Prevalence and determinants of scabies: a global systematic review and meta-analysis

Saptorshi Gupta¹, Simon Thornley¹, Arthur Morris², Gerhard Sundborn³, Cameron Grant⁴

¹Section of Epidemiology and Biostatistics, University of Auckland, Cnr Park Rd and Park Ave, Grafton, Auckland, New Zealand
²LabPlus, Auckland City Hospital, Grafton, Auckland, New Zealand.
³Section of Pacific Health, University of Auckland, Cnr Park Rd and Park Ave, Grafton, Auckland, New Zealand
⁴Department of Pediatrics, Child and Youth Health, University of Auckland, Cnr Park Rd and Park Ave, Grafton, Auckland, New Zealand

Abstract

Background

Scabies is a neglected skin disease that disproportionately affects people from resource poor and overcrowded countries. Global data on prevalence and risk factors are limited.

Methods

Databases (PubMed, Scopus and Google Scholar) were accessed to identify observational studies about scabies published between 2000 and 2023. Results were pooled to estimate prevalence and identify factors which explained between-study heterogeneity. Odds ratios, risk of bias, subgroup analyses and meta-regression were used to describe variation in effect size and heterogeneity based on country-level demographic and economic variables.

Findings

Fifty-four studies yielded a pooled prevalence of 14.0% (95% confidence interval [CI] 11.4-17.1%) with substantial heterogeneity ($I^2 = 100\%; \tau^2 = 0.77$). Prevalence was higher in Oceania (18.2%; 95% CI 14.1-23.1) compared to other regions. Pooled risk factors for scabies showed significant associations for behavioral factors including contact with someone with itch (odds ratio [OR] 9.26; 95% CI 2.94-29.2), no use of soap (OR 3.42; 95% CI 2.80-4.18), infrequent bathing (OR 2.68; 95% CI 1.76-4.08), bed-sharing (OR 2.57; 95% CI 1.33-4.96), clothes sharing (OR 2.40; 95% CI 1.39-4.13), treated water source (OR 2.29; 95% CI 1.67-3.15) and presence of pets (OR 2.19; 95% CI 1.54-3.11). Socio-economic factors were not convincingly associated with scabies prevalence.

Conclusion

Prevalence of scabies is associated with geographic location and behavioural factors, but not between-country socioeconomic status. This study identifies risk factors for which targeted behavioural interventions addressing interpersonal interaction, personal hygiene practices and specific treatments related to scabies create the potential to reduce scabies disease burden.

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Background

Scabies is a parasitic and contagious disease that affects an estimated 200 million people globally, with a particularly high burden in Asia, Oceania, and Latin America [1]. It leads to an itchy skin condition, the clinical manifestations of which are characterised by small inflammatory and pruritic skin papules resembling a mosquito bite.

Scabies occurs more frequently in the young and elderly, and in immunocompromised individuals. Scabies is not benign as it is associated with complications including impetigo, cellulitis and skin abscesses, and post-infectious complications including post-streptococcal glomerulonephritis. Caused by the mite Sarcoptes scabiei var. hominis, scabies infects about 10% of children in resource-poor areas principally through human skin-to-skin contact.

Over the past decade there have been substantial efforts made by the International Alliance for the Control of Scabies (IACS) to raise the profile of scabies and prioritise control efforts [2]. Recent epidemiological evidence has shown increased morbidity and mortality [3] mostly due to secondary bacterial infections occurring following scabies [2][4]. Invasive secondary infections with Streptococcus pyogenes and Staphylococcus aureus [7] can lead to serious invasive bacterial infection and septicaemia. Glomerulonephritis [8] and acute rheumatic fever [9] can occur following S. pyogenes infection. The direct discomfort causes sleep deprivation [5], poor performance at work and reduced quality of life [6]. Despite the health impacts and complications that can occur from scabies, there is limited published information about the global prevalence and distribution of the disease. Thus, to determine the prevalence and risks associated with scabies, a meta-analysis at a global scale was conducted.
Methods

Objectives and aim

This meta-analysis aimed to review studies describing the burden of scabies and estimate its global prevalence. We also aimed to identify factors associated with prevalence in different population settings.

Search strategy and identification of studies

A search was conducted using PubMed, Scopus and Google Scholar. Studies published since 2000 were included. All study designs including case-control, cohort and cross-sectional studies were considered. The keywords used for search of relevant articles were ‘scabies’, ‘controlled study’, ‘major clinical study’, ‘prevalence’, ‘skin defect’, ‘cross-sectional study’, ‘risk factor’, ‘mite’, ‘contact dermatitis’, ‘incidence’, ‘disease association’, ‘skin examination’, ‘infection’ and ‘comparative study’. The reference list of the retrieved articles was also screened for additional articles.

Inclusion and exclusion criteria

The exclusion and inclusion of studies were conducted according to the latest version of the PRISMA guidelines [10]. Studies that clearly reported the prevalence of scabies in the form of absolute number and percentages with 95% confidence intervals in a particular country or region among a specified population were included. Studies that were freely available, published in English and could be retrieved as full-length articles were included.

Studies assessing skin conditions that did not specifically report the number of scabies cases were excluded. Additionally, articles that were published in foreign languages or were available only in subscription format were excluded. A detailed flow-chart showing the data extraction process is included eliciting the number of studies included and excluded from the analysis.

Outcome variable

Outcomes selected for pooled analyses were prevalence of scabies infestation and odds ratios associated with the risk of having scabies.

Data extraction

Titles and abstract were independently reviewed by two authors (SG and ST). Subsequently studies were selected based in the inclusion and exclusion criteria. The following information was abstracted from each of the selected studies: last name of the first author, year of publication, study period, prevalence (absolute number), prevalence as a percentage, method of diagnosis, country of study, World Health Organization region, United Nations Statistics Division of countries, geographic location, population setting of the study, Gross Domestic Product (GDP) per capita in US$ of the study country, Gini index, Human Development Index (HDI), average income level of the country, age range of the population studied, the total sample size and different determinants of scabies. Among the included studies, a few were performed to determine the impact of mass drug administration on scabies prevalence [11-18]. From these studies, the baseline prevalence data were used for the pooled estimates as these data describe the prevalence among the community without any intervention. The socio-economic indicators, GDP, HDI and Gini index, could only be measured at the country level [19-21].

Quality assessment

The quality of each extracted article was assessed with the help of the Joanna Briggs Checklist for Analytical Cross-Sectional, Cohort Studies or Case-Control Studies. In studies that evaluated scabies
interventions, we considered baseline prevalence only. Two reviewers (SG and ST) independently assessed risk of bias using percentage scores. A score percentage of 49 or lower was categorized as low quality whereas score percentages ranging from 50 to 69 and 70 or higher were categorized as moderate and high quality respectively. Detailed information regarding the quality of included studies is presented in Supplementary 1.

Data analysis

The *meta*, *metafor* and *dmetar* packages of R software (version 4.3.2) [22] were used for analysis (pooling of prevalence and odds ratios), assessment (performing statistical tests of significance), and visualization. Results were pooled using random effects meta-analysis for primary analyses. Subgroup analyses were conducted to explore the prevalence of scabies infestation based on varying conditions like region, location, method of diagnosis, population setting and income level of the population under consideration. Meta-regression was performed on indicators of the country level socio-economic factors GDP, HDI and Gini index. Odds ratio (OR) with 95% confidence intervals (CI) were calculated separately for each of the behavioral risk factors.

Assessment of Heterogeneity

The Cochran’s *Q* statistic, Higgin’s and Thompson’s *I*^2^ and tau-squared statistics, with a standard alpha value of 0.05 were used for assessment of the degree of between-study heterogeneity. We used Cochran’s *Q*-statistic to examine the difference between observed effect sizes (OR) and fixed-effect model estimates of the effect size. A *p*-value less than 0.05 for the *Q* statistic was used to confirm the presence of heterogeneity. *I*^2^ was used to assess the extent of heterogeneity, as a measure of the percentage of variability in the effect size which could not be explained by sampling error [23]. Values of *I*^2^ less than 50% were considered low heterogeneity whereas 50% or greater was considered high. The *r*^2^ statistic was used to measure the degree of between-study variance in the meta-analysis. For *I*^2^ values of greater than 50%, a random effects model was used. A Baujat plot was used to detect potential outliers in the study and subsequently an influence analysis was used to check the effect of individual studies on pooled results and between-study heterogeneity on a case-by-case basis [24-25].

Risk of Bias

Several tests were performed to investigate whether publication bias was present. The Harbord [26] and Peters test [27] assessed the risk of this bias in pooled odds ratios (OR). The Harbord test addresses shortcomings of the better-known Egger’s test in the case of substantial between-study heterogeneity [28]. Similarly, since Egger’s test is deemed inappropriate due to its high type-I error when ORs are pooled, especially with large ORs and high between-study heterogeneity, the Peters test was used instead [27]. The ‘trim and fill’ method were used to correct pooled estimates for publication bias if it was found [29].

Results

Description of identified studies.

A total of 1,138 studies were identified. After removing duplicates, studies written in languages other than English, studies published before the year 2000 and non-articles, the titles, and abstracts of 538 studies were screened for relevance. Out of these, 375 full-text studies were assessed for eligibility. In this systematic review and meta-analysis, 54 met the inclusion criteria (Figure 1).
All 54 included studies were conducted after 2000. The global pooled prevalence of scabies was determined from studies that included 10,307,684 participants (Supplementary 2). The sample size of each of the constituent studies ranged from 50 to 9,057,427 participants. Of the 54 eligible studies, nine were conducted in Ethiopia [30-38], eight in Fiji [14][39-43], six in the Solomon Islands [13][16-17][43-46], four in Timor-Leste [43][47-49], four in India [11][50-52], three in Ghana [53-55], two in Australia [15][56], two in Nigeria [57-58], two in Malaysia [59-60] and one each in Cameroon [61], Egypt [62], Gambia [63], Iran [64], Lao [65], Liberia [66], Malawi [12], New Zealand [67], Samoa [68], Sri Lanka [69], Tanzania [18], Turkey [70], United Kingdom [71] and Vanuatu [72]. A detailed table of the study characteristics is present in Supplementary 3.

Prevalence of scabies

Pooled global prevalence was 14.0% (95% CI 11.4%-17.1%). Scabies prevalence ranged from 1.5% to 70% (Figure 2). Country level prevalence of scabies is represented in Figure 3. Factors including different methods of diagnosis, study period, country and area under consideration explained some of
the high heterogeneity in prevalence ($I^2 = 100\%; \tau^2 = 0.78$). Due to this high heterogeneity, a random effects model was used to compute the summary statistic. The forest plot shows the highest pooled prevalence in the Western-Pacific (18.0%; 95% CI: 13.9-23.0%), followed by Africa and South-East Asia. The lowest prevalence region was the Eastern Mediterranean. Noticeably higher numbers of studies were published from high prevalence countries compared to low. The forest plot also shows some extreme high prevalence studies, which are outside the main distribution of reported prevalence by region.

Outliers and Sensitivity Analysis

The influence analysis, sensitivity analysis and Baujat plot identified three potential outliers (Supplements 4, 5, and 6). After removal of these studies, the pooled prevalence of scabies was 13.3% (95% CI: 11.0% to 16.1%). The sensitivity analysis also confirmed that the high heterogeneity was not dependent on a single study. Analyses hereafter have been conducted with these outliers removed.
<table>
<thead>
<tr>
<th>Region</th>
<th>Prevalence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Region 1</td>
<td>0.01</td>
</tr>
<tr>
<td>Region 2</td>
<td>0.02</td>
</tr>
<tr>
<td>Region 3</td>
<td>0.03</td>
</tr>
<tr>
<td>Region 4</td>
<td>0.04</td>
</tr>
</tbody>
</table>

Figure 2: Pooled prevalence of scabies, by World Health Organisation region.
* These studies have been removed and not included in analyses henceforth

Figure 3: Prevalence of scabies by country
Fifty one studies were included after removal of outliers. The size of the circles are proportional to the number of studies conducted in that region, with deeper red shades indicating higher prevalence countries. Countries in white lack prevalence studies relating to scabies.

Subgroup Analysis

Subgroup analyses were completed after taking into consideration the method of diagnosis, WHO Region, United Regions Statistics Division (UNSD) of countries, geographic location, population settings and income status. Only region and method of diagnosis were significantly associated with prevalence. A high prevalence of 19.8% (95% CI 12.6%-29.9%) was found among studies that used the IACS criteria to diagnose scabies suggesting a higher sensitivity of the clinical definition (Table 1). Oceania, in the Western Pacific Region, had the highest prevalence of scabies cases. Studies that enrolled samples from community settings reported higher prevalences compared to studies performed in specific settings, e.g., schools or old-age homes. Upper middle-income countries showed the highest pooled prevalence of scabies compared to low, lower-middle- and high-income countries, although these differences were not statistically significant.

Table 1: Scabies prevalence by subgroup.

<table>
<thead>
<tr>
<th>Method of Diagnosis</th>
<th>Studies (n=51)</th>
<th>Prevalence 95% CI</th>
<th>χ^2</th>
<th>P-value for subgroup difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>IACS</td>
<td>9</td>
<td>19.8% 12.6-29.9</td>
<td>98.8%</td>
<td>0.07</td>
</tr>
<tr>
<td>IMCI</td>
<td>6</td>
<td>16.0% 10.3-24.2</td>
<td>98.8%</td>
<td></td>
</tr>
<tr>
<td>Traditional Method (Burrows, Pruritus)</td>
<td>36</td>
<td>11.6% 9.15-14.5</td>
<td>98.7%</td>
<td></td>
</tr>
<tr>
<td>WHO Region</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Western Pacific Region</td>
<td>21</td>
<td>18.0% 13.9-23.0</td>
<td>98.5%</td>
<td></td>
</tr>
<tr>
<td>African Region</td>
<td>16</td>
<td>11.5% 8.93-14.7</td>
<td>97.7%</td>
<td></td>
</tr>
<tr>
<td>South-East Asian Region</td>
<td>10</td>
<td>11.0% 5.88-19.6</td>
<td>98.3%</td>
<td></td>
</tr>
<tr>
<td>European Region</td>
<td>2</td>
<td>10.8% 8.78-13.3</td>
<td>0.00%</td>
<td></td>
</tr>
<tr>
<td>Eastern Mediterranean Region</td>
<td>2</td>
<td>3.98% 2.91-5.41</td>
<td>34.1%</td>
<td></td>
</tr>
</tbody>
</table>
UNSD of Countries

<table>
<thead>
<tr>
<th>Location</th>
<th>UNSD</th>
<th>GDP</th>
<th>HDI</th>
<th>Gini</th>
<th>95% CI</th>
<th>Prevalence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oceania</td>
<td>19</td>
<td>18.2%</td>
<td>13.9-23.4</td>
<td>98.5%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Africa</td>
<td>17</td>
<td>10.9%</td>
<td>8.36-14.0</td>
<td>97.9%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asia</td>
<td>14</td>
<td>10.8%</td>
<td>6.50-17.3</td>
<td>98.1%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Europe</td>
<td>1</td>
<td>10.7%</td>
<td>7.95-14.4</td>
<td>0.00%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Location

<table>
<thead>
<tr>
<th>Location</th>
<th>UNSD</th>
<th>GDP</th>
<th>HDI</th>
<th>Gini</th>
<th>95% CI</th>
<th>Prevalence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Urban and rural</td>
<td>18</td>
<td>15.0%</td>
<td>9.97-22.0</td>
<td>99.30%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rural</td>
<td>20</td>
<td>13.0%</td>
<td>9.72-17.3</td>
<td>98.60%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Urban</td>
<td>13</td>
<td>11.3%</td>
<td>8.35-15.1</td>
<td>95.50%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Population Setting

<table>
<thead>
<tr>
<th>Setting</th>
<th>UNSD</th>
<th>GDP</th>
<th>HDI</th>
<th>Gini</th>
<th>95% CI</th>
<th>Prevalence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Other*</td>
<td>5</td>
<td>14.4%</td>
<td>9.35-21.4</td>
<td>87.9%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Community</td>
<td>26</td>
<td>14.4%</td>
<td>11.5-17.8</td>
<td>99.1%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>School</td>
<td>20</td>
<td>11.6%</td>
<td>7.69-17.1</td>
<td>98.6%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Income Status

<table>
<thead>
<tr>
<th>Income Status</th>
<th>UNSD</th>
<th>GDP</th>
<th>HDI</th>
<th>Gini</th>
<th>95% CI</th>
<th>Prevalence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upper middle-income</td>
<td>11</td>
<td>17.5%</td>
<td>13.2-22.8</td>
<td>98.6%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lower middle income</td>
<td>24</td>
<td>13.2%</td>
<td>9.27-18.3</td>
<td>98.5%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low income</td>
<td>12</td>
<td>11.2%</td>
<td>8.06-15.5</td>
<td>98.1%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>High income</td>
<td>4</td>
<td>9.64%</td>
<td>5.38-16.7</td>
<td>94.9%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Includes studies conducted in childcare centres, welfare homes, clinics and hospitals

Factors associated with scabies

Separate meta-regression models showed no association of GDP, HDI or the Gini index with scabies infestation (Supplement 7).

Behavioral and demographic Factors

Associations with decreasing risk of scabies were identified for the following behavioral and social characteristics – contact history with household member with itch, soap use, frequency of baths, bed sharing, sharing clothes, source of water, presence of pets, location, family size, and gender. Separate meta-analyses were conducted to summarise the strength of association between each of these factors and scabies status. Forest plots of these behavioral and demographic factors are reported in Figure 4.

Contact history with household members with itch

The association between contact with a person who was itchy and scabies status was assessed using a random effects model due to high heterogeneity ($I^2 = 95\%$). The pooled result showed extremely high prevalence of scabies among subjects reporting contact with household members with itch (OR: 9.26; 95% C.I. 2.94-29.18).

Soap

Use of soap was strongly associated with scabies status. The five studies that reported this association showed low heterogeneity with consistent associations ($I^2 = 0\%$). Hence, a fixed effect meta-analysis yielded a higher odd of scabies (OR: 3.42 95% C.I. 2.80-4.18) among those who did not use soap whilst washing.

Frequency of bathing

Four studies considered the effect of frequency of bathing on scabies infestation. Studies reported the number of times the subjects took a bath on a weekly or daily basis and categorized them into two
groups based on frequency. The use of soap while taking a bath was not considered in this case. A moderate heterogeneity was found ($I^2 = 57\%$). Random effects meta-analysis yielded an OR of 2.68 (95% CI 1.76-4.08) indicating that infrequent bathing was linked to a higher risk of scabies infestation.

Bed-sharing.

Six studies with a high heterogeneity ($I^2 = 80\%$) reported bed sharing. The random effects meta-analysis showed an elevated risk of scabies, OR = 2.57 times (95% CI 1.33-4.96) among subjects who shared beds, compared to those who did not.

Sharing clothes

Five studies that reported disease status by sharing of clothing were analyzed. Heterogeneity of the selected studies was high ($I^2 = 88\%$), so a random effects analysis was completed. The pooled OR showed that the odds of scabies was 2.40 times higher (95% CI 1.39-4.13) among those sharing clothes compared to counterparts that did not.

Source of Water

Three studies reported the association between water sources and scabies prevalence. Water obtained from public taps, tube wells, protected dug wells and protected springs were considered an ‘improved source’ of water, whereas that obtained from unprotected dug wells, unprotected springs, cart with small tank/drum, tanker truck and bottled water was an ‘unimproved source’ [73]. The fixed effects meta-analysis conducted due to low heterogeneity ($I^2 = 0\%$), provided strong evidence of a higher risk of scabies among those obtaining water from unimproved sources (OR 2.29; 95% CI 1.67-3.15), compared to improved.

Presence of pets

Three studies with moderate heterogeneity ($I^2 = 59\%$) reported the association with scabies of the presence of household pets. Pets were associated with higher prevalence of scabies (OR 2.19; 95% CI 1.54-3.11).

Family Size

Six studies reported the association between family size and scabies status. Family size was categorized into two groups – larger or smaller, depending on the number of members. The threshold of family size varied between studies such that families with less than 4 or 5 members were categorized into smaller and those with more were considered larger. The studies showed a moderate level of heterogeneity ($I^2 = 63\%$). The pooled random effects estimate indicated a 23% increase in odds of having scabies, comparing larger to smaller families that was not statistically significant (OR = 1.23; 95% CI 0.83-1.82).

Location

To determine the relationship of geographic location with scabies prevalence, six studies were considered that categorized their target populations as either urban or rural. The studies reported extremely high heterogeneity ($I^2 = 98\%$), so random effects was used. No significant association (OR 1.27; 95% CI 0.64-2.53) was detected.

Gender

From the nineteen studies that reported scabies prevalence by gender, a random effects meta-analysis, owing to high heterogeneity ($I^2 = 84\%$), showed a higher risk in males that approached statistical significance (OR = 1.14; 95% CI 0.99-1.27).
Figure 4: Forest plot for random-effects meta-analysis showing risk of behavioral and demographic risk factors on scabies prevalence.

Publication bias

The meta-analyses of 8 of the 10 risk factors showed no evidence of publication bias (Supplement 8). Among the other two studies, probable bias was present for considered outcomes. While for the
presence of pets, bias was confirmed by the Harbord test \((p = 0.03)\), for soap use, it was confirmed by the Peters test \((p = 0.03)\). However, both risk factors remained significant after correcting for publication bias using the trim and fill method.

Discussion

Statement of principal findings

Our study provides a contemporary estimate of the prevalence and risk factors associated with scabies at a global level. This meta-analysis found a global prevalence of 14% (95% CI 12.2%-18.4%) with substantial heterogeneity \((I^2 = 100\% ; \tau^2 = 0.76)\). As \(I^2\) is highly dependent on the precision of the studies \([74][75]\), it tends towards 100% as the number of studies included becomes large, since the sampling error of the pooled estimate is reduced. We found substantial heterogeneity in between-study prevalence, some of which was explained by subgroup differences. For studies used to estimate risk, since most were performed in the same region and used similar methods, the heterogeneity was lower in some risk categories. The subgroup analysis found a higher prevalence of scabies in studies conducted in the Western Pacific region or more specifically in Oceania. Surprisingly, socio-economic factors like GDP, HDI and Gini index were not associated with scabies prevalence. Behavioral factors including infrequent bathing, lack of soap use, contact with persons with history of itch, clothes or bed sharing and using water drawn from untreated sources were associated with higher disease risk.

Strengths and weaknesses of the study

The comprehensive search strategy formed through effective use of the PRISMA guideline to review and include studies leading to minimum selection bias is the main strength of this analysis. With 54 included studies, this study is the largest meta-analysis estimating the prevalence of scabies. In addition, this study considers a wide range of countries and populations with respect to geographic regions, ages, diagnostic techniques, and socioeconomic status.

This study has some limitations. First, most of the studies included were from the Western Pacific, African and South-East Asian regions, whereas only one was from Europe and none from the Americas. This may have led to an underrepresentation and underestimation of scabies prevalence in the later areas. Second, studies are more likely to be conducted in areas with high prevalence of scabies. Thus, pooled estimate using prevalence studies most likely overestimated the true global prevalence. Third, several risk factors such as literacy of parents and caregivers, employment status of parents, household overcrowding, and presence of sanitation facilities in the household, were not considered by the studies included in this analysis. Fourth, since different studies have considered different sets of risk factors with differing definitions, the pooled odds ratios presented in this paper may be affected by measurement error. Fifth, the study has considered socio-economic factors at the country level as a proxy for every study. Since each study is based on a select population having their own unique economic characteristics, considering a macro level economic indicator may distort its association with scabies prevalence. Finally, since this study has pooled results from studies using different diagnostic techniques, this contributes to measurement error in individual studies, which likely leads to between study heterogeneity. Even though some definitions are consistent between studies, most studies rely on clinical assessment that is unavoidably subjective.

Strengths and weaknesses in relation to other studies, discussing particularly any differences in results.

Romani et al, in 2015 \([76]\), conducted a meta-analysis of 48 studies and concluded that scabies prevalence was highest in Latin America and Pacific regions. The findings of our study are consistent since this study also noted a significantly higher burden of scabies in the Pacific region in comparison to the other regions. Another recent meta-analysis \([77]\) reported a very wide range of scabies
prevalence from 0.18% to 79.6% as did the study by Romani which had a range from 0.2% to 71.4% [76]. The pooled prevalence in our study is similar with a 95% pooled confidence interval spanning 1.4% and 71%. We believe the main reason for such wide variation is the use of several diagnostic techniques like IACS, IMCI, and traditional methods. Thus, adopting an evidence-based diagnostic criteria for scabies through using the IACS method has already been recommended [78]. Since these diagnostic techniques rely mainly on subjective clinical assessment, there is a need for more objective techniques such as the quantitative polymerase chain reaction (qPCR) [79]. Although these meta-analyses have discussed the important issues of global prevalence, diagnostic inconsistency and need of MDA, they have, however, not considered pooling risk factors from the studies included. Our study is the first to consider the risk factors at a global level.

This study has considered multiple socioeconomic and behavioural factors that are likely to affect scabies prevalence. Summary measures of a country’s economic status like GDP, HDI and Gini index were not associated with scabies prevalence. This contrasts with several other ecological studies [80-81] as well as cross-sectional studies [82-83] that report evidence of higher burden of scabies in countries with lower GDP and low family income. One community-based study [82] has linked poor economic conditions to behavioural factors like infrequent bathing, soap use or washing clothes, in turn increasing the chances of scabies incidence or reinfection. The contrast in results of this study to those reported previously is likely due to the use of national GDP as a proxy for each community. There is an ecological bias in our study as summary measures at a country level don’t necessarily apply to specific populations studied. Further, since factors like income influence behaviour rather than directly influencing disease status, the role of income may be as a mediator rather than an independent causal factor.

The behavioural factors: history of contact with a person with itch; and sharing beds and clothes are consistent with past findings and are biologically plausible. Sharing clothes poses a very high risk of developing scabies [35] [83-84]. Similarly, sharing towels and bed linen was strongly associated with a high prevalence of scabies cases in a study based in semi-urban India [85]. Bed sharing was strongly associated with the risk of scabies which is concordant with the results of a similar study conducted in Ethiopia [86]. However, their findings of an association between family size and scabies status contrasts with those from this study. Since family size is a crude measure of crowding, it might be better to consider a measure such as household crowding index to determine the nature of this association in future studies.

In this study a strong association was between the presence of pets and scabies. Few studies to date have considered the risk of scabies due to pets because of the presumed biological implausibility. The pooled results from three studies provide evidence of this association. While zoonotic scabies (ZS) is often considered incapable of thriving on human skin leading to it being perceived as a self-limited disease [87], increasing evidence indicates that symptoms from ZS may persist for several weeks until an effective treatment is administered [88]. Recent instances of transmission of the scabies parasite from animals, especially dogs, to humans have been reported [89-90]. Also, pets may act as a ‘fomite’ which facilitates the transmission of human-to-human scabies.

In this study a strong association was between the presence of pets and scabies. Few studies to date have considered the risk of scabies due to pets because of the presumed biological implausibility. The pooled results from three studies provide evidence of this association. While zoonotic scabies (ZS) is often considered incapable of thriving on human skin leading to it being perceived as a self-limited disease [87], increasing evidence indicates that symptoms from ZS may persist for several weeks until an effective treatment is administered [88]. Recent instances of transmission of the scabies parasite from animals, especially dogs, to humans have been reported [89-90]. Also, pets may act as a ‘fomite’ which facilitates the transmission of human-to-human scabies.

The role that hygiene plays in scabies infestation is controversial and some authors dismiss these factors as not significant [91]. However, several studies argue otherwise [35][82]. Our study has found strong evidence of lower scabies prevalence in populations who use treated water, have frequent bathing practices and use soap. Untreated and scarce water supply leading to poor personal hygiene has been suspected to contribute to scabies burden in LMICs [35]. While it is unclear if soap use directly has any preventive effect against scabies infestation, the authors of one study have stated that normal soap washing can ameliorate the symptoms by reducing the number of active scabies lesions [92]. It has also been hypothesized that regular bathing and soap use acts as a protective factor in resource poor settings [83].
Meaning of the study: possible mechanisms and implications for clinicians or policymakers

Our study has provided very strong evidence of the high burden of scabies on a global scale and of a number the behavioural and risk factors associated with interpersonal interaction. The evidence we have summarised indicates that specific risk factors are strongly associated with transmission. Specific measures to reduce scabies prevalence, such as mass drug administration (MDA), are now recommended by the World Health Organization for populations with a prevalence of scabies of more than 10% [78]. Our study also suggests that targeted interventions that reduce risk factors such as sharing of clothes, bedsharing and improving access to treated water and soap may also reduce scabies burden.

Conclusion

The prevalence of scabies worldwide remains high. In addition to targeted mass drug administration, our study indicates that health promotion related to behavioural interventions addressing interpersonal interaction and personal hygiene practices may also prevent scabies.

References

Ethics declarations

Ethics approval and consent to participate: Not applicable.

Consent for publication: Not applicable.

Competing interests: The authors declare that they have no competing interest.