Mass incarceration as a driver of the tuberculosis epidemic in Latin America and projected impacts of policy alternatives: A mathematical modeling study

Yiran E Liu1,2, Yasmine Mabene2, Sergio Camelo3, Zulma Vanessa Rueda4,5, Daniele Maria Pelissari6, Fernanda Dockhorn Costa Johansen6, Moises A Huaman7, Tatiana Avalos-Cruz8, Valentina A Alarcón8, Lawrence M Ladutke9, Ted Cohen10, Jeremy D Goldhaber-Fiebert11,12, Julio Croda10,13,14, Jason R Andrews2

1 Department of Epidemiology and Population Health, Stanford University, Stanford, California, USA.
2 Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, California, USA.
3 Institute for Computational and Mathematical Engineering, Stanford University, Stanford, California, USA.
4 Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Canada.
5 School of Medicine, Universidad Pontificia Bolivariana, Medellin, Colombia.
6 National Tuberculosis Program, Ministry of Health, Brasília, Brazil.
7 Division of Infectious Diseases, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.
8 Dirección de Prevención y Control de la Tuberculosis, Ministerio de Salud, Lima, Perú.
9 Amnesty International USA, New York, New York, USA.
10 Department of Epidemiology of Microbial Diseases, School of Public Health, Yale University, New Haven, Connecticut, USA.
11 Department of Health Policy, Stanford University, Stanford, California, USA.
12 Center for Health Policy, Freeman Spogli Institute, Stanford University, Stanford, California, USA.
13 Departamento de Clínica Médica, Universidade Federal de Mato Grosso do Sul, Campo Grande, Brazil.
14 Fiocruz Mato Grosso do Sul, Campo Grande, Brazil.

Manuscript Word Count: 3750
Abstract Word Count: 250
Tables: 2
Figures: 4
References: 31

Correspondence:
Yiran E Liu
Stanford University School of Medicine
Department of Epidemiology and Population Health
300 Pasteur Drive
Stanford, California 94305
Email: yiranliu@stanford.edu

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
ABSTRACT (250 words)

Background
Tuberculosis incidence is increasing in Latin America, where the incarcerated population has nearly quadrupled since 1990. The full impact of incarceration on the tuberculosis epidemic, accounting for effects beyond prisons, has never been quantified.

Methods
We calibrated dynamic compartmental transmission models to historical and contemporary data on incarceration and tuberculosis in Argentina, Brazil, Colombia, El Salvador, Mexico, and Peru. Together these countries comprise approximately 80% of the region’s incarcerated population and tuberculosis burden. Using historical counterfactual scenarios, we estimated the transmission population attributable fraction (tPAF) for incarceration and the excess population-level burden attributable to increasing incarceration prevalence since 1990. We additionally projected the impact of various incarceration scenarios on future population tuberculosis incidence.

Findings
The rise in incarceration prevalence since 1990 has resulted in an estimated 30,241 (95% UI, 24,333 - 39,303) excess incident tuberculosis cases in 2019 across the six countries. The tPAF for incarceration in 2019 was 23.5% (95% UI, 17.7-32.0), exceeding estimates for other key risk factors like HIV, alcohol use disorders, and undernutrition. Compared to a base-case scenario where current incarceration policies persist, decarceration interventions could reduce future population tuberculosis incidence in all countries, notably by over 10% in Brazil, Colombia, El Salvador, and Peru.

Interpretation
The historical rise in incarceration in Latin America has resulted in a large excess burden of tuberculosis that has been under-recognized to-date. International health agencies, ministries of justice, and national tuberculosis programs should collaborate to address this health crisis with comprehensive strategies, including decarceration.

Funding
National Institutes of Health
Research in context

Evidence before this study
We searched PubMed for studies on tuberculosis in prisons in Latin America, using the search terms (“tuberculosis”) AND (“prisons” OR “incarceration”) AND (“Latin America” OR “Argentina” OR “Brazil” OR “Colombia” OR “El Salvador” OR “Mexico” OR “Peru”), published in any language. Previous studies have identified a high risk of tuberculosis in prisons in Latin America, finding that notifications in prisons are increasing and account for a growing proportion of all cases in the region. Other national or sub-national studies have found elevated tuberculosis risk among formerly incarcerated individuals and transmission chains spanning prisons and communities. However, the full contribution of incarceration to the broader tuberculosis epidemic in Latin America—accounting for historical incarceration trends, under-detection in prisons, and “spillover” effects into communities—has never been quantified. Furthermore, previous studies have evaluated biomedical interventions in prisons; the regional impact of alternative incarceration policies on future population tuberculosis incidence is unknown.

Added value of this study
Here we quantify the full contribution of incarceration to the tuberculosis epidemic in Latin America. Our model captures the dynamic nature of incarceration, incorporating historical and contemporary data sources to account for varying prison turnover rates and mechanisms underlying historical incarceration growth. By modeling the population with incarceration history, we estimate the true size of the ever-exposed population, which across the six countries is nearly 14 times the size of the population within prison at any one time. We identify the settings where excess cases occur and compare our results to crude estimates based on notifications in prisons. We show, across six countries with diverse carceral contexts and tuberculosis epidemiology, that incarceration is a leading driver on par with other major tuberculosis risk factors, a role that has been under-recognized to date. Finally, we demonstrate the potential impact of alternative incarceration policies in reducing future tuberculosis burden in carceral settings and the general population.

Implications of all the available evidence
To date the true impact of incarceration on the tuberculosis epidemic across the region has been underestimated due to a narrow focus on disease occurring during incarceration. In light of the substantial excess tuberculosis burden attributable to incarceration, interventions targeting incarceration can have outsized effects on the broader tuberculosis epidemic in Latin America—much greater than previously appreciated. These interventions should include not only strategies to reduce tuberculosis risk among currently and formerly incarcerated individuals, but also efforts to end mass incarceration.
INTRODUCTION

Globally, 10.6 million people developed tuberculosis in 2022. While global tuberculosis incidence has decreased by 8.7% since 2015, in Latin America, tuberculosis incidence increased by 19% over the same period, highlighting the urgent need to address key tuberculosis drivers in the region.

In Latin America, the incarcerated population has nearly quadrupled over the last thirty years. Persons deprived of liberty (PDL), who may already face elevated risk of tuberculosis prior to incarceration, are further exposed to prison conditions that foster transmission and disease progression, including overcrowding, poor ventilation, malnourishment, and limited access to health care. Together these factors contribute to tuberculosis rates that, in South America, are 26 times higher among PDL than in the general population.

Recognizing the crisis of tuberculosis in prisons, the Pan-American Health Organization (PAHO) began requesting data from member states on case notifications occurring among PDL. Between 2014 and 2019, the percent of all notified tuberculosis cases in the region occurring among PDL increased from 6.6% to 9.4%. While alarmingly high, this figure underestimates the tuberculosis burden attributable to incarceration, for several reasons. First, the case detection ratio is lower in prisons than in the general population. Second, individuals who acquire infection in prison often do not progress to tuberculosis disease until after release. Indeed, previous studies showed that formerly incarcerated individuals had elevated rates of tuberculosis for up to seven years following release from prison. As notifications databases do not record information on incarceration history, these cases are not currently attributed to incarceration.

Finally, infections acquired in prisons, including among people who work in or visit prisons, can spread in the community. Accordingly, genomic epidemiologic studies have identified tuberculosis transmission chains that span prisons and communities. Therefore, existing studies that focus on tuberculosis occurring in prisons overlook the role of incarceration as a population-level tuberculosis driver.

Understanding the full contribution of incarceration to the worsening tuberculosis epidemic in Latin America is critical to inform tuberculosis prevention strategies and resource allocation. Furthermore, the impact of alternative incarceration policies on the tuberculosis epidemic remains unknown, as previous studies have focused on biomedical interventions. In this study, we use mathematical modeling to quantify the population-level burden of tuberculosis attributable to incarceration in six countries: Argentina, Brazil, Colombia, El Salvador, Mexico, and Peru. Specifically, we hypothesize that the rise in incarceration since 1990 has produced a growing excess tuberculosis burden and hindered tuberculosis progress in the region. We additionally simulate alternative incarceration policies and project their impact on future population tuberculosis incidence.

METHODS

Setting

We selected countries in Latin America, defined as Mexico, Central America, and South America, based on data availability and to represent regional heterogeneity in incarceration and tuberculosis trends.
Data sources
We collected data on incarceration prevalence, prison entries or releases, and recidivism from each country’s penitentiary department or census agency via published reports and information requests (Table S1, Appendix). We also referenced reports and articles published by researchers, international agencies, and journalists. Population estimates and projections were obtained from the World Population Prospects. Population-wide tuberculosis notifications and incidence estimates were retrieved from the WHO Global Tuberculosis Report. Notifications and incidence estimates for PDL were sourced from PAHO and a recent study (Table S2).

Model development and calibration
We developed a deterministic, meta-population compartmental model to simulate incarceration and tuberculosis transmission (Figure S1, Table S3, Appendix). The model includes a simple representation of tuberculosis natural history across five compartments: susceptible, early latent, late latent, infectious, and recovered. These compartments are replicated across four population strata, which individuals traverse via incarceration and release: never incarcerated, currently incarcerated, recent history of incarceration, and distant history of incarceration. We distinguish between recent and distant incarceration history to account for the elevated risk of recidivism, tuberculosis, and mortality in the early period post-release. The model does not include HIV, drug resistance, or age structure and excludes children aged 14 years and under who are assumed not to be at risk of incarceration. We include low levels of mixing between incarcerated and non-incarcerated individuals to represent interactions with prison staff and visitors.

We fit the model independently for each country to incarceration and tuberculosis data from 1990 to 2023. Yearly calibration targets included incarceration prevalence, prison entries (admissions), and recidivism, as well as total and within-prison tuberculosis incidence and notification rates (Tables S1-S2). We accounted for uncertainty by sampling from distributions for calibration targets and for a subset of parameters that were fixed during calibration (Tables S3-S4). For each sample of calibration targets and fixed parameters, we then ran optimization algorithms to calibrate the remaining parameters, obtaining at least 1000 fitted parameter sets per country.

For time-varying parameters, we let the model reach equilibrium with baseline values and then applied rates of change starting in the year 1990. Changes in incarceration prevalence over time were achieved through changes in prison entry and release rates; changes in tuberculosis incidence and notification rates were achieved through changes in effective contact rates, disease progression rates, and diagnosis rates (Table S5). We also accounted for COVID-19 pandemic-related changes (Table S6).

Excess burden estimates
For each country, we quantified the excess population-level tuberculosis incidence attributable to the rise in incarceration prevalence since 1990 by simulating a counterfactual scenario where incarceration prevalence and dynamics remained constant at 1990 levels. To operationalize this, for each set of fitted parameters, we re-ran the model from 1990, with time-dependent changes in prison entry and release rates turned off. We also eliminated time-dependent changes in the effective contact rate within prison, which we assumed to be linked to growing prison populations. We then calculated the excess burden as the relative and absolute difference in
population tuberculosis incidence between the observed and counterfactual scenarios. We report excess burden estimates in 2019 due to COVID-19-related uncertainty, but we include estimates for 2022 in the Appendix. We also analyze where excess incident cases arose—i.e., where individuals progressed or relapsed to infectious tuberculosis disease—and where cases were diagnosed and notified.

Sensitivity analyses and meta-modeling

We performed sensitivity analyses to test two assumptions. First, in the main analysis, we assumed that the effective contact rate in prison could change over time due to observed increases in prison tuberculosis notification rates that could not be solely explained by improvements in case detection. We performed a sensitivity analysis holding the effective contact rate in prison constant over time. Second, in the main analysis, we assumed proportionate mixing among population strata outside of prison. In a sensitivity analysis, we implemented assortative mixing in the community based on incarceration history. Holding total contact rates constant, we increase the relative amount of intragroup mixing among formerly incarcerated individuals to three times that in the main analysis.

We additionally conducted linear regression meta-modeling using a multi-level model to identify parameters associated with variation in excess burden estimates\(^\text{15}\). The Appendix includes methodological details for sensitivity analyses and meta-modeling, as well as meta-modeling results.

Transmission population attributable fraction (tPAF)

To estimate the tPAF for incarceration among individuals aged 15 and older, we simulated a scenario where incarceration prevalence was gradually reduced to zero by 2019 (Appendix). For each country, we calculated the tPAF for incident cases in 2019 as follows\(^\text{16}\):

\[
tPAF = \frac{Pop.TB \text{ incidence}_{\text{observed}} - Pop.TB \text{ incidence}_{\text{incarceration eliminated}}}{Pop.TB \text{ incidence}_{\text{observed}}}
\]

We compared our estimates of the tPAF for incarceration with WHO’s country-specific estimates of the fraction of all incident cases attributable to each of five major tuberculosis risk factors in 2019. We note that risk factors may be overlapping, and that WHO’s estimates apply to varying age groups: undernutrition, all ages; HIV, all ages; alcohol use disorders, age ≥15; smoking, age ≥15; diabetes, age ≥18. For diabetes, the PAF is reported as a fraction of all cases among individuals age ≥15, rather than a true PAF, and therefore may be an overestimate.

Future policy scenarios

We simulated various incarceration scenarios over a ten-year period and estimated their impacts on future population tuberculosis incidence. Under the reference or “stable” scenario, prison entry and release rates remain constant for ten years. Under the “continue trends” scenario, entry and release rates undergo the same relative net change between 2024 and 2034 as they did over the prior ten years. The remaining decarceration scenarios involve pairwise combinations of 0-100% decreases in entry rates and increases in release rates, with the percent change target achieved linearly by the end of the ten-year period. We computed the percent difference in
projected population tuberculosis incidence in 2034 under each scenario compared to that expected under the stable scenario.

For El Salvador, where the prison population has nearly tripled since March 2022 under a continued state of emergency17, we introduced additional parameters to model recent trends (Table S7). We then simulated the following future scenarios: 1) continuation of current entry and release rates under the state of emergency; 2) passive abatement through a gradual return to pre-emergency entry and release rates; and 3-5) active cessation and reversion to pre-emergency incarceration prevalence in ten, five, or two years, with continued decarceration thereafter. Rather than comparing to a reference scenario, we computed the percent change in population tuberculosis incidence in 2034 under each scenario compared to 2021. Methods for future projections are detailed in the Appendix.

Role of the funding source
The funders had no role in study design, data collection, data analysis, data interpretation, writing of the report, or decision to submit the paper for publication.

RESULTS
Argentina, Brazil, Colombia, El Salvador, Mexico, and Peru exhibited wide variability in the population-wide and within-prison burden of tuberculosis between 1990 and 2019 (Figure 1). Together, they represent 82.4% of the region’s incarcerated population, 79.7% of total tuberculosis notifications, and 80.1% of tuberculosis notifications in prisons in 2018.

Between 1990 and 2019, the prevalence of incarceration among the population aged 15 and older more than doubled in all countries except Mexico, reaching 366 (range: 216 to 825) per 100,000 in 2019 across the six countries (Table 1). This historical rise was driven by an increase in prison entry rates (Argentina and Brazil), an increase in average duration of incarceration (Peru), or both (El Salvador, Colombia, Mexico) (Table S8). By 2019, the average duration of incarceration ranged from 1.3 years (95% UI 0.9-2.1) in Brazil to 6.2 years (4.4-9.0) in El Salvador (Table 1). Further, the percent of the prison population with prior incarceration history ranged from 17% (95% UI 11-22) in El Salvador to 51% (39-59) in Brazil. Such differences in incarceration dynamics contribute to the heterogeneity in community prevalence of incarceration history among the population age 15 and older, which ranged from 1.6% (95% UI 1.0-2.3) in Argentina to 7.6% (4.9-10.7) in Mexico (Table 1). Across all six countries in 2019, while 1.3 million people were incarcerated at any given time, we estimate that an additional 16.7 million (95% UI 12.9-21.0 million) people were living with incarceration history.

Compared to a counterfactual scenario where incarceration prevalence remained constant since 1990, the observed rise in incarceration prevalence since 1990 resulted in an estimated 30,241 (95% UI, 24,333-39,303) excess incident cases in 2019 across the six countries (Figure 2A-B, Table 2). The excess population tuberculosis incidence in 2019 varied widely across countries, ranging from 5% or 1.1 (95% UI 0.6-1.9) cases per 100,000 person-years in Mexico to 133% or 32.0 (25.6-40.7) cases per 100,000 person-years in El Salvador (Table 2). Estimates for the year 2022 were comparable (Table S9). Sensitivity analyses eliminating temporal changes in within-prison transmission rates, or assuming assortative mixing in the community by incarceration history, did not substantively change our results (Table S10).
The burden of excess incident cases that arose (i.e., progressed to disease or relapsed) in prisons in 2019 exceeded that of excess cases diagnosed within prisons by 37%, ranging from 11% in El Salvador to 104% in Colombia (Figure 2C). Furthermore, a considerable fraction of the excess burden in 2019 was comprised of incident cases arising among formerly incarcerated individuals, particularly in countries with shorter average duration of incarceration (Figure 2C). For instance, the percent of excess cases arising in the community among formerly incarcerated individuals was 39% (95% UI 26-57) in Argentina, 34% (21-47) in Brazil, and 34% (22-47) Mexico. In all countries, estimated tuberculosis incidence rates among individuals with recent or incarceration history were much higher than population-wide incidence rates (Figure S2, Table S12).

Collectively across countries, incarceration was the leading determinant compared to other key tuberculosis risk factors, accounting for an estimated 23.5% (95% UI, 17.7-32.0) of incident cases in 2019 among the population aged 15 and older. The country-specific tPAF of incarceration in 2019 reached 58.0% (95% UI, 51.6-63.5) in El Salvador, 31.8% (24.7-41.3) in Brazil, 19.5% (13.9-20.0) in Peru, 18.9% (12.2-28.8) in Colombia, 7.7% (5.2-16.3) in Argentina, and 6.4% (4.0-9.8) in Mexico (Table 2). Despite this variability, the country-specific tPAF for incarceration was consistently greater than or commensurate with PAFs for other major risk factors (Figure 3). Moreover, our median tPAF estimate was 1.3 to 5.3 times the percent of all tuberculosis notifications occurring in prisons in 2019 (Figure 3).

We projected the impact of future incarceration policies, implemented from 2024 to 2034, on population tuberculosis incidence in 2034. Future projections for El Salvador are described further below. For all other countries, projected incarceration prevalence in 2034 under each scenario is shown in Figure 4A and Table S13. If recent incarceration trends continue, projected population tuberculosis incidence in 2034 would be slightly (<3%) higher in Peru, Argentina, and Mexico, and slightly lower in Colombia and Brazil (Figure 4B). More active decarceration interventions—for instance, a simultaneous 50% decrease in entry rates and 50% increase in release rates—could reduce population tuberculosis incidence in 2034 by an estimated 21.0% (95% UI 13.8-29.1) in Brazil, 10.8% (7.5-15.6) in Peru, 10.0% (5.8-15.8) in Colombia, 7.5% (4.6-12.8) in Argentina, and 1.0% (0.3-3.0) in Mexico. Results for additional interventions are shown in Figure S3.

In El Salvador, maintaining the current state of emergency is projected to increase population tuberculosis incidence in 2034 by 126% (95% UI 71-193) compared to pre-emergency in 2021 (Figure 4C). A gradual, passive abatement of the state of emergency would still increase population tuberculosis incidence in 2034 by a projected 43% (95% UI 18-74). In contrast, prompt and active cessation of the state of emergency and reversion of incarceration prevalence to approximate pre-emergency levels by 2034 could restore population tuberculosis incidence in 2034 to its approximate rate in 2021. More decisive actions to revert pre-emergency incarceration prevalence in two or five years and continue further decarceration thereafter could reduce population tuberculosis incidence in 2034 by as much as 29% (95% UI 21-37) compared to 2021.

DISCUSSION
Across six Latin American countries, more than 30,000 incident cases in 2019 can be attributed to the rise in incarceration since 1990. Collectively in these countries, incarceration accounts for an estimated 23.5% (17.7-32.0) of incident cases in 2019 among individuals aged 15 and older, a greater fraction than any other determinant. Against the backdrop of the region’s alarming increase in tuberculosis incidence over the last decade, we project that policies to reduce incarceration prevalence may considerably reduce future population tuberculosis incidence. Together, our results implicate incarceration as a leading population-level driver of the tuberculosis epidemic in Latin America. In addition to improving prison conditions and implementing biomedical interventions in prisons, criminal legal reforms and development of non-carceral alternatives will be critical to re-ignite progress towards tuberculosis elimination.

Our findings reveal how the population-level impact of incarceration on tuberculosis has been previously under-recognized by conventional approaches that rely on case notifications within prisons. Such approaches overlook not only under-detection in prisons but also the highly dynamic nature of incarceration. The constant flow of people who are newly incarcerated and released yields a much larger population ever exposed to the high-risk carceral environment, which we estimate across the six countries is nearly 14 times the size of the population in prison at any given time. By using a dynamic model, we were able to account for this phenomenon and its interplay with the variable latent period of tuberculosis, under-detection in prisons, and onward transmission in the community. As a result, we obtained tPAF estimates that far exceeded the percent of notified tuberculosis cases occurring in prisons, and that increased the rank of incarceration relative to other major TB determinants. Policy guidance and future research should recognize incarceration as a dynamic state whose role as a tuberculosis driver and social determinant transcends effects observable within prisons.

We also demonstrate the potential impact of alternative incarceration policies on the tuberculosis epidemic in the region. For instance, policies that restore incarceration prevalence to levels previously observed since 1990 could reduce future population tuberculosis incidence by more than 10% in Brazil, Peru, and Colombia, countries which encompass the vast majority of the region’s tuberculosis burden. In Brazil, an intervention that reverts incarceration prevalence to its 2000 level would reduce population TB incidence by a projected 21.0%—greater than the country’s net 15.7% reduction achieved between 2000 and 2015. In El Salvador, which already had an exorbitant tPAF for incarceration prior to 2022, the state of emergency is projected to have catastrophic consequences for tuberculosis. We predict that swift, resolute termination of the state of emergency could enable a return to pre-emergency incidence by 2034, and that further decarceration can recover, at least in part, a decade of lost opportunity for tuberculosis progress. Such measures have precedent in Kazakhstan, where KNCV and Penal Reform International co-led comprehensive efforts to address tuberculosis in prisons, integrating biomedical interventions with decriminalization reforms, implementation of alternatives to incarceration, and improvements in prison conditions. Following expansion of the program in 2000, incarceration prevalence decreased by 70% and with it, the rate of tuberculosis in prisons by 90%. Therefore, decarceration interventions, especially if coupled with biomedical interventions and efforts to improve prison conditions, have substantial potential to accelerate progress towards 2035 End TB strategy targets.
Our estimates of the tuberculosis burden attributable to incarceration vary greatly across the six countries included, correlating strongly with country-specific disparities in tuberculosis risk between prisons and the general population. Between-country variation in where excess cases occur can also be attributed to distinct carceral dynamics across countries. For instance, in countries with a longer average duration of incarceration, like El Salvador and Peru, our model predicts that the vast majority of excess incident cases occur within prisons. Conversely, in countries with a shorter average duration of incarceration, i.e., Brazil and Mexico, a greater proportion of excess incident cases occur in the community after prison release. Therefore, it is crucial to consider incarceration dynamics and changing carceral policies in identifying optimal intervention strategies.

In response to this public health crisis, bold and decisive investments and actions are needed. First, international health agencies and national tuberculosis programs must improve reporting of incarceration as a structural determinant of tuberculosis. This includes collecting information on incarceration history in case notifications databases and including current and past incarceration as a key risk factor in WHO’s Global Tuberculosis Report. Given the stigma and discrimination faced by individuals with incarceration history, guidance should be developed with stakeholders to collect this information in a sensitive manner. Second, effective strategies to prevent, detect, and treat tuberculosis in incarcerated and formerly incarcerated individuals must be identified, incorporated in national guidelines, and implemented at scale. While existing research has focused on prison-based interventions, future work should expand to include formerly incarcerated individuals and their community contacts.

Lastly, and equally as important, governments must implement structural reforms to reduce the prison population. Rising incarceration in the region has contributed to severe prison overcrowding, which is correlated with tuberculosis incidence in prisons. Our study focused on tuberculosis, incarceration exposure has been linked to other adverse health outcomes. Therefore, decarceration strategies, especially in conjunction with efforts to transform conditions of imprisonment, have the potential to both accelerate tuberculosis progress and improve population health at large. Such strategies should be formulated with key stakeholders but may include reforms to reduce pre-trial detention, decriminalize drug use and mental illness, develop and scale restorative justice-based alternatives to imprisonment, and invest in preventative social, health, and welfare services.

Our study has several limitations. First, deterministic compartmental models are unable to capture the full range of complexity in real-world phenomena. The extent to which we were able to incorporate complexity in our model was constrained by inadequate data to inform model parameters and assumptions. For instance, our model did not account for age, gender, socioeconomic status, HIV, heterogeneity in duration of incarceration, nor heterogeneity in infectiousness. We also did not model MDR-TB, which is less common in prisons in the Americas than in other regions. Moreover, we had little to no data to inform mixing assumptions or stratum-specific parameters for formerly incarcerated individuals. In these cases of insufficient data, we used wide parameter uncertainty distributions and varied our assumptions in sensitivity analyses, with our findings generally remaining robust. However, the dearth of reliable, publicly accessible data on incarceration and tuberculosis must be urgently addressed.
Next, our future projections are subject to great uncertainty, including uncertainty around how the COVID-19 pandemic has affected and will continue to affect tuberculosis and incarceration. We were unable to model specific policies or reforms (i.e., decriminalization of drug use) due to insufficient data. Our future simulations also do not include changes in any other dimension aside from prison entry and release rates, such as improvements in prison conditions or scale-up of biomedical interventions. Generally, our historical counterfactual and future policy simulations are simplistic, modifying incarceration in isolation from what is inevitably an intricate web of upstream and downstream social, economic, political, and institutional forces that themselves also affect population health and tuberculosis. Nonetheless, our findings underscore the substantial potential for criminal legal reforms to reduce tuberculosis burden in Latin America, impacts which could be enhanced by additional prison- and community-based interventions.

To date we have failed to appreciate the full extent to which rising incarceration has undermined tuberculosis control in Latin America. Our estimates of the outsized tuberculosis burden attributable to incarceration eclipse those of other determinants that currently receive far greater attention. However, this exceptional excess burden must not be regarded as inevitable. Health agencies, national tuberculosis programs, ministries of justice, and other key stakeholders should undertake bold commitments and actions to elevate the prominence of incarceration in national and international strategies for tuberculosis control and elimination, accounting for impacts beyond prison walls. These strategies should take an integrated health and human rights approach, combining biomedical interventions and improvements in prison conditions with actions to enable decarceration. Such measures will be critical to advancing towards regional and global tuberculosis elimination targets.
Table 1. Incarceration- and tuberculosis-related characteristics by country. All population-wide prevalence estimates are for the population aged 15 and older.

<table>
<thead>
<tr>
<th>Incarcerated population in 1990 (10^4)</th>
<th>Argentina</th>
<th>Brazil</th>
<th>Colombia</th>
<th>El Salvador</th>
<th>Mexico</th>
<th>Peru</th>
</tr>
</thead>
<tbody>
<tr>
<td>1990*</td>
<td>21,016</td>
<td>90,000</td>
<td>32,387</td>
<td>5,982</td>
<td>93,119</td>
<td>17,859</td>
</tr>
<tr>
<td>2019</td>
<td>109,405</td>
<td>755,274</td>
<td>123,078</td>
<td>38,114</td>
<td>200,936</td>
<td>95,548</td>
</tr>
<tr>
<td>Prison occupancy (%)^</td>
<td>112</td>
<td>165</td>
<td>146</td>
<td>333</td>
<td>97</td>
<td>219</td>
</tr>
<tr>
<td>Prevalence of incarceration per 100,000 in 2019</td>
<td>321</td>
<td>452</td>
<td>316</td>
<td>825</td>
<td>216</td>
<td>399</td>
</tr>
<tr>
<td>Percent increase in prevalence of incarceration since 1990**</td>
<td>250 (242, 255)</td>
<td>401 (398, 404)</td>
<td>133 (124, 142)</td>
<td>372 (335, 405)</td>
<td>39 (37, 41)</td>
<td>198 (179, 208)</td>
</tr>
<tr>
<td>Incarceration growth driven by increasing entry rates and/or duration?</td>
<td>Entry rates</td>
<td>Entry rates</td>
<td>Both</td>
<td>Both</td>
<td>Both</td>
<td>Duration</td>
</tr>
<tr>
<td>Average duration of incarceration (years)^#</td>
<td>2.6 (1.8, 3.7)</td>
<td>1.3 (0.9, 2.1)</td>
<td>3.1 (2.3, 4.9)</td>
<td>6.2 (4.4, 9.0)</td>
<td>2.0 (1.4, 3.1)</td>
<td>5.7 (4.2, 8.3)</td>
</tr>
<tr>
<td>Within-prison prevalence of incarceration history (%)#</td>
<td>29 (20, 36)</td>
<td>51 (39, 59)</td>
<td>20 (14, 26)</td>
<td>17 (11, 22)</td>
<td>23 (16, 29)</td>
<td>26 (18, 32)</td>
</tr>
<tr>
<td>Community prevalence of incarceration history (%)#</td>
<td>1.6 (1.0, 2.3)</td>
<td>3.4 (1.9, 5.4)</td>
<td>5.7 (3.3, 7.9)</td>
<td>3.4 (2.4, 4.6)</td>
<td>7.6 (4.9, 10.7)</td>
<td>4.4 (3.1, 5.5)</td>
</tr>
<tr>
<td>Population-level tuberculosis notifications in 2019</td>
<td>11,446</td>
<td>85,523</td>
<td>14,292</td>
<td>3,009</td>
<td>23,702</td>
<td>31,764</td>
</tr>
<tr>
<td>Population tuberculosis notification rate per 100,000 in 2019</td>
<td>25.7</td>
<td>40.5</td>
<td>28.7</td>
<td>47.9</td>
<td>19.0</td>
<td>97.6</td>
</tr>
<tr>
<td>Prison tuberculosis notification rate per 100,000 in 2019</td>
<td>214</td>
<td>1303</td>
<td>784</td>
<td>3484</td>
<td>144</td>
<td>2945</td>
</tr>
<tr>
<td>Percent of all tuberculosis notifications occurring in prisons in 2019</td>
<td>2.0</td>
<td>11.5</td>
<td>6.8</td>
<td>44.1</td>
<td>1.2</td>
<td>8.9</td>
</tr>
</tbody>
</table>

*Data are from 1992 for Argentina. ^Estimates from World Prison Brief in 2018. #Median and 95% uncertainty intervals from at least 1000 model fits per country.
Table 2. Estimates of population tuberculosis incidence attributable to incarceration in 2019. All estimates are at the population-level among individuals aged 15 and older. Incidence rate ratios and excess burden estimates were obtained from comparing incident tuberculosis cases between the observed scenario of the historical rise in incarceration and the counterfactual scenario of no change in incarceration prevalence since 1990. The population attributable fraction was estimated using a scenario where incarceration prevalence was reduced to zero by 2019. 95% uncertainty intervals are shown in parentheses.

<table>
<thead>
<tr>
<th>Country</th>
<th>Incidence rate ratio for observed vs. counterfactual</th>
<th>Excess cases per 100,000 person-years relative to counterfactual</th>
<th>Absolute excess cases relative to counterfactual</th>
<th>Population attributable fraction (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argentina</td>
<td>1.05 (1.04, 1.13)</td>
<td>1.4 (0.9, 3.5)</td>
<td>469 (321, 1189)</td>
<td>7.7 (5.2, 16.3)</td>
</tr>
<tr>
<td>Brazil</td>
<td>1.36 (1.26, 1.51)</td>
<td>12.0 (9.0, 16.9)</td>
<td>20067 (15001, 28172)</td>
<td>31.8 (24.7, 41.3)</td>
</tr>
<tr>
<td>Colombia</td>
<td>1.22 (1.13, 1.39)</td>
<td>5.9 (3.5, 10.5)</td>
<td>2296 (1381, 4093)</td>
<td>18.9 (12.2, 28.8)</td>
</tr>
<tr>
<td>El Salvador</td>
<td>2.33 (2.04, 2.66)</td>
<td>32.5 (26.2, 41.6)</td>
<td>1502 (1211, 1921)</td>
<td>58.0 (51.6, 63.5)</td>
</tr>
<tr>
<td>Mexico</td>
<td>1.05 (1.03, 1.08)</td>
<td>1.1 (0.6, 1.9)</td>
<td>1015 (577, 1739)</td>
<td>6.4 (4.0, 9.8)</td>
</tr>
<tr>
<td>Peru</td>
<td>1.18 (1.11, 1.29)</td>
<td>18.6 (11.0, 31.4)</td>
<td>4451 (2623, 7515)</td>
<td>19.5 (13.9, 29)</td>
</tr>
</tbody>
</table>
FIGURE LEGENDS

Figure 1. Geographic, demographic, and epidemiologic heterogeneity among included countries. Countries included in the analysis are highlighted in color; remaining countries in Latin America are depicted in grey. Incarceration prevalence refers to the number of people per 100,000 population who are incarcerated at a given point in time. Tuberculosis (TB) notification rates are per 100,000 person-years. Data on prison tuberculosis notifications are only available starting in 2000. Latin America includes Mexico, Central America, and South America.

Figure 2. Excess population tuberculosis incidence attributable to the rise in incarceration prevalence since 1990. A) Population tuberculosis incidence per 100,000 person-years under the observed and counterfactual (no rise in incarceration since 1990) scenarios. Black points represent population tuberculosis (TB) incidence estimates from the World Health Organization, which are available beginning in 2000. Solid lines and shaded bands represent the median and 95% UI respectively. B) Excess population-wide incident tuberculosis cases per 100,000 person-years. C) Median estimates of excess cases, stratified by population subgroup in which they occurred, and for incident cases occurring in prison, additionally stratified by whether the disease was notified or undetected during incarceration. All model results are for the population age 15 and older.

Figure 3. Population attributable fraction for incarceration and other tuberculosis risk factors. Median estimates and uncertainty intervals for the percent of population-level incident tuberculosis cases in 2019 that can be attributed to each risk factor. The “crude” population attributable fraction for incarceration, representing the percent of all notified tuberculosis cases occurring in prisons, is shaded in dark red. Risk factors are listed in descending order by PAF for each country. Estimates correspond to different age groups: incarceration, age ≥ 15; undernutrition, all ages; HIV, all ages; alcohol, age ≥15; smoking, age ≥15; diabetes, age ≥18 (see Methods).

Figure 4. Projected impacts of incarceration-related interventions on future population tuberculosis incidence. A) Median incarceration prevalence per 100,000 population aged 15 and older under incarceration scenarios implemented between 2024 and 2034: stable entry and release rates (reference scenario), continuation of trends from prior ten years, 25% or 50% reduction in prison entry rates by 2034, 25% or 50% increase in release rates by 2034, or 25% or 50% change in both entry and release rates by 2034. The dashed horizontal line represents incarceration prevalence in 1990. B) Percent difference in population tuberculosis incidence in 2034 under each incarceration scenario, relative to the reference scenario of stable entry and release rates. Outliers are not shown. C) Left: Median incarceration prevalence under each incarceration scenario in El Salvador: continuation of entry and release rates under the state of emergency, passive abatement through gradual reversion of entry and release rates to pre-emergency levels by 2034, active cessation and approximate restoration of pre-emergency incarceration prevalence in ten years, or restoration of pre-emergency prevalence in five years or two years with continued decarceration thereafter. The dashed horizontal line represents incarceration prevalence in 1990. Right: Percent change in population TB incidence since 2021 under each scenario.
REFERENCES

2. (ICPR); IfCJPR. World Prison Brief.

Incarceration Scenario

A. Pop. TB incidence/100k

B. Excess TB cases/100k

C. Excess TB cases/100k

Status of Person with TB

- In Prison (Notified)
- In Prison (Undetected)
- Previously Incarcerated
- Never Incarcerated

Argentina
Brazil
Colombia
El Salvador
Mexico
Peru

Year

1990 2000 2010
Diabetes
Smoking
Undernourishment
Incarceration
HIV
Alcohol

Percent of incident cases