Avian Influenza Virus Infections in Felines:

A Systematic Review of Two Decades of Literature

Kristen K. Coleman1,2 and Ian G. Bemis1,2

1. Department of Global, Environmental, and Occupational Health, University of Maryland School of Public Health, College Park, MD, USA
2. Department of Veterinary Medicine, College of Agriculture and Natural Resources, University of Maryland, College Park, MD, USA

Corresponding author: Kristen K. Coleman, PhD, 4200 Valley Drive, College Park, MD, 20742, USA, Email: kkcolema@umd.edu

Keywords: avian influenza virus, cross-species transmission, zoonosis, felines, cats, avian influenza pandemic

Running title: Avian Influenza Virus in Felines

Abstract: As an avian influenza virus panzootic is underway, the threat of a human pandemic is emerging. Infections among mammalian species in frequent contact with humans should be closely monitored. One mammalian family, the Felidae, is of particular concern. Felids, known as felines or cats, are susceptible to avian influenza virus infection. Felines prey on wild birds and may serve as a host for avian influenza virus adaptation to mammals. Feline-to-feline transmission has been demonstrated experimentally [1], and real-world outbreaks have been reported [2,3]. Domestic cats are a popular human companion animal and thus provide a potential pathway for zoonotic spillover of avian influenza viruses to humans. Here, we provide a systematic review of the scientific literature to describe the epidemiology and global distribution of avian influenza virus infections in felines reported from 2004 – 2024. We aim to provide a comprehensive background for the assessment of the current risk, as well as bring awareness to the recurring phenomenon of AIV infection in felines.

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Introduction

Avian influenza virus (AIV) is an important and emerging zoonotic and reverse-zoonotic viral pathogen with pandemic potential. AIV has caused substantial disruptions to food supply chains, resulting in large economic losses in the poultry industry, as well as disruptions to regional and global food security. As avian influenza has a high mortality rate, an AIV pandemic could result in substantially more human illness and death than recent pandemics. While current attention is focused on AIV as an emerging pathogen in U.S. dairy cattle, infections among other susceptible domestic mammalian species have received comparatively little attention. In particular, AIV infections in free-roaming and farm-associated domestic cats in have recently been documented in the U.S. [4,5], but overall surveillance efforts among felines appear sparse.

Domestic cats are a popular human companion animal and thus provide a potential pathway for zoonotic spillover of avian influenza viruses to humans. Avian influenza in felines is often fatal, although subclinical infections have been reported [6]. Felines prey on wild birds and may serve as a host for avian influenza virus adaptation to mammals. Feline-to-feline transmission has been demonstrated experimentally [1], and real-world outbreaks have been reported [2,3]. To provide a comprehensive background for the assessment of the current risk, as well as to bring awareness to the phenomenon of AIV infection in felids, we performed a systematic review of AIV infections in felines reported in the peer-reviewed scientific literature from 2004 to 2024. In this review, we sought to characterize the epidemiology and global distribution of AIV infections in felid species of domestic and wild origin reported over time, including information on AIV subtypes and clades identified.

Methods

Electronic literature search and article selection

We conducted systematic electronic searches for peer-reviewed articles in the English
scientific literature to identify eligible studies. Our search strategy is presented in Supplementary Table 1. A study was eligible to be included if the following criteria were met: (1) avian influenza virus infection (including the abbreviation AIV) in “felines”, “felids”, or “cats” mentioned in the abstract, main text, or within keywords, including Pantherinae species names (i.e., lion, tiger, jaguar, leopard, snow leopard) and Felinae species names (e.g., cheetah, caracal, cat, wildcat, jaguarundi, ocelot, oncilla, tigrillo, kodkod, güiña, margay, southern tigrina, serval, lynx, bobcat, manul, cougar, puma, and catamount), and (2) surveillance/epidemiological studies, case reports, or laboratory/bioinformatics studies of animal samples (or data from animal samples) that report original/primary evidence of avian influenza virus detection in felines/cats within the abstract or main text. We excluded studies where: (1) sound detection methods for the identification of avian influenza virus were not used, (2) original/primary evidence of avian influenza virus detection was not reported (e.g., genomic studies of avian influenza virus specimens already reported in the peer-reviewed literature), and (3) publication was after May 2024. Note that genomic studies of previously collected avian influenza virus specimens were included if the specimens were not reported elsewhere in the peer-reviewed scientific literature. Studies selected for inclusion are listed in Table 1.

**Data extraction and statistical analysis**

Data such as number of avian influenza virus infections, location, intra- or cross-species transmission, disease characteristics, outcomes, and species infected were extracted from full-text articles using a data collection form. Data were imported to STATA version 15.1 (StataCorp, College Station, TX, USA) for analysis.

**Results**

Our electronic search generated 185 articles through PubMed and 175 through Scopus. We identified a total of 17 experimental infection studies [1,7–22] and excluded them from
our review. After further screening, we included a total of 41 articles in our review (Table 1),
two of which were identified manually, including one [23] through article references and one early release publication [5]. See Figure 1 for a PRISMA consort diagram of article screening and selection.

**Avian influenza virus infections in felines reported over time**

The annual number of articles reporting avian influenza infections in felines drastically increased in 2023 (Figure 2), with a recent spike in the total number of domestic cat infections reported in 2023 and 2024 (Figure 3) from multiple regions (Supplementary Figure 1). This spike is commensurate with the emergence and increased spread of avian influenza virus H5N1 clade 2.3.4.4b among birds and mammals. As publication year may not be representative of the actual year(s) in which reported feline infections occurred, we provide data on the specific year(s) each study took place (Table 1).

The overall case fatality rate among the reported RT-PCR-confirmed feline infections identified in our review was estimated to be 63%. Among the publications that described the illness experienced by the reported feline infections, respiratory and neurological illness were the most common and often resulted in death. Blindness and chorioretinitis were also recently observed in two AIV-infected domestic cats exposed to the virus through drinking raw colostrum and milk containing high viral loads from infected dairy cattle [5]. This clinical observation was unique to these feline cases and suggests that exposure route and dose of AIV might impact disease presentation and severity.

Among all the reported feline infections, highly pathogenic avian influenza A(H5N1) was the most frequently identified subtype, followed by H5N6, H7N2, H9N2, and H3N8. H5N1 clade 2.3.4.4b was first detected in felines in 2022, including a wild lynx during an outbreak among pheasants in Finland [24], and a domestic cat living near a duck farm in France [25]. All studies reporting feline infections occurring since that time have identified H5N1 clade
2.3.4.4b as the causative agent [4,26–32], aside from one serology study in Spain which did not report the specific clade of the H5 virus identified [33]. Overall, clade 2.3.4.4b accounted for 112 of the reported feline cases and 75 deaths, yielding a mortality rate of 67%.

**Distribution of avian influenza virus infections in felines**

From 2004 – 2024, approximately 486 avian influenza virus infections in felines, including 249 associated feline deaths, were reported in the English scientific literature (Supplementary Figures 2 and 3). In total, 89 of these infections were identified through serological studies, while the rest were identified by RT-PCR or viral culture followed by genome sequencing. Infections among 10 felid species (Supplementary Figure 4) across 7 geographical regions of the world (Supplementary Figure 5) were reported. The majority of reports (54%) were from Asia (including Southeast Asia), followed by Europe (24%) and North America (12%) (Figure 4). We provide a summary of the geographical distribution of reported avian influenza virus infections in felines in Table 1 and Figure 5.

Feline infections of H5N1 clade 2.3.4.4b were reported in Finland, France, Poland, USA, Italy, Peru, and South Korea [4,5,24–32], including 5 species (107 domestic cats, two bobcats, and one lynx, caracal, and lion). Zoos, animal shelters, and rural settings such as farms and private land were the most common settings where AIV infections in felines were reported to occur.

**Cross- and intra-species transmission of avian influenza virus in felines**

Most of the reported AIV infections in felines were confirmed or suspected to be a result of bird-to-feline transmission. Eating dead pigeons, chickens, and other birds, as well as contaminated raw chicken feed, was often implicated. However, two domestic farm cats were reported to have been fed raw colostrum and milk from AIV-infected dairy cattle in Texas [5], which demonstrates a potential new route of cross-species, mammal-to-mammal transmission. A total of three studies reported probable intra-species (feline-to-feline)
transmission of avian influenza virus, including tiger-to-tiger [2] and domestic cat-to-cat
[3,32] transmission. Feline-to-human transmission of AIV has also been documented [2,3].
The first study to report feline-to-human transmission involved an outbreak of H5N1 among
zoo tigers in Thailand, after which two humans showed evidence of seroconversion [2]. The
second study involved a large outbreak of H7N2 among domestic cats in an animal shelter in
New York, where two humans were infected, including a visiting veterinarian who collected
samples from infected cats [3], and an animal shelter worker exposed to the infected cats
[34].

Discussion and Conclusion

Through our systematic review, we identified 486 avian influenza virus infections in
felines, including 249 associated feline deaths, reported in the English scientific literature
from 2004 – 2024. The reports represent cases from 7 geographical regions, including 17
countries and 12 felid species. Of particular interest are domestic cats infected with H5N1
clade 2.3.4.4, which represents a variant in the hemagglutinin serotype 5 gene of IAV which
became the dominant IAV H5 serotype among poultry in 2020 [35]. Clade 2.3.4.4b was first
reported in felines in 2022, and among the feline infections reported, it has yielded a
mortality rate of 67%. Clade 2.3.4.4b is also responsible for the ongoing AIV outbreaks
among dairy cattle in the U.S. [5], representing a significant threat to feline companion
animals. Furthermore, subclinical infections of H5N1 in cats have been reported [6]. Thus,
we argue that surveillance among domestic cats is urgently needed. As feline-to-human
transmission of AIV has been documented [2,3], farm cat owners, veterinarians, zoo keepers,
and cat shelter volunteers may have a heightened risk of AIV infection during outbreaks
among poultry and mammalian farm animals.

Conflict of Interest
All authors declare that they have no conflicts of interest.

Funding and Acknowledgments

We acknowledge the support of the University of Maryland Baltimore, Institute for Clinical & Translational Research (ICTR) and the University of Maryland Strategic Partnership: *MPowering the State* (MPower). This work was inspired by Dr. Kristen K. Coleman’s kitten, Tuna.
References


Table 1. Publications included in our systematic review of avian influenza virus infections in felines published from 2004-2024, including geographic region, country, species, and year(s) of study

<table>
<thead>
<tr>
<th>Reference</th>
<th>Year published</th>
<th>Region</th>
<th>Country</th>
<th>Species</th>
<th>Year(s) of study</th>
</tr>
</thead>
<tbody>
<tr>
<td>Keawcharoen et al. [36]</td>
<td>2004</td>
<td>Southeast Asia</td>
<td>Thailand</td>
<td>Tiger (Panthera tigris) &amp; leopard (P. pardus)</td>
<td>2003</td>
</tr>
<tr>
<td>Thanawongnuewch et al. [2]</td>
<td>2005</td>
<td>Southeast Asia</td>
<td>Thailand</td>
<td>Tiger (P. tigris)</td>
<td>2004</td>
</tr>
<tr>
<td>Editorial Team [37]</td>
<td>2006</td>
<td>Europe</td>
<td>Germany</td>
<td>Domestic cat (Felis catus)</td>
<td>2006</td>
</tr>
<tr>
<td>Songserm et al. [38]</td>
<td>2006</td>
<td>Southeast Asia</td>
<td>Thailand</td>
<td>Domestic cat (F. catus)</td>
<td>2004</td>
</tr>
<tr>
<td>Yingst et al. [39]</td>
<td>2006</td>
<td>Middle East / Africa</td>
<td>Iraq</td>
<td>Domestic cat (F. catus)</td>
<td>2006</td>
</tr>
<tr>
<td>Kloppfiesch et al. [40]</td>
<td>2007</td>
<td>Europe</td>
<td>Germany</td>
<td>Domestic cat (F. catus)</td>
<td>2006</td>
</tr>
<tr>
<td>Mushtag et al. [41]</td>
<td>2008</td>
<td>Asia</td>
<td>China</td>
<td>Tiger (P. tigris)</td>
<td>2005</td>
</tr>
<tr>
<td>Desvaux et al. [43]</td>
<td>2009</td>
<td>Southeast Asia</td>
<td>Cambodia</td>
<td>Tiger (P. tigris), Asian golden cat (Catopuma temminckii), leopard (P. pardus), clouded leopard (Neofelis nebulosa)</td>
<td>2004</td>
</tr>
<tr>
<td>El-Sayed et al. [44]</td>
<td>2013</td>
<td>Middle East / Africa</td>
<td>Egypt</td>
<td>Domestic cat (F. catus)</td>
<td>2012?</td>
</tr>
<tr>
<td>He et al. [45]</td>
<td>2015</td>
<td>Asia</td>
<td>China</td>
<td>Bengal tiger (P. tigris tigris)</td>
<td>2013</td>
</tr>
<tr>
<td>Sun et al. [47]</td>
<td>2015</td>
<td>Asia</td>
<td>China</td>
<td>Domestic cat (F. catus)</td>
<td>2013</td>
</tr>
<tr>
<td>Yu et al. [48]</td>
<td>2015</td>
<td>Asia</td>
<td>China</td>
<td>Domestic cat (F. catus)</td>
<td>2014</td>
</tr>
<tr>
<td>Zhao et al. [49]</td>
<td>2015</td>
<td>Asia</td>
<td>China</td>
<td>Domestic cat (F. catus)</td>
<td>2014?</td>
</tr>
<tr>
<td>Hu et al. [50]</td>
<td>2016</td>
<td>Asia</td>
<td>China</td>
<td>Tiger (P. tigris)</td>
<td>2014 and 2015</td>
</tr>
<tr>
<td>Chen et al. [51]</td>
<td>2016</td>
<td>Asia</td>
<td>China</td>
<td>Lion (P. leo)</td>
<td>2016</td>
</tr>
<tr>
<td>Newbury et al. [52]</td>
<td>2017</td>
<td>North America</td>
<td>USA</td>
<td>Domestic cat (F. catus)</td>
<td>2016</td>
</tr>
<tr>
<td>Cao et al. [53]</td>
<td>2017</td>
<td>Asia</td>
<td>China</td>
<td>Domestic cat (F. catus)</td>
<td>2016</td>
</tr>
<tr>
<td>Kim et al. [54]</td>
<td>2018</td>
<td>Asia</td>
<td>Korea</td>
<td>Leopard cat (Prionailurus bengalensis)</td>
<td>2011-2016</td>
</tr>
<tr>
<td>Wang et al. [55]</td>
<td>2018</td>
<td>Asia</td>
<td>China</td>
<td>Siberian tiger (P. tigris altaica)</td>
<td>2015-2016</td>
</tr>
<tr>
<td>Lee et al. [56]</td>
<td>2018</td>
<td>Asia</td>
<td>South Korea</td>
<td>Domestic cat (F. catus)</td>
<td>2016</td>
</tr>
<tr>
<td>Sangkachai et al. [57]</td>
<td>2019</td>
<td>Southeast Asia</td>
<td>Thailand</td>
<td>Bengal tiger (P. tigris tigris)</td>
<td>2012 and 2013</td>
</tr>
<tr>
<td>Soilemetzidou et al. [23]</td>
<td>2020</td>
<td>Africa</td>
<td>Namibia</td>
<td>Caracal (Caracal caracal)</td>
<td>2009-2013</td>
</tr>
<tr>
<td>Zhao et al. [58]</td>
<td>2021</td>
<td>Asia</td>
<td>China</td>
<td>Domestic cat (F. catus)</td>
<td>2017</td>
</tr>
<tr>
<td>Bao et al. [59]</td>
<td>2022</td>
<td>Asia</td>
<td>China</td>
<td>Domestic cat (F. catus)</td>
<td>2022</td>
</tr>
<tr>
<td>Tammiranta et al. [24]</td>
<td>2023</td>
<td>Europe</td>
<td>Finland</td>
<td>Lynx (Lynx lynx)</td>
<td>2022</td>
</tr>
<tr>
<td>Briand et al. [25]</td>
<td>2023</td>
<td>Europe</td>
<td>France</td>
<td>Domestic cat (F. catus)</td>
<td>2022</td>
</tr>
<tr>
<td>Rabalski et al. [26]</td>
<td>2023</td>
<td>Europe</td>
<td>Poland</td>
<td>Domestic cat (F. catus) &amp; caracal (C. caracal)</td>
<td>2023</td>
</tr>
<tr>
<td>Domňáška-Blicharz et al. [27]</td>
<td>2023</td>
<td>Europe</td>
<td>Poland</td>
<td>Domestic cat (F. catus)</td>
<td>2023</td>
</tr>
<tr>
<td>Sillman et al. [4]</td>
<td>2023</td>
<td>North America</td>
<td>USA</td>
<td>Domestic cat (F. catus)</td>
<td>2023</td>
</tr>
<tr>
<td>Moreno et al. [28]</td>
<td>2023</td>
<td>Europe</td>
<td>Italy</td>
<td>Domestic cat (F. catus)</td>
<td>2023</td>
</tr>
<tr>
<td>Szlachts-Jordanow et al. [29]</td>
<td>2023</td>
<td>Europe</td>
<td>Poland</td>
<td>Domestic cat (F. catus)</td>
<td>2023</td>
</tr>
<tr>
<td>Yang et al. [60]</td>
<td>2023</td>
<td>Asia</td>
<td>China</td>
<td>Domestic cat (F. catus)</td>
<td>2018</td>
</tr>
<tr>
<td>Elismo et al. [30]</td>
<td>2023</td>
<td>North America</td>
<td>USA</td>
<td>Bobcat (Lynx rufus)</td>
<td>2022</td>
</tr>
<tr>
<td>Cruz et al. [31]</td>
<td>2023</td>
<td>South America</td>
<td>Peru</td>
<td>Lion (P. leo)</td>
<td>2023</td>
</tr>
<tr>
<td>Villanueva-Saz et al. [33]</td>
<td>2024</td>
<td>Europe</td>
<td>Spain</td>
<td>Domestic cat (F. catus)</td>
<td>2022-2023</td>
</tr>
<tr>
<td>Lee et al. [32]</td>
<td>2024</td>
<td>Asia</td>
<td>South Korea</td>
<td>Domestic cat (F. catus)</td>
<td>2023</td>
</tr>
<tr>
<td>Burrough et al. [5]</td>
<td>2024</td>
<td>North America</td>
<td>USA</td>
<td>Domestic cat (F. catus)</td>
<td>2024</td>
</tr>
</tbody>
</table>
Figures

Figure 1. Identification, screening, and review of the scientific literature on avian influenza virus infections in felines published from 2004-2024
Figure 2. Number of peer-reviewed publications reporting avian influenza virus (AIV) infections in felines, each year from 2004-2024. The year 2024 represents articles (n=3) published in print or online from January through April 2024.
Figure 3. Number of avian influenza virus (AIV) infections in domestic cats reported each year in the peer-reviewed literature, 2004 – 2024. The year published may not be representative of the year in which each of the reported AIV infections occurred. *Approximately 100 of 500 domestic cats sampled in Indonesia were reported to be seropositive for H5N1 (the cited official reports of these tests are difficult to find). †Outbreaks of H7N2 among domestic cats occurred in several U.S. animal shelters in December 2016 but data published in the peer-reviewed literature in 2017 do not include the number of infections and thus they are not included in this figure. ‡The year 2024 represents articles (n=3) published in print or online from January through April 2024.
Figure 4. Number of peer-reviewed publications reporting avian influenza virus (AIV) infections in felines, by geographic region of the world, 2004 – 2024
Figure 5. Geographical distribution of reported avian influenza virus (AIV) infections in felines, 2004 – 2024