Chikungunya Seroprevalence among Patients Presenting with Febrile illnesses in selected health facilities in Mt. Elgon region, Kenya.

Sheila Kageha¹, Joyce M. Ngoi², Toru Kubo³, Kouichi Morita³ and Matilu Mwau¹

Corresponding Author: Sheila Kageha
Mail: skageha@kemri.go.ke
P.O. Box 54628 Nairobi -00200, Kenya
Tel. +254 722-587808

Authors and Institutional Affiliations

¹Kenya Medical Research Institute, Kenya
²West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), College of Basic and Applied Sciences, University of Ghana, Accra, Ghana.
³Department of Virology, Institute of Tropical Medicine, Nagasaki University, Japan.

Abstract

Background

Chikungunya is an emerging epidemic-prone vector-borne disease of considerable significance globally. Infection with chikungunya virus induces an acute illness characterized by fever and painful arthralgia, which can evolve to chronic arthritis and rheumatism especially in elderly patients. Whereas febrile illness and arthralgia are common clinical presentations amongst residents of Mt. Elgon, the role of chikungunya virus as a causative agent is undocumented. This study was carried out to determine the prevalence of IgA, IgM and IgG antibodies against Chikungunya Virus (CHIKV) antigens in patients presenting with acute febrile illnesses in Mt. Elgon region, Kenya.

Methods: This was a cross-sectional seroprevalence study on febrile patients visiting Endebes, Andersen and Kitale County Referal Hospitals. Sociodemographic data was collected whenever possible. Serum samples were collected and screened using Indirect ELISA for IgG+IgM+IgA antibodies. Sera that tested
positive by ELISA were subjected to standard plaque reduction neutralization assays (PRNT) performed on monolayer cultures of Vero E6 cells for confirmation.

Results: By ELISA, a total of 317/1359 (23.33%) sera were positive for CHIKV antibodies. Of the 317 positive sera, 305 (96.21%) were of sufficient quantity and were subjected to PRNT. Ultimately, 127 (9.3%) samples tested positive for CHIKV neutralising antibodies by PRNT.

Conclusion: These findings suggest active circulation of CHIKV in Mt. Elgon, even though it has previously been considered a non-endemic region for the virus. There is need to closely monitor and continuously put in place surveillance strategies to prevent probable potential outbreaks in the future.

Key words: Chikungunya virus (CHIKV), Seroprevalence survey, Kenya, Mt. Elgon

Introduction

Chikungunya virus (CHIKV), an alphavirus of the Togaviridae family [1-4], was originally isolated in 1952-53 from the serum of a febrile patient during an outbreak that occurred in the Makonde Plateau in the southern region of Tanzania [5]. It has since spread, infecting millions of people globally. CHIKV infection is commonly characterised by acute fever, headaches and painful arthralgia, which can evolve to chronic arthritis and rheumatism especially in elderly patients[5-7]. These symptoms are often clinically indistinguishable from those caused by other arboviruses such as dengue, Onyong’ nyong’ (ONNV) and West Nile viruses (WNV). Similarities in clinical symptoms often lead to missed opportunities to detect, and consequent underreporting of CHIKV infection in areas endemic to arbovirus infections [8, 9]. CHIKV has become a global public health threat with reported cases of neurologic involvement, fulminant hepatitis, and neonatal encephalopathy[10, 11]. Neurological forms of the disease and severe cases have also been reported in the Réunion island outbreak of 2005-2006 and in Italy [12-14].

Currently there are no licensed specific antiviral drugs or vaccines to prevent CHIKV infection. Treatment is mainly supportive and entails the use of analgesic drugs in combination with non-steroidal anti-inflammatory drugs for symptomatic relief [15-17]. Patients infected with CHIKV develop robust innate and adaptive immune responses that help in viral clearance and protection. Neutralising anti-CHIKV IgG persists for at least 21 months [18-20].

CHIKV circulates in a sylvatic cycle between non-human primates/mammalian reservoir hosts and *Aedes* spp. of mosquitoes [21]. *Aedes aegypti* is responsible for CHIKV endemicity in the tropical and subtropical regions while *Aedes albopictus* has been associated with spread in temperate regions including southern Europe, the Caribbean and southern and eastern regions of the USA. The virus is transmitted to
human hosts via infectious bites from *Aedes* spp. of mosquitoes [22, 23]. There has been increased
frequency of CHIKV outbreaks in previously non-endemic regions, which has been attributed to the
expansion of mosquito vector species and genetic adaptation of the virus that enhances its transmissibility
[24-26].

CHIKV originally endemic in Africa is known for its wide geographic distribution. In Africa, there have
been reports of human infection from Angola, Democratic Republic of Congo, Mozambique, Gabon,
Nigeria, Southern Africa, Tanzania, Uganda, and Burundi [27-31]. Chikungunya has since spread to Asia
including India and in the island countries of the Indian Ocean, Europe and America. In America, the
virus has been identified in 45 states, and more than 2.9 million suspected and confirmed cases and 296
deaths have been reported [32]. In Asia, CHIKV was first isolated in Bangkok, Thailand in 1958 [29, 33].

The disease was formerly thought to be self-limiting until the Reunion Island outbreaks in 2005-2006 that
witnessed several fatalities. Brazil has also experienced fatalities resulting from Chikungunya outbreak
[34].

In Kenya, the first outbreaks of CHIKV infection were recorded in Lamu and Mombasa in 2004[35, 36].
Indeed, genetic analysis of the virus responsible for the Indian Ocean epidemic showed that it originated
in the Kenyan Coast. CHIKV vectors are commonly found in diverse habitats, and there is reason to
believe that CHIKV outbreaks have occurred before. Mt. Elgon region in Trans Nzoia County has
substantial populations of reservoir hosts, high vector infestation and favourable climatic conditions for
transmission of arboviruses. Furthermore, encroachment of human populations into forested areas for
agricultural land has led to increased exposure to sylvatic mosquitoes that vector these viruses. This study
aimed to determine the seroprevalence of CHIKV infection in febrile patient population presenting in
selected health facilities in the region.

Materials and Methods

Study sites and specimen collection

This was a cross-sectional study conducted to determine the seroprevalence of CHIKV in febrile patients
visiting health facilities in Mt. Elgon region. Mt. Elgon ecosystem comprises a forest reserve and a
national park. The surrounding areas are heavily forested. The slopes of the mountain nearby have several
caves, infested with bats and other rodents. The livelihoods of the population is mainly linked to
agricultural production. This has seen encroachment of the forest for cultivation and exploitation of forest products such as fuelwood, medicinal herbs, posts and poles, grazing and hunting for wild game.

The study was carried out in three health facilities located in the region: Andersen Medical centre (AMC), Endebes District hospital (END) and Kitale County Referral hospital (KCRH within the County. These facilities serve a large part of Trans Nzoia County. With consent, venous blood samples were collected from patients ≥ 5 years of age presenting with acute febrile illnesses. Structured questionnaires were used to collect socio-demographic and clinical information from a subset of study participants. Ethical approval for the study protocol was sought from Kenya Medical Research Institute Ethical Review Committee under SSC No.1698. All samples were anonymized at collection by assigning unique codes.

Storage was at -20°C at the facilities. Samples were transported in dry ice for processing at KEMRI, where sera were separated, aliquotted into vials and stored at -80°C.

Laboratory Assays

Sera were tested for IgG+IgM+IgA antibodies against CHIKV and neutralizing antibodies against CHIKV for those that tested positive by ELISA. All sera were first tested for antibodies against CHIKV antigens by enzyme-linked immunosorbent assay (ELISA). An in-house indirect ELISA was performed according to the methods described in the Igarashi Technical Manual (2000) with some modifications. Purified CHIK viruses from infected culture fluid of C6/36 cells were used as antigens. Polyethylene glycol and NaCl was used to concentrate the virus antigens, which were then purified using sucrose-gradient ultracentrifugation at 50000g, for 14h at 4°C (Bundo and Igarashi, 1983) [50]. The viral antigens were diluted at 250ng/100 µL with phosphate buffered saline (PBS). High-protein-binding 96-well microplates (Maxisorp; Nulgenunc international, Roskilde, Denmark) were coated with 250ng/100 µL/well viral antigen, wrapped and incubated overnight at 4°C. Blocking was done by adding 100µL of PBS, 3% FCS (PBS-F) to all the wells and then incubated for 30 min at RT. The test sera were diluted at 1/1000 with PBS-F and added in duplicates to the pre-coated plates and incubation done at 37°C for 1 hr. Control sera (both positive and negative controls) were run on each plate. After incubation, the plate was washed three times with PBS, 0.05% Tween-20. 100 µL/well of 1:5000 diluted horseradish-conjugated goat anti-human IgG+M+A (American Qualex, A139PN) [37] was added to the wells and incubated at 37°C for 1h followed by washing three times. A substrate solution consisting of 5mg O-Phenylenediamine dihydrochloride (OPD) (Sigma Chemical, St. Louis, MO) was added and incubated for 15 min at RT in the dark. 100 µL/well of 5N Sulfuric acid was then added to stop further reaction. Absorbance (OD) of
each well was determined using spectrophotometer at 492nm. OD specific for CHKV was calculated as follows [(Mean OD of virus coated wells) – (Mean OD of PBS-F coated wells)]. A serum sample was deemed positive if the mean OD difference was ≥1.

Virus neutralization assay

CHIKV antigens obtained from bulk virus cultures and purified by sucrose density gradient ultracentrifugation were used in this assay. Titres of virus stocks were determined by plaque assays in Vero cells expressed as plaque-forming units (PFU) per mL. All patient sera positive by IgG+IgM+IgA ELISA were subsequently subjected to PRNT (protocol adapted from Igarashi Technical Manual, 2000).

This assay was used to determine the presence of CHIKV specific neutralizing antibodies in the test sera. The PRNTs were performed using Vero E6 cells. CHIKV prototype strain (S 27) was used for this experiment. PRNT plates were prepared by seeding Vero cells at a concentration of 1 x 10^5 cells/ml into 6-well plates at a volume of 3 ml/well. The cells were cultured in Growth Medium (EMEM (Gibco), 10% FCS (Gibco), L-glutamine P/S (Gibco), 0.2mM NEAA (Gibco), NaHCO3 supplemented for 1 day at 37°C, 5% CO₂ until the cells had attained 80% confluence. Test serum was diluted with Maintenance Medium (MM) (EMEM, 2% FCS, L-glutamine, P/S, NEAA, NaHCO3 supplemented) into 1:10 dilutions. At the same time, standard virus dilution of 1000 PFU/ml with MM was prepared. An equal volume of serum dilution (100µL) and standard virus dilution (100µL) was mixed. For positive control wells, equal volumes of MM and standard virus dilution were mixed. The virus-serum mixture was then incubated for 1 hour at 37°C. After 1h incubation of mixture, 2.5 ml of culture medium from each well of 6-well plates was aspirated and 100 µl/well of serum/virus mixture added to Vero cells in duplicate wells. The plates were then incubated for 1.5 - 2 hours in the 37°C, 5% CO₂ incubator. A total of 3ml of overlay medium (EMEM, 2% FCS, 1.4% Methylcellulose, P/S supplemented) was added into each well, and incubated at 37°C, 5% CO₂ for 2-3 days with daily observation. Harvesting involved discarding of overlay medium and fixing plates by adding 1 ml of 10% formalin in PBS over the cell and incubation for 1 hour at room temperature (rt) in the safety cabinet under UV light. After incubation, the plates were then washed gently with tap water at least twice, absorbed on paper towel and staining solution (0.5 ml of 1% Crystal Violet solution in water) added. The stain was discarded after 5-10 minutes at room temperature and plates washed gently with tap water. The plates were air-dried at room temperature and plaques counted for each set of duplicate wells. The percentage reduction was calculated by comparing with the positive control virus well (100% plaque formation). Sera were initially tested at a dilution of 1:20 and those that reduced the number of plaques by ≥75% (PRNT70) were titrated. More than 90% plaque reduction (PRNT90) was
regarded as positive and titers were expressed as the reciprocal of serum dilutions yielding ≥90% reduction in the number of plaques.

Data analysis

Data analyses were performed using STATA Version 14 software (Stata Corp LP, College Station, Texas, United States). Chi-square test was performed for potential association. Two-sided p values were reported, and statistical significance was taken as p < 0.05.

Results

A total of 1,398 samples were collected from febrile patients in the selected health facilities and screened for CHIKV antibodies. Thirty-nine (39, 2.79%) patient sera were excluded from analysis for various reasons including insufficient sera volume and compromised sample integrity.

The main inclusion criterion for this study was fever. The minimum temperature was 38°C while the maximum was 40.5°C with a mean of 39.1°C. The median duration of fever was nine days. Forty-three patients complained of muscle pains. Other complaints included: jaundice, body pains, abdominal pains, diarrhoea and bleeding.

Demographic and clinical data was available for 782/1,359 (57.54%) samples: 507 (37.31%) were collected from females and 275 (20.24%) from males (Table 1). The average age of the participants was 31.6 years (Median 28, range 5-91 years). There was no significant difference in ages between males and females, (median 31.4 and 31.7 respectively, p>0.6). Data on residence of patients was available for 777 samples. Majority of the people resided in formerly Rift Valley Province (83.71%), followed by Western Province (2.1%), Eastern Uganda (11.2%) while the rest (3%) were non-residents. Of the 1,359 samples processed successfully, 689 (50.70%) were from KCRH, 463 (34.07%) from AMC and 207 (15.23%) from END. A total of 317 (23.34%) samples tested antibody positive by ELISA.

The odds of exposure were determined for gender, health facilities, age of participants and presenting symptoms (Table 1). The odds of being seropositive for CHIKV were significantly lower in END and KCRH when compared with AMC, in those with fever when compared to those without, those with eye infection and headache when compared to those without (p<0.05).

Table 1: Poisson Regression Analysis for Chikungunya Virus (CHIKV) Seropositivity among febrile patients visiting selected health facilities in Mt. Elgon Region.
<table>
<thead>
<tr>
<th>Participant characteristics</th>
<th>Total pop. n (%)</th>
<th>CHIKV +ve (n=317) n (%)</th>
<th>OR</th>
<th>95% CI</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>275 (20.24)</td>
<td>0.68</td>
<td>0.45 - 1.04</td>
<td>0.08</td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>507 (37.31)</td>
<td>0.29</td>
<td>0.19 - 0.43</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>Missing data*</td>
<td>577 (42.46)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age Group (Years)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 - 5.0</td>
<td>12 (0.88)</td>
<td>2.3</td>
<td>0.30 - 1.81</td>
<td>0.43</td>
<td></td>
</tr>
<tr>
<td>5.1- 20</td>
<td>154 (11.33)</td>
<td>1.08</td>
<td>0.65 - 1.77</td>
<td>0.77</td>
<td></td>
</tr>
<tr>
<td>20.1 - 35</td>
<td>376 (27.67)</td>
<td>Ref.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>35.1- 50</td>
<td>128 (9.42)</td>
<td>1.13</td>
<td>0.65 - 1.95</td>
<td>0.67</td>
<td></td>
</tr>
<tr>
<td>50.1 - 100</td>
<td>84 (6.18)</td>
<td>1.14</td>
<td>0.83 - 3.66</td>
<td>0.14</td>
<td></td>
</tr>
<tr>
<td>Missing data*</td>
<td>605 (44.52)</td>
<td>0.43</td>
<td>0.31 - 0.59</td>
<td>0.001</td>
<td></td>
</tr>
<tr>
<td>Health Facility</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AMC</td>
<td>463 (34.07)</td>
<td>Ref.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>END</td>
<td>207 (15.23)</td>
<td>0.35</td>
<td>0.22 - 0.56</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>KCRH</td>
<td>689 (50.70)</td>
<td>0.72</td>
<td>0.55 - 0.94</td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>Presenting symptoms</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fever</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>205 (15.08)</td>
<td>Ref.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>567 (41.72)</td>
<td>0.48</td>
<td>0.32 - 0.72</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>Missing data*</td>
<td>587 (43.19)</td>
<td>1.58</td>
<td>1.10 - 2.28</td>
<td>0.013</td>
<td></td>
</tr>
<tr>
<td>Rash</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>556 (40.91)</td>
<td>Ref.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>224 (16.48)</td>
<td>1.07</td>
<td>0.70 - 1.62</td>
<td>0.76</td>
<td></td>
</tr>
<tr>
<td>Missing data*</td>
<td>579 (42.62)</td>
<td>2.72</td>
<td>2.03 - 3.64</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>Eye infection</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>617 (45.40)</td>
<td>Ref.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>159 (11.70)</td>
<td>0.53</td>
<td>0.30 - 0.92</td>
<td>0.023</td>
<td></td>
</tr>
<tr>
<td>Missing data*</td>
<td>583 (42.90)</td>
<td>2.35</td>
<td>1.79 - 3.09</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>Jaundice</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>659 (48.49)</td>
<td>Ref.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>115 (8.46)</td>
<td>1.06</td>
<td>0.62 - 1.80</td>
<td>0.84</td>
<td></td>
</tr>
<tr>
<td>Missing data*</td>
<td>585 (43.05)</td>
<td>2.67</td>
<td>2.02 - 3.52</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>Headache</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>205 (15.08)</td>
<td>Ref.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>568 (41.80)</td>
<td>0.54</td>
<td>0.36 - 0.82</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>Missing data*</td>
<td>586 (43.12)</td>
<td>1.72</td>
<td>1.19 - 2.50</td>
<td>0.00</td>
<td></td>
</tr>
</tbody>
</table>
Sociodemographic characteristics and clinical data were not collected for the first 605 study participants. KCRH, Kitale County Referral Hospital, AMC, Andersen Medical Center; END, Endebes District Hospital.

Of the 317 samples that tested antibody positive by ELISA, 305 (96.21%) were further subjected to PRNT for CHIKV-specific neutralizing antibodies. A total of 123 (40.33%) exhibited neutralizing activities for CHIKV antigens. An additional four (4) samples that were borderline negative by ELISA tested PRNT positive (Table 2).

Table 2: ELISA versus PRNT Results for CHIKV

<table>
<thead>
<tr>
<th>ELISA Status</th>
<th>CHIKV PRNT</th>
<th>Neutralizing</th>
<th>None Neutralizing</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>NEG</td>
<td>4</td>
<td>1</td>
<td>20.00</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>80.00</td>
<td></td>
<td>20.00</td>
<td>100.00</td>
</tr>
<tr>
<td>POS</td>
<td>123</td>
<td>177</td>
<td>59.00</td>
<td>300</td>
</tr>
<tr>
<td></td>
<td>41.00</td>
<td></td>
<td>59.00</td>
<td>100.00</td>
</tr>
<tr>
<td>Total</td>
<td>127</td>
<td>178</td>
<td>58.36</td>
<td>305</td>
</tr>
<tr>
<td></td>
<td>41.64</td>
<td></td>
<td>58.36</td>
<td>100.00</td>
</tr>
</tbody>
</table>

Discussion

Our study observed an overall seroprevalence of 23.34% (317) by ELISA. PRNT results were positive for 9.35% (127) of all samples, confirming CHIKV activity in the region. Mt. Elgon region exhibits extraordinary biodiversity due to the presence of forests, rivers, high levels of humidity and vertebrate reservoirs that provides potential *Aedes* spp. breeding habitats. These ecological settings provide opportunities for multiplication and the spread of vector-borne viruses in the region.

Agriculture is the main economic activity in the region. This has seen encroachment on forest reserves for cultivation and exploitation of forest products such as fuelwood, medicinal herbs, timber, grazing and hunting for wild game; increasing exposure to the sylvatic mosquitoes that vector these viruses. *Aedes* spp. responsible for CHIKV transmission have been reported in Western Kenya in previous studies [38, 39].

The high seropositivity in this study compares with findings from past studies in the area, indicating that alphaviruses, though subtle, are actively circulating in the region [40]. Other studies in Cameroon, Benin,
Mozambique and Guinea have shown similar results, which suggest a significant and unrecognized CHIKV circulation in Africa[41-44].

In this study, we could not ascertain with confidence whether the seropositivity observed was due to present or convalescent CHIKV and/or ONNV infections. Little is known about the lifeline of circulatory CHIKV specific antibodies, beyond what is generally known about the kinetics of IgG and IgM antibodies with other immune correlates. However, herd immunity has been demonstrated in populations with constant contact with vectors, this could explain the observed neutralization [44, 45].

Of interest, were samples that tested positive by ELISA but failed to neutralize the CHIKV antigens by PRNT 178/305 (58.36%). This suggests possible IgM/IgG cross-reactivity to closely related alphaviruses circulating in the region. CHIKV belongs within the Semliki Forest virus (SFV) antigenic serocomplex and therefore exhibits serological cross-reactivity[45, 46]. Co-infections with more than one etiological agent have been shown to complicate diagnosis, severity and management of these viruses in patients [47, 48]. More diverse studies to assess CHKV antibody persistence and the likelihood of cross-protection against CHIKV infection due to previous alphavirus infection could provide better insights. Findings from related studies have indicated multiple genotypes that could have effects on serological outcomes and epidemic potential[27, 49].

In Kenya, especially in malaria endemic regions, malaria is frequently diagnosed as the cause of acute undifferentiated febrile illnesses while other causes like arboviruses are often overlooked. This study suggests that CHIKV is an important cause of fever in Mt. Elgon and should be considered as a differential diagnosis in clinical practise.

This study had limitations such as incomplete and insufficient demographics and clinical information that hampered analysis for odds of exposure among the population.

Conclusion

From this study, we conclude that CHIKV commonly infects residents of Mt. Elgon, and is under-recognized as a cause of morbidity in this population. Therefore, periodic surveillance is necessary to assess the viral burden in the population and devise effective public health interventions to tackle the challenge. Vector control measures are also needed to curb these infections.
Author Disclosure Statement

The authors declare that they have no competing interests.

Acknowledgement

This study was supported by Nagasaki University of Infectious and Tropical Medicine in collaboration with the Kenya Medical Research Institute. This study appreciates the Deputy Director, Centre for Virus research and the technical staff for support.

References

Centers for Disease Control and Prevention tUSoACvgdAfhwcgcghLu.

Kariuki Njenga M, Nderitu L, Ledermann JP, Ndirangu A, Logue CH, Kelly CHL, Ndirangu A, Logue CH, Kelly CHL:

