CLINICAL IMPLEMENTATION OF PREEMPTIVE OPT-OUT PHARMACOGENOMICS TESTING FOR PERSONALIZED MEDICINE AT A LARGE TERTIARY MEDICAL CENTER

Bani Tamraz¹
Jaekyu Shin¹
Raman Khanna¹
Jessica Van Ziffler¹
Susan Knowles¹
Susan Stregowski¹
Eunice Wan¹
Rajesh Kamath¹
Christopher Collins¹
Choeying Phunsur¹
Benjamin Tsai¹
Patsy Kong¹
Clari Calanoc¹
Aleta Pollard¹
Rajeev Sawhney¹
Jennifer Pleiman²
Patrick Devine¹
Rhiannon Croci¹
Aparna Sashikanth¹
Lisa Kroon¹
Russ Cucina¹
Aleks Rajkovic¹
¹University of California, San Francisco, San Francisco, CA; ²Epic Systems;

Corresponding Author:
Bani Tamraz, Pharm.D., Ph.D.
Associate Professor of Clinical Pharmacy
Department of Clinical Pharmacy
University of California, San Francisco
521 Parnassus Ave, Box 0622

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
San Francisco, CA 94143-0622
P: 415.476.8013
F: 415.476.6632
E: bani.tamraz@ucsf.edu

Number of references: 14
Number of figures: 2
Number of tables: 1

Keywords: Pharmacogenomics; Pharmacogenetics; Clinical decision support; Personalized medicine; Electronic health record

Running title: UCSF Health Clinical PGx Program

Conflict of interest: Bani Tamraz is a scientific advisor to Codex Genetics.

Funding: UCSF Health
ABSTRACT

Objective

This paper describes the implementation of preemptive clinical pharmacogenomics (PGx) testing linked to an automated electronic clinical decision support (CDS) system delivering clinically actionable PGx information to clinicians at the point of care at UCSF Health.

Methods

A multidisciplinary team was assembled. The drug-gene interactions of interest were compiled. Actionable alleles for target genes were identified. A genotyping platform was selected and validated. Following HIPAA protocols, genotype results were electronically transferred and stored in APeX, the electronic health record. CDS was developed and integrated with electronic prescribing in the form of best practice advisory (BPA) and medication warnings (MW).

Results

We developed a customized clinical PGx program for 56 medications and 15 genes. 233 MWs and 15 BPAs approved by clinicians, built into APeX, deliver actionable clinical PGx information to clinicians.

Conclusions

Our multidisciplinary team successfully implemented opt-out, preemptive PGx testing linked to point-of-care electronic CDS to guide clinicians at UCSF Health.
Background

University of California San Francisco (UCSF) Health recognizes precision medicine (PM) as a priority, with pharmacogenomics (PGx) as an essential PM component. PGx provides a means of adjusting medication treatment to individual patients’ genetics, and as such, its potential to transform health care is unequivocal. PGx clinical recommendations are available for numerous drugs from different resources, including the FDA[1] and Clinical Pharmacogenetics Implementation Consortium (CPIC)[2]. Yet, despite their availability, PGx-guided therapy is not routinely incorporated into most clinical practices. Many factors challenge the integration of PGx into clinical care, which can be divided into two groups: bioinformatics and non-bioinformatics.

Bioinformatics factors can be further divided into intrinsic and extrinsic categories. The intrinsic challenges are related to the effective integration of PGx into clinical workflow within a single electronic health record (EHR) to enable evidence-based, timely, and patient-appropriate decisions. Lack of clinical decision support (CDS) incorporated EHR is a recognized barrier to the use of PGx data in individual treatment strategies. Solutions are needed to communicate PGx test results as standardized, structured, and coded data (rather than non-computable PDF and free text formats), and tools are required to integrate codified PGx data from multiple sources (e.g., laboratory, CPIC) for delivery to clinicians at the point of care. Even if an institution successfully solves the intrinsic challenges related to PGx implementation, these solutions are not easily extended to other EHR systems primarily due to the issues associated with interoperability (i.e., extrinsic factors) across different EHRs.

Non-bioinformatics factors limiting the broad clinical application of PGx include 1) limited data on the clinical utility of PGx, 2) long turnaround times for PGx test results, 3) limited cost-effectiveness data, 4) payer restrictions, 5) lack of consensus guidelines for interpretation, and 6) limited clinician awareness.[2-6]

Despite these challenges, some institutions have successfully placed some form of EHR-integrated PGx CDS system. [7-12]. At UCSF Health, we have implemented such a system, and this paper describes it and its clinical and technical approaches.
Methods

Assembling a multidisciplinary team. A team of 23 core individuals with broad expertise in bio-informatics, hospital operations, pharmacogenomics, EHR usability, software engineering, laboratory operation, education, billing, and clinicians (i.e., physicians, nurses, pharmacists) was assembled. The hospital leadership tasked this team with investigating the specifics of implementing PGx, developing technical laboratory and EHR solutions, assessing its feasibility for clinical integration, and educating clinicians. UCSF Health utilizes EPIC, known as APeX at UCSF Health, as its EHR system, and this team identified the following steps to prioritize for the clinical PGx implementation.

Identifying drug-genes interactions of interest. CPIC[2] and FDA[1] table of pharmacogenomic biomarkers were the primary resource for assembling a list of medications and genes. From CPIC, we focused on medications with the highest level of evidence linking genetics to level A and B recommendations. From the FDA, we identified medications for which the FDA recommends germline PGx testing before treatment initiation. This list was finalized after consultation with clinical specialties that routinely use the target medications at UCSF Health.

Identify and engage clinical leadership across clinical services for PGx application and implementation. Identifying and engaging clinical leadership across clinical services early in the project was crucial for the successful application and implementation of PGx. Clinical leaders are pivotal in driving change, fostering collaboration, and ensuring alignment with organizational goals. By involving leaders from diverse service lines such as pharmacy, primary care, and various specialty medicine, a comprehensive understanding of PGx's potential impact can be achieved. These leaders championed the integration of PGx into clinical workflows, advocated for resource allocation, and provided guidance on implementation within their service. Engaging clinical leadership fostered buy-in, encouraged interdisciplinary cooperation, and facilitated the adoption of PGx to enhance patient care and outcomes.

Identify clinically actionable variants within target genes. This process involved using the PharmGKB[13] table of genes and variants to meticulously identify and prioritize variants associated with known genetic phenotypes.
Select a genotyping platform and subsequent data analysis. Selecting a genotyping platform involved systematically evaluating various factors to ensure compatibility with clinical objectives. Initially, we defined the scope of the clinical application, considering factors such as the number of samples, throughput requirements, budget constraints, and the specific genetic variants of interest. Next, we assessed the technical specifications of available genotyping platforms, including genotyping accuracy, resolution, coverage, and scalability. Additionally, considerations such as the platform's flexibility for customization, ease of use, data analysis capabilities, and compatibility with downstream applications were crucial. Ultimately, the chosen genotyping platform aligned with the project's objectives, providing reliable and reproducible results while optimizing efficiency and cost-effectiveness.

Identify & CLIA validate target genetic variants. Identifying and CLIA (Clinical Laboratory Improvement Amendments) validating target genetic variants is a meticulous process critical for ensuring the accuracy and reliability of genetic testing in clinical settings. It began with selecting specific genetic variants of interest and identifying reference samples at the Genetic Testing Reference Materials Coordination Program (Get-RM) (https://www.cdc.gov/labquality/get-rm/index.html). Not every variant of interest had an available reference sample. The variants with available reference samples underwent rigorous validation according to CLIA standards, which involve comprehensive laboratory testing to confirm their presence. This validation process includes verifying the testing methodology's accuracy, precision, and reproducibility across multiple samples. Moreover, it entails establishing quality control measures, proficiency testing, and adherence to regulatory guidelines to ensure consistent and reliable results.

Develop best practice alerts and medication interaction warnings in APeX. Developing best practice alerts and medication interaction warnings required a multifaceted approach to integrate clinical knowledge, technological expertise, and user-centered design principles. Firstly, we defined the scope and criteria for alerts. These included the idea that each alert had to inform users of pertinent and timely information that is actionable. Subsequently, alerts were integrated into the workflow at appropriate decision points. To enhance usability and effectiveness, alerts were designed to be context-specific, actionable, and prioritized based on clinical relevance and potential impact on patient care. Additionally, continuous monitoring and iterative refinement of alert algorithms are necessary to minimize alert fatigue and optimize clinical utility. User feedback and usability testing are crucial in refining alert design and functionality to ensure they support
rather than impede clinical decision-making. Following these systematic steps and engaging stakeholders throughout the process, we developed robust best practice alerts and medication interaction warnings.

Develop and validate automated clinical decision support (CDS) in APeX. Developing an automated CDS system involved a systematic process integrating clinical knowledge, data analytics, and information technology. The EPIC’s Genomics module (From Epic Systems Software Company, Verona, WI) was purchased and used to build CDS. Initially, we defined the objectives and scope of the CDS system and identified specific clinical scenarios or decision points where CDS support was needed. Next, we designed and tested the necessary algorithms. This process involved extracting relevant information from APeX. Iterative testing, validation, and refinement were essential to ensure the accuracy, relevance, and usability of the CDS system in real-world clinical settings. Continuous monitoring and feedback mechanisms enable ongoing optimization and adaptation to evolving clinical needs and evidence.

Develop patient-specific PGx lab reports. We interpret the genomic data in the context of established guidelines and evidence-based literature. The lab report, customized as a PDF, presents clear and concise information on identified genetic variants, including their clinical significance and potential implications for drug therapy. User-friendly formatting and language were used to enhance understanding by both patient and provider.

Develop educational content for patients and clinicians. Creating educational content for patients and clinicians is essential for fostering understanding, empowerment, and informed decision-making in healthcare. To develop effective educational materials, a multidisciplinary team comprising healthcare professionals, medical writers, and designers collaborates to ensure accuracy, relevance, and accessibility. Educational content utilizing plain language and multimedia formats to enhance comprehension and engagement was developed for patients. Clinician-focused content targeting providers, nurses, and pharmacists provided evidence-based information on clinical guidelines and best practices and was presented concisely and user-friendly.
Results

Over 21 months, our multidisciplinary team developed a customized, opt-out clinical PGx program at UCSF Health for 56 medications and 15 genes. (Table 1) Basic rules for developing robust pre-test alerts in the form of a BPA and post-test alerts in the form of MWs were devised. Each MW alert message had three components. The first was the clinical recommendation for a specific drug-gene interaction presented by CPIC or FDA. The second part was communicating the genetic phenotype, which triggered the alert. Lastly, the alert had to communicate the clinical consequences reported in the literature due to the drug-gene interaction. The BPA statements had two components. The first was to communicate to the provider the presence of a known drug-gene interaction and its associated clinical consequences. The second component in all BPAs had the following statement: “Order pharmacogenetic testing to guide your treatment. The turnaround time for pharmacogenetic testing is two weeks. Necessary medications should not be withheld while waiting for genetic test results.” Figure 1 provides a sample visual for BPA and MW in APeX.

Based on these rules, 232 MWs and 15 BPAs (Supplementary file 1) delivering actionable clinical information to clinicians for 56 medications were drafted, reviewed, and approved by at least 38 clinicians across 16 specialties. These BPAs and MWs were built into APeX’s genomic module and tested using various clinical scenarios. To minimize alert fatigue, the BPAs fire only one time per provider, per patient, and per medication, while the MWs display the information for all actionable drug-gene interactions at appropriate decision points. These 56 medications were prescribed to 118,663 unique patients at UCSF Health in 2020. Given this volume, pre-test alerts were initially implemented for 15 of the 56 medications. (Table 1) Clinicians can opt out of PGx testing by selecting one of the four acknowledgment reasons displayed in the BPA (Figure 1). UCSF PGx test can be ordered in two ways: BPA for 15 medications or using the order activity feature of APeX for medications without BPA.

PharmacoScan™ array from Thermofisher (Santa Clara, CA) was selected for genotyping target SNPs to construct 240 alleles (Supplementary Table 1) with known actionable phenotypes with a 2-week turnaround time. 74 samples (Supplementary file 2) were purchased from Coreal for CLIA validation of the assay. The mean sensitivity and specificity of the assay for identifying the target haplotypes were 99% and 99.5%, respectively.
For ease of use, the translation and integration of the structured genetic test results and alerts in APeX are automated. Figure 2 shows and describes the design of a custom pipeline for the data flow from ordering the UCSF PGx panel to resulting that starts and ends in APeX. Genomic indicators are created automatically for the patient in APeX based on PGx results from the UCSF genomics lab. These genomic indicators integrate patients’ PGx results into APeX through structured genetic data that drives the CDS. In addition to genomic indicators, a PDF report of the results is also generated and placed in the patient’s chart, which the patient can access through MyChart from Epic Systems.

All billing is handled through APeX. Patients’ insurance is billed using appropriate current procedural terminology (CPT) codes for the medication-gene combination that initiates the PGx test, along with the ICD-10 code associated with the current diagnosis.

Educational content for patients, physicians, pharmacists, and nurses was developed and disseminated. The patient provided verbal consent before ordering the UCSF PGx panel.

Discussion

On May 9th, 2023, our multidisciplinary team successfully launched an opt-out preemptive PGx testing program integrated with point-of-care automated electronic CDS at UCSF Health. The application of this program to 56 medications and 15 genes across numerous therapeutic areas provides the opportunity to validate clinical algorithms and assess their efficacy, usefulness, and adoption during routine clinical practice. We envision this project and the developed clinical infrastructure will result in improved patient health outcomes and provider experience.

The utility of this test will vary across services and clinicians depending on clinical context, patient factors, and the specific medication in question. Given the breadth of medications across different therapeutic areas, we expect to gain important insights into clinical utility across various settings. This insight includes information on reimbursement for PGx testing. Information on testing reimbursement is limited and considered a barrier to the adoption of PGx.

Our flexible system infrastructure is designed to accommodate additional variants, genes, and medications easily.
Conclusion

At UCSF Health, we have developed a framework by which PGx findings can be incorporated into existing decision factors, ultimately producing a more precise, cohesive, and comprehensive recommendation.

Acknowledgements. We acknowledge Joshua Adler, the Chief Medical Officer of UCSF Health, for supporting this project.

Supplementary material.

Funding. We thank UCSF Health for funding this project.

Conflicts of interest. None

References

Figure 1. Sample pre-test best practice advisory (A) and post-test medication warning (B)

A) Best practice advisory for simvastatin.

![Best Practice Advisory](image)

MUST select an individual override reason if clinicians decide not to order PGx panel.

B) Medication warning fired for patient with CYP2C19 poor metabolizer phenotyped in the process of being prescribed sertraline (ZOLOFT).

![Medication Warning](image)

Remove button will remove order from signing process

Can select an individual override reason for each warning, or one for all warnings

User needs to select override/accept (with or without a reason) to complete release of order. Cancel will cancel signing of orders
Figure 2. The design of the automated pipeline for the collection of patient information and delivery of structured PGx data to APeX at UCSF Health.

<table>
<thead>
<tr>
<th>Order</th>
<th>Interface to Sapiol</th>
<th>Accessioning</th>
<th>Genotyping</th>
<th>Analysis</th>
<th>Report Loading</th>
<th>Report Signout</th>
<th>Interface to APeX</th>
<th>Results & CDS</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHI</td>
<td>Cloverleaf</td>
<td>HL7</td>
<td>GeneTitan Array</td>
<td>GeneTitan</td>
<td>Input: CEL files</td>
<td>Output: RPT file</td>
<td>Output: SAPIO PGx</td>
<td>Genomic indicators</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Output: RPT file</td>
<td></td>
<td></td>
<td>PDF report</td>
</tr>
</tbody>
</table>

Providers order the UCSF PGx test through EPIC® (From Epic Systems Software Company, Verona, WI) called APeX at UCSF Health. Cloverleaf® healthcare data platform (From Infor, New York, NY) is the translation tool that allows for the exchange of information between APeX and SAPIO (from Sapio Sciences, Baltimore, MD), the laboratory information management system. The UCSF PGx orders are accessioned and tracked in SAPIO. Once a blood or buccal swab sample is received and DNA is extracted, we follow the PharmacoScan™ array protocol (From ThermoFisher Scientific, Santa Clara, CA) for genotyping DNA on the GeneTitan™ instrument from ThermoFisher Scientific. The resulting CEL files generated from GeneTitan™ are important in Axiom™ Analysis Suite software (version 5.1.1.1 from ThermoFisher Scientific, Santa Clara, CA) for analysis using customized annotation, metabolizer, and translation libraries. The resulting phenotype.rpt file is scanned for novel alleles and any irregularities and uploaded into SAPIO for clinical signout. Once the results are signed out in SAPIO, the associated phenotypes and genotypes are imported back into APeX. Upon receiving these results, genomic indicators are created automatically for the patient in APeX. These genomic indicators integrate patients’ PGx results into APeX through structured genetic data that supports clinical decisions. In addition to genomic indicators, a PDF report of the results is also generated and placed in the patient’s chart, which the patient can access through MyChart from Epic Systems.
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CYP2C9</td>
<td>Warfarin, Phenytoin, Celecoxib, Flurbiprofen, Meloxicam, Piroxicam, Ibuprofen, Sponlimod</td>
</tr>
<tr>
<td>VKORC1/CYP4F2/GGCX</td>
<td>Warfarin</td>
</tr>
<tr>
<td>CYP2C19</td>
<td>Trimipramine, Sertraline, Imipramine, Escitalopram, Droxepin, Clopidogrel, Clomipramine, Citalopram, Amitriptyline, Voriconazole, Pantoprazole, Omeprazole, Lansoprazole, Dexlansoprazole</td>
</tr>
<tr>
<td>CYP2D6</td>
<td>Trimipramine, Paroxetine, Imipramine, Nortriptyline, Fluvoxamine, Droxepin, Desipramine, Codeine, Clomipramine, Amitriptyline, Venlafaxine, Tramadol, Tamoxifen, Atomoxetine, Ondansetron, Pitolisant, Arpiprazole, Risperidone, Pimozide, Tetrabenazine</td>
</tr>
<tr>
<td>TPMT/NUDT15</td>
<td>Thioguanine, Mercaptopyrine, Azathioprine</td>
</tr>
<tr>
<td>DPYD</td>
<td>Fluorouracil, Capecitabine</td>
</tr>
<tr>
<td>CYP3A5</td>
<td>Tacrolimus</td>
</tr>
<tr>
<td>SLCO1B1/ABCG2/CYP2C9</td>
<td>Simvastatin, Atorvastatin, Fluvastatin, Lovastatin, Pitavastatin, Pravastatin, Rosuvastatin</td>
</tr>
<tr>
<td>G6PD</td>
<td>Rasburicase, Dapsone, Septra, Sulfasalazine, Tafenoquine, Primaquine</td>
</tr>
<tr>
<td>CYP2B6</td>
<td>Efavirenz</td>
</tr>
<tr>
<td>UGT1A1</td>
<td>Atazanavir, Irinotecan</td>
</tr>
</tbody>
</table>

Medications in red have best practice advisory alerts that notify a provider that a PGx test can be ordered for the medication.