td>
<td>Required gut rest so restarted on PN</td>
<td>*EBM, then Pepti-Junior, then Neocate</td>
<td>258</td>
<td>6</td>
</tr>
</tbody>
</table>

| Mean | 37.5 | 204 | 28.5 | N/A | N/A | 197 | 6 |

Table 2. Device use and clinical outcomes

*Expressed breastmilk (EBM); **Fortified expressed breast milk (FEBM)
Figure 4. Neonatal Weight Gain Before and After Commencing Chyme Reinfusion Therapy
Figure 5.

Neonate 1

Neonate 3

Weight trajectories for neonate one and three
I believe the neonate stoma refeeding protocol made the refeeding process easier. The number of episodes of reflux of chyme was lower than before. The number of stoma bag changes required was lower than before. I believe the neonate stoma refeeding protocol created a positive impact on workflow. The protocol made the process faster and occurred more smoothly than before. I believe the need for maintenance of the device was low. Pausing chyme reinfusion due to problems arising from the system was less frequent than before. I believe the amount of time needed to become proficient at following the protocol was low. I feel confident to apply the protocol to future patients. I consider the learning process easy to familiarise with for anyone who never applied the protocol.

<table>
<thead>
<tr>
<th>Nurse</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>Median</th>
</tr>
</thead>
<tbody>
<tr>
<td>I believe the neonate stoma refeeding protocol made the refeeding process easier</td>
<td>5</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>5</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>The number of episodes of reflux of chyme was lower than before</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>The number of stoma bag changes required was lower than before</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I believe the neonate stoma refeeding protocol created a positive impact on workflow</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>The protocol made the process faster and occurred more smoothly than before</td>
<td>6</td>
<td>5</td>
<td>2</td>
<td>5</td>
<td>4</td>
<td>5</td>
<td>3</td>
<td>5</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I believe the need for maintenance of the device was low</td>
<td>7</td>
<td>5</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pausing chyme reinfusion due to problems arising from the system was less frequent than before</td>
<td>8</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I believe the amount of time needed to become proficient at following the protocol was low</td>
<td>9</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I feel confident to apply the protocol to future patients</td>
<td>10</td>
<td>5</td>
<td>3</td>
<td>5</td>
<td>5</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I consider the learning process easy to familiarise with for anyone who never applied the protocol</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Median 5</td>
<td>3</td>
</tr>
</tbody>
</table>

Table 3. Nursing feedback form results (Responses 1 - Totally disagree, 2 - Disagree, 3 - Neither disagree nor agree, 4 - Agree, 5 - Totally agree).