Efficacy and safety of ethanolamine oleate in sclerotherapy in patients with difficult-to-resect venous malformations: A multicenter, open-label, single-arm study

Running head: Ethanolamine oleate sclerotherapy in difficult-to-resect venous malformations

Mine Ozaki1*, Tadashi Nomura2, Keigo Osuga3, Masakazu Kurita4, Ayato Hayashi5,6, Shunsuke Yuzuriha7, Noriko Aramaki-Hattori8, Makoto Hikosaka9, Taiki Nozaki10, Michio Ozeki11, Junko Ochi12, Shimpei Akiyama13, Ysumasa Kakei14,15, Keiko Miyakoda15, Naoko Kashiwagi15, Takahiro Yasuda15,16, Yuki Iwashina1, Tsuyoshi Kaneko9, Kiyoko Kamibeppe17, Takafumi Soejima18, Kiyonori Harii1

1 Department of Plastic Surgery, Kyorin University Faculty of Medicine, Tokyo, Japan
2 Department of Plastic Surgery, Kobe University Graduate School of Medicine, Hyogo, Japan
3 Department of Diagnostic Radiology, Osaka Medical and Pharmaceutical University, Osaka, Japan
4 Department of Plastic and Reconstructive Surgery, The University of Tokyo Hospital, Tokyo, Japan

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
5 Department of Plastic and Reconstructive Surgery, Yokohama City University, Kanagawa, Japan
6 Department of Plastic and Reconstructive Surgery, Juntendo University School of Medicine, Tokyo, Japan
7 Department of Plastic and Reconstructive Surgery, Shinshu University School of Medicine, Nagano, Japan
8 Department of Plastic and Reconstructive Surgery, Keio University School of Medicine, Tokyo, Japan
9 Department of Plastic and Reconstructive Surgery, National Center for Child Health and Development, Tokyo, Japan
10 Department of Radiology, Keio University School of Medicine, Tokyo, Japan
11 Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu, Japan
12 Department of Diagnostic Radiology, Suita Tokushukai Hospital, Osaka, Japan
13 Department of Radiology, Kyoto Prefectural University of Medicine, Kyoto, Japan
14 Department of Oral and Maxillofacial Surgery, Kobe University Graduate School of Medicine, Hyogo, Japan
15 Department of Medical Devices, Kobe University Graduate School of Medicine, Hyogo, Japan
16 Advanced Medical-Engineering Development Center, Kobe University, Hyogo, Japan
17 Division of Health Sciences and Nursing, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan
18 Department of Child Health Nursing, Kobe University Graduate School of Health Sciences, Hyogo, Japan
* Corresponding author:

E-mail: zakimin@nifty.com (MO)
Abstract

Objective

To evaluate the efficacy and safety of sclerotherapy in patients with difficult-to-resect venous malformations treated with ethanolamine oleate.

Design and setting

This investigator-initiated clinical trial employed a multicenter, single-arm, open-label design and was conducted in Japan.

Patients

Overall, 44 patients with difficult-to-resect venous malformations were categorized into two cohorts: 22 patients with cystic-type malformations and 22 patients with diffuse-type malformations.

Interventions

Patients received injections of 5% ethanolamine oleate solution, double diluted with contrast or normal saline, with a maximum dose of 0.4 mL/kg. The same method of administration was used for children (<15 years old). The maximum volume of the prepared solution in one treatment was 30 mL.

Evaluation methods
Treatment efficacy was assessed by evaluating changes in lesion volume using magnetic resonance imaging and changes in pain using a visual analog scale.

Results

Among the 45 patients who consented, one was excluded owing to potential intracranial involvement of venous malformations during screening. Regarding the primary outcome, 26 of 44 patients (59.1%, 95% confidence interval: 44.41–72.31%) achieved ≥20% reduction in malformation volume, with 16 patients having cystic lesions (72.7%, 51.85–86.85%) and 10 patients having diffuse lesions (45.5%, 26.92–65.34%). Both cohorts showed significant improvement in self-reported pain scores associated with lesions 3 months post-sclerotherapy. No death or serious adverse events occurred. Hemoglobinuria was observed in 23 patients (52%), a known drug-related adverse event. Prompt initiation of haptoglobin therapy led to full recovery within a month for these patients.

Conclusions

Ethanolamine oleate shows potential as a therapeutic sclerosing agent for patients with difficult-to-resect venous malformations.
Keywords: sclerotherapy, ethanolamine oleate, venous malformation, cavernous hemangioma, hemoglobinuria
Introduction

Venous malformations (VMs) are vascular developmental abnormalities that arise during fetal life and are associated with pain, movement disorders, and other symptoms [1-3]. A study conducted by the Ministry of Health, Labor and Welfare in Japan (Project on Intractable Hemangioma, Vascular Malformation, Lymphangioma, Lymphangiomatosis and Related Diseases in Fiscal 2014) estimated that 20,000 individuals are affected by VMs, with half of them harboring difficult-to-resect lesions due to extensive involvement or muscle infiltration [4,5]. For such cases, sclerotherapy is the treatment of choice [2,6-9].

Sclerotherapy is a globally recognized treatment for VMs, described as among the most effective options available. Ethanolamine oleate, a sclerosing agent, has been extensively documented in this regard [10]. American guidelines for percutaneous sclerotherapy for head and neck venous and lymphatic malformations [11] and European guidelines for sclerotherapy in chronic venous disorders both acknowledge the effectiveness of sclerotherapy in chronic venous disorders, including VMs [12]. However, to the best of our knowledge, sclerotherapy for VMs remains uncovered by health insurance policies, with no pharmaceutical approval for any sclerosing agent across countries to date.

In Japan, ethanolamine oleate, absolute ethanol, and polidocanol have been used as off-label sclerosing agents for VM treatment [13-17]. While absolute ethanol and polidocanol are associated with serious, life-threatening adverse events [11,18,19], ethanolamine oleate is considered a safer option with minimal adverse events [20]. Horbach et al.’s article [20], which analyzed five studies encompassing 188 patients treated with ethanolamine oleate for venous or lymphatic malformations, reported skin
ulceration and skin necrosis (six cases, 3%) as adverse events. However, systemic adverse events, facial nerve disorders, or other adverse events were absent [20]. In another study that evaluated the cytotoxicity of each sclerosing agent in muscle tissue, absolute ethanol was the most cytotoxic, with ethanolamine oleate and polidocanol exhibiting comparably lower cytotoxicity [14]. Conversely, efficacy studies have shown promising results for ethanolamine oleate, which reduced lesions and improved symptoms in 88–100% of cases evaluated in a systematic review [20]. Furthermore, a pediatric-centered study examined its application in children (mean age: 15.1 years, range: 3 months to 21 years) among 83 patients (comprising 85 procedures), resulting in complete symptom resolution for 79 lesions and notable enhancements for six lesions [21]. Although ethanolamine oleate is currently approved as a sclerosing agent for esophageal and gastric varices in Japan [22,23], its use has not been indicated for pediatric patients. This is particularly relevant considering the congenital nature of VMs, often requiring treatment in children. Nevertheless, existing evidence suggests its efficacy in pediatric patients.

Given its efficacy and safety profile, ethanolamine oleate is regarded as the most appropriate candidate for initial regulatory approval as a sclerosing agent for VMs. A limited number of well-designed clinical trials have investigated treatment options for difficult-to-resect VMs; we initiated a phase III, multicenter, open-label, single-arm clinical trial to aid the Japanese government in approving health insurance coverage. Based on their morphological characteristics, VMs can be broadly categorized into cystic and diffuse lesions. Cystic lesions are more likely to shrink with sclerotherapy, whereas diffuse lesions are less likely to respond [24]. Consequently, the study design employed volume reduction and pain improvement as the evaluation criteria for cystic and diffuse
lesions, respectively. This clinical trial aimed to characterize the clinical impact of ethanolamine oleate injection in patients with difficult-to-resect VMs.

Materials and methods

Study design and procedure

This non-randomized, prospective, open-label, multicenter clinical trial was conducted at eight hospitals from January 1, 2021 to the end of April 2023 (the last patient’s visit). The recruitment period for Kyorin University Hospital, Kobe University Hospital, Osaka Medical and Pharmaceutical University Hospital, The University of Tokyo Hospital, Juntendo University Urayasu Hospital, and National Center for Child Health and Development Hospital was from 1/1/2021 to 31/3/2023; for Shinshu University Hospital, the recruitment period was from 1/2/2021 to 31/3/2023; for Keio University Hospital, the recruitment period was from 19/3/2021 to the 31/3/2023. A summary of this study is presented in Fig 1. The observation period continued for 3 months following the intervention. Participants were instructed to visit at designated times during the observation period and provided with reimbursement for travel expenses to reduce the burden on patients. Written informed consent was obtained from all patients or their parents/guardians if the patient was under 20 years old. This clinical trial was approved by the Institutional Review Board of each facility (Kyorin University Hospital,
Kobe University Hospital, Osaka Medical and Pharmaceutical University Hospital,
Shinshu University Hospital, The University of Tokyo Hospital, Juntendo University
Urayasu Hospital, Keio University Hospital, National Center for Child Health and
Development Hospital). The study protocol adhered to the SPIRIT statement. All data
were stored and archived at the Data Center of DOT World Co., Ltd., Tokyo, Japan.

Fig 1. Summary of the study protocol. MRI, magnetic resonance imaging; CT,

Sample size calculation

Considering cystic lesions, the threshold for volume reduction was set at a
minimum of 20%. This was based on the assumption that successful treatment should
improve the conditions of a proportion of patients, achieving either complete response
(target lesion resolved) or partial response (≥20% target lesion volume reduction).
Limited data exist regarding magnetic resonance imaging (MRI)-based evaluations for
ethanolamine oleate in difficult-to-resect VMs. Kaji et al. [7] reported a median
MRI-based lesion reduction rate of approximately 25% in 60 participants with VMs.
Because the median corresponds to the 50th percentile of the data distribution, more than
50% of patients are expected to experience a reduction rate ≥ 20%, as shown in the figure
presented by Kaji et al. A study conducted by Alexander et al. [25] reported on
MRI-based reduction rates for VMs and demonstrated that at least 50% of participants
achieved a reduction rate ≥ 20% [25].
It should be noted that Kaji et al. [7] calculated the lesion reduction rate from the measured area of the lesion. Although Kaji’s method differs from that used in the current study, we considered the reduction rate reported in these previous studies to be suitable since the expected threshold and complete response and partial response values in the present study would be at least 50% [25].

It was estimated that the present trial required the inclusion of 19 cases per group to obtain 80% statistical power to detect significant between-group differences based on a binomial distribution with a one-sided 2.5% significance level. Considering potential dropout cases, the target number of patients with cystic lesions was set to 22. The same target was used for cases with diffuse lesions, and a total of 44 cases were targeted for recruitment.

Participant inclusion criteria

Participants were selected according to the inclusion criteria set by investigators collecting patient information during outpatient consultations at each facility among the patients with VMs introduced at each facility. The inclusion criteria were any age; informed consent, either directly or through their legal guardians if under 20 years old; and VMs considered challenging to surgically remove, with sclerotherapy identified as the primary treatment option. Difficulty in resection was defined by the investigator or sub-investigator as a high risk of lifestyle dysfunction due to potential complications from excision or the risk of aesthetic impairment.

Moreover, patients needed to exhibit at least one target VM with a major axis diameter ≥ 30 mm in the extremities or ≥ 20 mm in the head and neck, as determined on MRI or computed tomography. Additionally, inclusion criteria stipulated the absence of a
thrombus or organized tissue that could interfere with the evaluation of images or the
judgment of treatment effectiveness in target VMs.

Participant exclusion criteria

The exclusion criteria included multiple organ failure or disseminated intravascular coagulation; currently taking or recently started taking medications known to influence lesion resolution, such as propranolol or specific herbal medicines like Kamishoyosan or Ninjinyoeito; diabetes mellitus (HbA1c ≥ 8.0) or autoimmune disorders; Child–Pugh Class C liver dysfunction; renal dysfunction (estimated Glomerular Filtration Rate < 60 mL/min/1.73 m²); or cardiac dysfunction (New York Heart Association Class ≥ 2).

Further exclusions encompassed patients who had undergone sclerotherapy within 6 months preceding signing of the informed consent, with a history of allergy to ethanolamine oleate or angiography contrast agents, and those who had undergone surgery exceeding 45 min within 2 weeks preceding signing of the informed consent. Additionally, participation in other clinical studies within 4 weeks preceding signing of the informed consent, pregnancy, potential pregnancy, or lactation rendered individuals ineligible. Lastly, patients deemed ineligible by the investigator or sub-investigator were not enrolled.

Intervention

The following procedures were performed by the investigator from each facility under general anesthesia in the operating room. Patients received injections of 5% ethanolamine oleate solution, double diluted with contrast or normal saline (Fig 2), with a
maximum dose of 0.4 mL/kg. The same method of administration was used for children
(<15 years old). The maximum volume of the prepared drug in one treatment was 30 mL.
The safety of this dose is within the range approved for gastric variceal treatment in Japan
[22], and its efficacy has been reported in previous studies [7,13,15-17]. The drug is
administered only once; however, for patients with diffuse lesions, if there is little
improvement in symptoms such as pain even after 4 weeks from administration, and the
principal investigator deems it necessary for treatment, additional dosing is permitted. In
such cases, the dosage should be the same as the initial dose.

Fig 2. Sclerotherapy procedure for venous malformations. (A) Adjust the position of
the fluoroscopy device. (B) Insert a needle under ultrasound guidance. (C) Ultrasound
image at the time (B-mode). The inserted needle is visible (arrow). (D) Apply negative
pressure to confirm the presence of back flow (arrow). (E) During digital subtraction
angiography, contrast is injected to confirm the location of the lesion and outflow
pathways. Once it is confirmed that the needle is in the appropriate position and the
injection volume is verified, inject the sclerosing agent diluted with contrast. (F)
Fluoroscopy after multiple iterations of this process showing the persistence of the
sclerosing agent within the lesion due to the contrast mixture. (G) Ultrasound imaging
confirming the presence of a sclerosing agent under ultrasound guidance.

Endpoints
The primary endpoint was achieving a ≥ 20% VM volume reduction 3 months
post-intervention. This endpoint was chosen based on the assumption that a positive
correlation between VM symptoms and lesion volume translates to clinical efficacy [26].
MRI scans were outsourced to an external institution for lesion volume analysis. Afterwards, the images were separately evaluated by two independent board-certified radiologists using the image analysis software OsiriX (PixMeo SARL, Geneva, Switzerland) (Fig 3). The final value was determined by averaging the measurements obtained by each evaluator. The interobserver correlation coefficient (2,1) was calculated to assess the reproducibility of the measurements between the evaluators.

The key secondary endpoint was improvement in symptoms, particularly self-reported, lesion-associated pain scores, 3 months post-intervention. Patients aged 2 to 5 years were evaluated using the face scale (range: 1–6), developed by Wong-Baker [27], whereas those aged ≥ 6 years were evaluated using a visual analog scale (VAS) (range: 0–100). Two-time scales were assessed using the VAS: maximum pain within 24 h and maximum pain within 1 week.

Adverse events and adverse drug reactions were documented to evaluate safety endpoints. The severity of adverse events was determined based on the following criteria: grade 1 denoted mild signs or symptoms that were easily tolerable, grade 2 denoted moderate signs or symptoms that interfered with daily activities, and grade 3 denoted severe signs or symptoms that significantly impacted daily life.

Fig 3. A woman in her thirties with a painful intramuscular VM in the right thigh. (A,B) Magnetic resonance imaging (MRI) before sclerotherapy (T2-weighted images: axial and coronal views). (C) One slide of the image subjected to segmentation using OsiriX (image analysis software) on MRI before sclerotherapy. (D) Digital subtraction angiography during sclerotherapy showing the administration of the sclerosing agent diluted with contrast. (E,F) MRI 3 months after sclerotherapy (T2-weighted images: axial
and coronal views), confirming lesion volume reduction. The patient reported the resolution of pain at this time.

Statistical analysis of endpoints

The full analysis set comprised all patients who underwent the study intervention, ensuring a comprehensive evaluation of treatment outcomes. In contrast, the per-protocol set excluded patients deemed ineligible post-enrollment and those exhibiting severe protocol violations. This approach aimed to uphold the integrity of the analysis by focusing on patients who adhered closely to the study protocol. The safety analysis set was identical to the full analysis set.

Primary analyses compared the number of patients who achieved $\geq 20\%$ VM volume reduction 3 months after sclerotherapy relative to the baseline value using a one-sided binomial test with a significance level of $p < 0.025$ (one-sided). The 95% confidence intervals (CIs) for the proportion of patients achieving this reduction were estimated using the scoring method. This analysis was performed separately according to VM type.

Secondary analyses evaluated lesion-associated pain scores 3 months after sclerotherapy by estimating the median change from that at baseline with corresponding 95% CIs. The Wilcoxon signed-rank test was conducted to test the null hypothesis: “The median change from baseline to 3 months after sclerotherapy in the population was greater than 0.” The significance level was set at $p < 0.025$ (one-sided). This analysis was performed separately according to VM type and patient age (<6 years and ≥ 6 years old).

The occurrence of adverse events was assessed for safety evaluation.
All descriptive statistical analyses were performed using the SAS statistical software (version 9.4; SAS Institute, NC).

Results

Participant selection, baseline demographics, and clinical characteristics

Fig 1 illustrates the participant selection flowchart. Of the 45 patients who provided informed consent, one was excluded owing to potential intracranial VM traffic during screening. The remaining 44 patients fulfilled the inclusion criteria. All patients were evaluated for the primary endpoint, and none of them discontinued treatment. Table 1 summarizes the baseline demographic and clinical characteristics of the patients. It is noteworthy that for both cohorts, the full analysis set, per-protocol set, and safety analysis set encompassed the same population under analysis for this study. This ensured consistency and comparability across the various analyses conducted throughout the research.

Table 1. Baseline Demographics and Clinical Characteristics of the Included Patients.

<table>
<thead>
<tr>
<th></th>
<th>Cystic Type</th>
<th>Diffuse Type</th>
<th>All</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n = 22</td>
<td>n = 22</td>
<td>n = 44</td>
</tr>
<tr>
<td>Age (year)</td>
<td>Mean</td>
<td>22.5</td>
<td>23.3</td>
</tr>
<tr>
<td></td>
<td>SD</td>
<td>18.8</td>
<td>16.9</td>
</tr>
<tr>
<td></td>
<td>Min</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>Sex (%)</td>
<td>Male</td>
<td>Female</td>
<td>Male</td>
</tr>
<tr>
<td>----------------</td>
<td>------------</td>
<td>------------</td>
<td>------------</td>
</tr>
<tr>
<td></td>
<td>13 (59.1)</td>
<td>9 (40.9)</td>
<td>22 (50.0)</td>
</tr>
<tr>
<td>Body weight (kg)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>45.73</td>
<td>49.02</td>
<td>47.37</td>
</tr>
<tr>
<td>SD</td>
<td>24.32</td>
<td>15.60</td>
<td>20.26</td>
</tr>
<tr>
<td>Min</td>
<td>14.7</td>
<td>20.3</td>
<td>14.7</td>
</tr>
<tr>
<td>Median</td>
<td>49.1</td>
<td>50.5</td>
<td>49.1</td>
</tr>
<tr>
<td>Max</td>
<td>92.0</td>
<td>75.2</td>
<td>92.0</td>
</tr>
<tr>
<td>Location of venous malformations (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trunk</td>
<td>5 (22.7)</td>
<td>4 (18.2)</td>
<td>9 (20.5)</td>
</tr>
<tr>
<td>Upper limb</td>
<td>3 (13.6)</td>
<td>8 (36.4)</td>
<td>11 (25.0)</td>
</tr>
<tr>
<td>Lower limb</td>
<td>5 (22.7)</td>
<td>10 (45.5)</td>
<td>15 (34.1)</td>
</tr>
<tr>
<td>Face</td>
<td>5 (22.7)</td>
<td>0 (0.0)</td>
<td>5 (11.4)</td>
</tr>
<tr>
<td>Oral</td>
<td>1 (4.5)</td>
<td>0 (0.0)</td>
<td>1 (2.3)</td>
</tr>
<tr>
<td>Neck</td>
<td>3 (13.6)</td>
<td>0 (0.0)</td>
<td>3 (6.8)</td>
</tr>
<tr>
<td>Previous treatment for venous malformations (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>10 (45.5)</td>
<td>12 (54.5)</td>
<td>22 (50.0)</td>
</tr>
<tr>
<td>No</td>
<td>12 (54.5)</td>
<td>10 (45.5)</td>
<td>22 (50.0)</td>
</tr>
</tbody>
</table>

| Treatment history of sclerotherapy treatment for target lesion | | | | | |
| Initial treatment | 17 (77.3) | 13 (59.1) | 30 (68.2) | | |
Max, maximum; min, minimum; n, number; SD, standard deviation.

Primary endpoint

All 44 patients underwent sclerotherapy, and none of the patients with diffuse VMs required additional treatment. Overall, a total of 26 patients (59.1%) achieved a VM volume reduction ≥ 20%, including 16 patients with cystic lesions (72.7%, 95% CI: 51.85–86.85%) and 10 patients with diffuse lesions (45.5%, 26.92–65.34%). For both cohorts, the percentage of patients achieving a reduction rate ≥ 20% was statistically significant compared with the pre-specified criterion of 20% (cystic lesions: p < 0.001, diffuse lesions: p = 0.001). Data of patients who achieved a reduction rate ≥ 20% are shown in Table 2, and the percentage change in lesion volume for each patient is shown in Fig 4. The interobserver correlation coefficient (2,1) for the MRI analysis was 0.999 (n = 88, 99.8–100%).

Fig 4. Waterfall plot of the evaluated lesion volume. (A) Diagrams of cystic lesions and diffuse lesions. (B) Diagrams for all cases.

Table 2. Patients Who Achieved ≥ 20% Venous Malformation Volume Reduction 3 Months After the Intervention.
<table>
<thead>
<tr>
<th>Malformations</th>
<th>Patients</th>
<th>No. of Achievers</th>
<th>Percentage</th>
<th>95% Confidence Intervals</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cystic type</td>
<td>22</td>
<td>16</td>
<td>72.7</td>
<td>51.85–86.85</td>
<td><0.00</td>
</tr>
<tr>
<td>Diffuse type</td>
<td>22</td>
<td>10</td>
<td>45.5</td>
<td>26.92–65.34</td>
<td>0.001</td>
</tr>
<tr>
<td>All</td>
<td>44</td>
<td>26</td>
<td>59.1</td>
<td>44.41–72.31</td>
<td>—</td>
</tr>
</tbody>
</table>

The null hypothesis of this test: “The proportion of patients achieving ≥ 20% venous malformation volume reduction 3 months after sclerotherapy is < 20%.”

The significance level of the test was 0.025 (on one side).

Test method: Test based on a binomial distribution.

Calculation method for confidence intervals: based on the score test.

Secondary endpoint

The key secondary endpoint was the change in self-reported, lesion-associated pain scores from baseline to 3 months after sclerotherapy using the VAS or face scale.

Significant improvements in VAS scores were observed for both cohorts (cystic lesions vs. diffuse lesions; 24-h maximum pain: n = 18, median: −2.0, p = 0.014 vs. n = 21, median: −7.0, p = 0.013; 1-week maximum pain: n = 13, median: −2.0, p = 0.010 vs. n = 20, median: −28.5, p < 0.001). Due to the limited sample size of patients aged ≤ 5 years, some statistical estimations and tests using the face scale-derived data could not be conducted. Changes in pain scores are presented in Table 3.
Table. 3 Changes in Self-Reported, Lesion-Associated Pain Scores 3 Months After Sclerotherapy.

<table>
<thead>
<tr>
<th>Venous Malformations</th>
<th>Scale</th>
<th>Age Type of Pain</th>
<th>No. of Patients</th>
<th>Median Change From Baseline</th>
<th>95% Confidence Intervals</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>VAS</td>
<td>≥ 6 years</td>
<td>Maximum pain in 24 h</td>
<td>18</td>
<td>−2.0</td>
<td>−25.00 to 0.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Maximum pain for 1 week</td>
<td>13</td>
<td>−2.0</td>
<td>−51.00 to 0.00</td>
</tr>
<tr>
<td></td>
<td>Face</td>
<td>2–5 years</td>
<td>Maximum pain in 24 h</td>
<td>2 0.0</td>
<td>0.00 to 0.00</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>scale</td>
<td></td>
<td>Maximum pain for 1 week</td>
<td>2</td>
<td>−0.5</td>
<td>−1.00 to 0.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Cystic type</td>
<td>Diffuse type</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>VAS</td>
<td>≥ 6 years</td>
<td>Maximum pain in 24 h</td>
<td>21</td>
<td>−7.0</td>
<td>−31.00 to −1.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Maximum pain for 1 week</td>
<td>20</td>
<td>−28.5</td>
<td>−34.00 to −1.00</td>
</tr>
<tr>
<td></td>
<td>Face</td>
<td>2–5 years</td>
<td>Maximum pain in 24 h</td>
<td>1 0.0</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>scale</td>
<td></td>
<td>— — —</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>
The null hypothesis of the test: “The median change in self-reported, lesion-associated pain scores from baseline to 3 months after sclerotherapy is ≥ 0.”

The significance level of the test was 0.025 (on one side).

Method of testing: Wilcoxon signed-rank test.

Confidence intervals were calculated according to the method described by Hahn and Meeker [28].

Safety evaluations

No cases of death or serious adverse events were reported. Adverse events of particular interest, defined as skin necrosis and visual impairment (for facial lesions) following administration, were not observed during the study period. Adverse events were documented in 42 patients (95.5%). Among them, one patient experienced a grade 3 adverse event related to pain, while nine patients experienced grade 2 adverse events. These grade 2 events included three cases of pain; two of hemoglobinuria; and one each of swelling, increased fibrin D-dimer, increased serum creatinine phosphokinase, and ulnar nerve paralysis. Additionally, 32 patients reported grade 1 adverse events. Notably, hemoglobinuria occurred in 23 patients (52%), including nine with cystic lesions (40.9%) and 14 with diffuse lesions (63.6%). All cases of hemoglobinuria occurred on the day of drug administration, and haptoglobin therapy was initiated on the same or subsequent day; all patients recovered within 1 month.
Discussion

Strengths of this study

This clinical trial is the first well-designed study to provide robust evidence regarding the efficacy and safety of ethanolamine oleate for patients with difficult-to-resect VMs. The rarity of VMs makes it challenging to conduct large-scale trials, and the lack of clinically robust evidence hinders the pharmaceutical approval of ethanolamine oleate in some countries, including Japan [11]. This high-quality study, demonstrating positive outcomes, has the potential to pave the way for regulatory approval in such regions. Patients affected by VMs face great challenges due to the rarity of their disease and inadequate national-level support; therefore, this study holds promise for the global recognition of ethanolamine oleate treatment.

Interpretation of the study endpoints

Regarding the primary endpoint, the majority of patients achieved ≥ 20% VM volume reduction 3 months after sclerotherapy. Specifically, 16 patients (72.7%) with cystic lesions and 10 patients (45.5%) with diffuse lesions demonstrated a volume reduction ≥ 20%. These findings suggest the utility of ethanolamine oleate administration in reducing VM volume for both cystic and diffuse lesions, consistent with previous reports [7,25]. Given that thrombus formation and lesion enlargement can induce diverse symptoms in patients with VMs, a volume reduction ≥ 20% is clinically significant. As such, patients who achieved this reduction have reported improvements in symptoms such as pain.
Regarding the secondary endpoint, significant improvements in self-reported, lesion-associated pain scores were observed 3 months after sclerotherapy, which aligned with the findings of previous studies [14,21,29-32]. Although the mechanism through which pain is alleviated by sclerotherapy for VM is not currently well understood, the following mechanisms are hypothesized. Upon injection into the blood vessel, the sclerosing agent damages the endothelium, causing the vessel to contract, which obstructed the blood flow. This may reduce abnormal blood flow and pressure, potentially alleviating pain. Additionally, the sclerosing agent can strengthen the vessel walls, reducing their leakage and dilation, which can also alleviate pain. Furthermore, the reduced frequency of thrombus formation decreases the likelihood of thrombophlebitis, contributing to pain reduction.

Safety of this method

Regarding safety, hemoglobinuria was reported in approximately 52% of the patients in our study, which was comparable to the prevalence reported in previous Japanese clinical observational studies (27.7–50.0%) [7,14,33]. In cases where hemoglobinuria occurs during sclerotherapy with ethanolamine oleate, there is a potential risk of progression to acute renal failure [34]. Therefore, clinicians should be aware of the importance of early administration of haptoglobin, a plasma fraction preparation [35]. In a study by Fujiki et al. [33], early haptoglobin administration for hemoglobinuria prevented renal damage in all cases, and these authors identified that a 5% ethanolamine oleate dose ≥ 0.18 mL/kg was a predictive factor for gross hematuria. To avoid acute renal failure, it is essential to disseminate information regarding the risk of hemoglobinuria with ethanolamine oleate use through guidelines or similar resources. Interestingly, no
cases of skin ulceration or skin necrosis were observed in the present study, whereas previous studies have reported incidence rates of 3.0–14.7% [7,21,36]. The absence of these complications implies a safer treatment profile with our regimen.

Limitations of this study

Some limitations were noted in the present study. First, the study employed a single-arm design and included a relatively limited sample size. Although this reflected the rarity of the studied disease, this also limits the generalizability of our findings. Nevertheless, our study population was comparable to that included in the trial that served as the basis for approval (44 patients), and our study employed a post-intervention evaluation period of 3 months. Larger scale studies with longer follow-up periods are needed to clarify our findings. Second, while no age restrictions were imposed in this study, we were unable to recruit children ≤ 2 years of age, which is a significant population affected by VMs. Lastly, the inclusion of some patients who lacked baseline pain assessment data and the presence of age-related variations in pain scale comprehension limited the applicability of a single pain assessment tool.

Conclusion

To the best of our knowledge, this is the first prospective clinical trial to expound the indications for ethanolamine oleate administration in patients with difficult-to-resect VMs in Japan. In our study population of 44 patients, ethanolamine oleate significantly reduced VM lesion volume and improved pain. Regarding safety, clinicians should be aware of the significance of early haptoglobin administration for drug-induced hemoglobinuria. Our results highlight the potential of ethanolamine oleate as a treatment.
option for patients with difficult-to-resect VMs. Further studies with larger sample sizes and longer follow-up durations are warranted to evaluate the long-term clinical outcomes of this approach.

Acknowledgments

This study was supported by the Kobe Clinical and Translational Research Centre. We thank all the staff for their involvement in this clinical trial.

Data sharing statement

Individual participant data underlying the results (text, tables, and figures) reported in this article after de-identification will be shared following article publication. Requests will be honored by researchers who provide a methodologically sound proposal and execute a data-use agreement with Kyorin University. Requests should be directed to the corresponding author by email.

Declaration of interest

Fuji Chemical Industries Co., Ltd. provided ethanolamine oleate for treatment during the study period; however, the company had no role in this clinical trial. The authors declare no conflict of interest.

Role of sponsor
The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Ethics

This study was conducted using good clinical practice and adhered to the principles of the Declaration of Helsinki. It was approved by the ethics committee of each hospital and registered with the Japan Registry of Clinical Trials (Identifier: jRCT2051200046) under the recommendations of the International Committee of Medical Journal Editors (Registered on August 25, 2020). (https://jrct.niph.go.jp/latest-detail/jRCT2051200046).

Written informed consent was obtained from all patients or their parents/guardians. This registry is independent of for-profit interests.

Contributors’ statement

Tadashi Nomura conceptualized, designed, managed, and conducted the clinical trial and collected the data.

Yasumasa Kakei conceptualized, designed, and managed the clinical trial and drafted the manuscript.

Keiko Miyakoda conceptualized and designed the clinical trial and was responsible for statistical analyses as a biostatistician.

Masakazu Kurita, Ayato Hayashi, Noriko Aramaki, Makoto Hikosaka, Shunsuke Yuzuriha, Keigo Osuga, Yuki Iwashina, Taiki Nozaki, and Michio Ozeki conducted the clinical trial and collected the data.
Mine Ozaki conceptualized, designed, managed, and conducted the clinical trial and collected the data.

All authors approved the final manuscript and agreed to be accountable for all aspects of this study.
References

6. Lee BB, Do YS, Byun HS, Choo IW, Kim DI, Huh SH. Advanced management of

17. Yamaki T, Nozaki M, Sasaki K. Color duplex-guided sclerotherapy for the
10.1046/j.1524-4725.2000.99248.x.

18. Jo JY, Chin JH, Park PH, Ku SW. Cardiovascular collapse due to right heart

after polidocanol sclerotherapy of peripheral venous malformation. Dermatol

20. Horbach SER, Lokhorst MM, Saeed P, de Goüyon Matignon de Pontouraude
CMF, Rothová A, van der Horst CMAM. Sclerotherapy for low-flow vascular
malformations of the head and neck: A systematic review of sclerosing agents. J

21. Hoque S, Das BK. Treatment of venous malformations with ethanolamine
oleate: a descriptive study of 83 cases. Pediatr Surg Int. 2011;27: 527-531. doi:
10.1007/s00383-010-2824-x.

Obtain consent
45 patients

Eligibility assessment
e.g., venous malformations deemed difficult-to-resect, one or more target venous malformations with a major axis of ≥ 30 mm in extremities and ≥ 20 mm in the head and neck region on MRI or CT

Excluded one patient who was deemed ineligible by the investigator

Enrollment
Target number: 44 patients (Cystic type: 22, Diffuse type: 22)
Enrolment period: 2 years from January 2021
Follow-up period: 3 months

Intervention
44 patients (Cystic type: 22, Diffuse type: 22)
Single administration of ethanolamine oleate

Efficacy assessment
44 patients (Cystic type: 22, Diffuse type: 22)
Primary endpoint: $\geq 20\%$ reduction in the venous malformation volume from the time of enrolment to 3 months post-treatment