PREVALENCE OF HUMAN AND ANIMAL AFRICAN TRYPANOSOMIASIS IN NIGERIA: A SCOPING REVIEW

Elizabeth O. Odebunmi¹, Chukwuemeka Ibeachu¹, Chinwe U. Chukwudi²*

¹Department of Public Health, School of Health and Society, University of Wolverhampton, UK
²Department of Veterinary Pathology and Microbiology, University of Nigeria Nsukka. Enugu State, Nigeria.

*Correspondence: chinwe.chukwudi@unn.edu.ng, cuchukwudi@gmail.com

ABSTRACT

Background

African trypanosomiasis continues to pose a substantial threat to both human and animal health in sub-Saharan Africa. This study examined the prevalence of African trypanosomiasis within human and animal populations in Nigeria, the trypanosome species involved, the spread of animal reservoirs, and the variability in diagnostic methodologies employed.

Methodology/principal findings

A scoping review was performed, following the methodological framework outlined in PRISMA-ScR checklist. Eligible studies were explored for disease prevalence, causative parasites, reservoir hosts, and diagnostic techniques used. A total of 16 eligible studies published between 1993 and 2021 were retrieved. 13 studies reported the prevalence of African trypanosomiasis in animals, and 3 for humans. Varying prevalence rates were recorded depending on the host population and

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
diagnostic methods employed. The overall prevalence of Animal African Trypanosomiasis (AAT) and Human African Trypanosomiasis (HAT) was 27.3% (4,404/16,117) and 3.6% (72/1,974) respectively. The highest incidence of HAT was detected using the Card Agglutination Test for Trypanosomiasis (CATT), whereas that of AAT was observed using PCR, followed by microscopy which was the most extensively employed technique in this study. The various diagnostic methods used in various studies showed a variety of sensitivities and specificities, affecting the accuracy of disease detection. Remarkably, domestic animals like cattle, pigs, and dogs were identified as potential reservoirs for the human-infective parasites (*T. b. gambiense*) in Nigeria.

Conclusion

This study highlights the high prevalence rate and complex epidemiology of African trypanosomiasis in humans and animals in Nigeria. These findings underscore the importance of comprehensive measures involving both veterinary and human health sectors to combat African trypanosomiasis effectively in Nigeria. Only few studies have investigated the prevalence of HAT in Nigeria. Hence, adequately coordinated epidemiological surveys are imperative to ascertain the true epidemiological status of HAT in Nigeria and inform targeted intervention policies to achieve WHO’s NTD elimination targets in 2030.

INTRODUCTION

African Trypanosomiasis (AT) is one of the Neglected Tropical Diseases (NTDs) with an estimated 60 million people at risk of infection in sub-Saharan Africa, as well as various animals such as dogs, cattle, pigs, sheep and goats. This vector-borne disease, caused by a protozoan...
parasite of the genus Trypanosoma, are transmitted by tsetse flies to both humans and animals.

Animal African Trypanosomiasis (AAT), also known as Nagana, is caused by various trypanosome species, including *T. brucei*, *T. congolense*, *T. vivax*, *T. equiperdum*, *T. evansi*, *T. simiae*, *T. suis*, and *T. theileri*. While cattle are the most affected, other animals such as goats, dogs, sheep, pigs, and wild animals are also susceptible. *T. equiperdum* causes a venereal disease (Dourine) in horses and donkeys, while *T. evansi*, causes a form of trypanosomiasis known as Surra in horses, camels, buffaloes, mules, and deer.

Two sub-species of *Trypanosoma brucei* cause Human African Trypanosomiasis (HAT), also known as sleeping sickness. *Trypanosoma brucei gambiense* (Tbg), found in 24 countries in West and Central Africa, is responsible for 97% of all reported cases, and causes a chronic disease. *Trypanosoma brucei rhodesiense* (Tbr), which is found in 13 countries in East and Southern Africa, is responsible for 3% of all reported cases and causes an acute disease. Unlike Tbg, which mostly infects humans (although some animal reservoirs/hosts have been identified), Tbr causes disease in both humans and animals.

The transmission of both HAT and AAT heavily depends on tsetse fly (*Glossina sp.*), exclusively found in sub-Saharan Africa. Nevertheless, maternal and sexual transmission has been indicated for HAT, although their exact contributions to the epidemiology of the human disease has not been fully explored. The coexistence of humans, vectors, and parasites in a conducive environment in the tropical trypanosomiasis belt of Africa, coupled with the presence of animal reservoir hosts, makes HAT a significant public health challenge, with detrimental effects on health, the economy, poverty levels, and agricultural productivity.

Reported cases of HAT globally have substantially declined to fewer than 1,000 cases between 2019 and 2020. This decline is attributed to HAT control strategies and inclusion in the Neglected
Tropical Diseases, with a roadmap aiming to eliminate gHAT as a public health concern by 2020 and zero transmission to humans by 2030. However, disease monitoring and epidemiological surveillance is grossly inadequate in many endemic countries. One of the prerequisites for a disease to be eradicable is the absence of animal reservoirs. Therefore, in addition to latent infections and inadequate diagnostic tools/capacity, the presence of potential animal reservoir hosts for both Tbg and Tbr is a major challenge to the complete elimination of HAT across sub-Saharan Africa including Nigeria. Nonetheless, it is still unclear how important these non-human hosts are in maintaining the transmission of gHAT. Without addressing the knowledge gaps regarding T. b. gambiense reservoirs, complete gHAT eradication remains unattainable. To fill this gap, adequate epidemiological information about the co-circulation of human and animal trypanosomes is critical, as these sites could potentially present breeding grounds for new epidemic strains of the parasites. Therefore, this study examined the prevalence of African trypanosomiasis in both humans and animals in Nigeria, focusing on the complex interactions among disease transmission dynamics, parasite variation, diagnostic techniques, and possibility of cross infection between humans and animals.

METHODS

This study follows the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA-ScR) four-stage framework, encompassing identification, screening, eligibility assessment, and inclusion to ensure a transparent, accurate, and high-quality reporting of the review's findings.
The searches were performed using MEDLINE, CINAHL, and EMBASE in July 2023. The search terms included ‘Neglected Tropical Disease,’ ‘African trypanosomiasis,’ ‘human African trypanosomiasis,’ ‘animal African trypanosomiasis,’ ‘sleeping sickness,’ ‘nagana,’ ‘trypanosoma,’ ‘trypanosomosis,’ ‘trypanosomes.’ These terms were combined using Boolean operators ‘OR’, as well as ‘AND’ to retrieve relevant articles. A manual search was also performed to ensure that all relevant studies were captured.

Eligibility Criteria

The eligibility criteria for this review were informed by participants (P), phenomena of interest (I), and context (Co) or PICo, where P is humans/animals with AT, I is African trypanosomiasis infection and Co is Nigeria. Primary studies including cross sectional, cohort, surveys, and prevalence studies that reported animal and human African trypanosomiasis infection were included. Specific inclusion criteria included studies from Nigeria, published in English language with well detailed sample size, prevalence of trypanosomiasis in sampled population, method of diagnosis and *Trypanosoma* species identified.

Study Selection

Study selection was performed independently by two authors. Discrepancies between the authors were resolved through discussion until a consensus was reached. After duplicates were removed, the remaining studies were screened based on their titles and abstracts. Subsequently, non-relevant studies were excluded, and the full text of the remaining studies were assessed according to the pre-defined eligibility criteria. Finally, studies that met the eligibility criteria were included for further data extraction.

Data Extraction
Studies were extracted into a pre-prepared Microsoft Excel spreadsheet with the following variables: author and year of publication, study subject (human, animal), type of study design, study size, *Trypanosoma* species identified, diagnostic method used, number of positive cases, prevalence, or percentages.

Data Synthesis

A narrative summary was performed to synthesize findings from this review.

RESULTS

A total of 1,977 articles were retrieved from the search of three databases. 59% (1,159) from MEDLINE, 36% (724) from EMBASE and 5% (94) from CINAHL. After removal of 40 duplicates, 1,937 articles were screened for titles and abstracts. A total of 1,787 non-relevant articles were excluded in accordance with the predetermined criteria. Following full text retrieval, another 25 studies were excluded as their full texts were not accessible. Upon review of the full texts of the remaining 125 articles, a total of 11 were deemed eligible for inclusion in the study. An additional 5 articles were identified from a search of reference lists. Finally, 16 articles were included. The study selection process is represented in table I.

Description of eligible studies

All included studies were published between 1993 and 2021, with the number of study subjects ranging from 19 to 7,143 and an overall sample size of 18,091. Of the 16 included studies, three investigated human African trypanosomiasis,24, 25, 26 while thirteen studies reported animal African trypanosomiasis. Five of these reported infection in cattle - bovine trypanosomiasis,27, 28, 29, 30, 31 Two studies investigated trypanosomiasis infection in pigs – porcine trypanosomiasis.32, 33 Three studies investigated infection in ruminants – sheep, goat, cattle,34, 35, 36 while one study investigated
in dogs – canine trypanosomiasis. The remaining two studies investigated infection in multiple animal hosts including monkey. Table II provides a summary of the included studies.

Prevalence of HAT

A total of 1,974 individuals underwent testing for the disease across three studies. Among them, 72 individuals tested positive for the disease in two of the studies. Notably, the third study conducted did not yield any positive cases within the sampled population. The overall prevalence of HAT as examined by these studies is 3.6% (72/1,974) with *Trypanosoma brucei gambiense* detected as the causative organism.

Prevalence of AAT

Thirteen included studies reported AAT with an overall sample size of 16,117. The highest sampled animal was cattle at 12,193, while the least is monkey at 1 sample. Others are 577 sheep, 418 goat, 2,639 pigs, 31 dogs, and 318 belonging to small ruminants (unspecified). Out of the total sampled animals, 4,404 were found positive for trypanosomiasis infection from all the 13 studies. The overall mean prevalence of AAT is 27.3% (4,404/16,117).

A total of 12 studies detected the animal infective trypanosomes: *T. vivax*, *T. congolense*, *T. brucei*, *T. simiae*, *T. evansi*, and *T. theileri* in the studied samples. However, *T. vivax*, *T. congolense*, and *T. brucei* were the most prevalent. In addition to these trypanosomes, three of these studies detected the human infective parasite *Trypanosoma brucei gambiense* in the animals.

Diagnostic Techniques

The included studies for this review utilized various diagnostic methods, including microscopy, CATT (Card Agglutination Test for Trypanosomiasis), and Polymerase Chain Reaction (PCR) in
the detection of trypanosomes. Overall, microscopy was the most utilized diagnostic technique of eleven studies. While the remaining studies utilized CATT and PCR, individually, together or in addition to microscopy.

DISCUSSION

The findings from this review, provides comprehensive insights into the prevalence, species distribution, and diagnostics variations of African trypanosomiasis in humans and animals in Nigeria. According to this study's findings, the prevalence of AAT in Nigeria is 27.3% (4,404 out of 16,117), while prevalence of HAT is 3.6% (72 out of 1,974). This indicates that African trypanosomiasis is still endemic in both humans and animals in Nigeria. The presence of various trypanosome species and different diagnostic methods contributes to the complexity of this disease and its significance for public health. The study identified several trypanosomes, including *T. vivax*, *T. congolense*, *T. brucei brucei*, *T. simiae*, *T. evansi*, *T. theileri* and *T. brucei gambiense* as the causative pathogens of trypanosomiasis infection in animals and humans. Additionally, the most used diagnostic techniques in Nigeria, for detecting these trypanosomes are microscopic examination, CATT, and PCR.

The Prevalence of human African trypanosomiasis in Nigeria

Human African trypanosomiasis has been included in the Neglected Tropical Diseases Road map, aiming to eliminate HAT as a public health concern by 2020 and prevent the transmission of *Trypanosoma brucei gambiense* (*Tbg*) to humans by 2030. The criteria for elimination are set at fewer than 2,000 reported cases annually and no more than 1 case per 10,000 residents in areas at moderate or high risk. Several endemic African countries, such as Benin, Côte d'Ivoire,
Equatorial Guinea, Togo, and Uganda, have successfully eliminated gambiense Human African Trypanosomiasis (gHAT) as a public health problem. However, Nigeria still faces challenges in achieving this goal. This study reveals that Nigeria has a higher prevalence rate of 3.6% (72 out of 1,974) for HAT compared to 0.06% in Côte d'Ivoire and 0.88% in Uganda. These findings suggest that the disease is still a significant health issue in Nigeria, and the country has not yet successfully eliminated gambiense Human African Trypanosomiasis (gHAT) as a public health concern.

Despite the World Health Organization reporting eight new HAT cases in Nigeria between 2010 and 2016, the results of this analysis present a different perspective. During this period, three of the studies included in this analysis collectively identified 72 HAT cases out of a total of 1,974 individuals assessed, with the parasites isolated from 7 individuals. This notable difference suggests that the actual prevalence of HAT in Nigeria might be underestimated. This could be attributed to the fact that identification of HAT cases has not been incorporated into routine diagnostic procedures in Nigeria’s healthcare facilities despite being an endemic country. This reflects the limited attention that HAT receives in endemic regions.

Prevalence of AAT in Nigeria

This study has unveiled an overall prevalence rate of 27.3% for animal African trypanosomiasis, which is higher than the 16.1% in previous review. This increased prevalence rate among animals in Nigeria raises additional concerns regarding their potential role in the transmission of African trypanosomiasis to humans. A notable finding from this study is the presence of the human-infective *T. brucei gambiense* in pigs, dogs, and cattle. Similar findings have been documented in various sub-Saharan African nations.
Although the precise role of these animal hosts in transmission is not entirely clear, their presence poses a potential threat to the goal of eliminating HAT transmission to humans by 2030. While the zoonotic potential of *T. brucei gambiense* has been a subject of significant discussion over the years, the confirmation of its presence in animal hosts highlights the possibility of transmission between humans and animals. In Nigeria, the existence of these animal reservoirs could be contributing to the persistence and spread of Human African Trypanosomiasis (HAT). Furthermore, it might be a factor behind the limited success of the methods used to control and eliminate gambiense HAT. Therefore, it is crucial to conduct further research to gain a comprehensive understanding of the specific role played by these animal reservoirs in the transmission of HAT.

The Diagnosis of Trypanosomiasis

The diagnosis of trypanosomiasis relies on various methods like parasitological, serological, and molecular tests, each with different levels of accuracy, ease of use, and cost. For instance, less sensitive diagnostic procedures are more likely to give false negative results, leading to an underestimation of the true prevalence of the disease. Conversely, more sensitive diagnostic tests can detect more positive cases that might be missed by less precise methods, resulting in higher reported prevalence rates. Consequently, the choice of diagnostic methods and their accuracy can significantly affect the detection of infected individuals or animals and the reported prevalence rates.

Microscopic examination was found to be the most used method for identifying trypanosomiasis infections in both animals and humans in this review. However, this method has faced criticism for its low sensitivity, especially in cases with low parasitemia characteristic of human infections with TbG, which can result in the underestimation of HAT prevalence rates. On the other hand,
Polymerase Chain Reaction has been acknowledged as the preferred diagnostic method for epidemiological investigations concerning *Trypanosoma sp.* due to its high sensitivity and capacity for processing many samples. This aligns with the results of this study, where the use of both microscopy and PCR on the same group of samples revealed that microscopic examination detected a lower prevalence rate compared to PCR.

As observed in one of the studies, the prevalence of AAT in cattle using microscopy was 15.1% while PCR detected a higher prevalence of 63.7%. This substantial gap in prevalence rates can be attributed to the varying sensitivities of the two methods. Similarly, when examining *T. b. gambiense* infections in humans using the Card Agglutination Test for Trypanosomiasis (CATT) and PCR, different prevalence rates were detected. CATT showed an overall prevalence rate of 1.8%, whereas PCR indicated a lower rate of 0.6% among the same sampled population of 1200 individuals. This discrepancy in prevalence rates between the two diagnostic techniques underscores the high specificity of PCR and the potential for false-positive results from CATT.

In addition, there exists a substantial likelihood of encountering false negative results, primarily attributable to discrepancies in antigen types utilized in the CATT assay kit especially in Nigeria and Cameroon. On the other hand, the lower prevalence detected with PCR could result from DNA extraction and handling methods in view of the low parasitemia characteristic of gHAT infections and may also reflect the chronicity of the infections in the sampled populations.

The variation in prevalence rates has also been linked to the capacity of diagnostic tools to identify trypanosomes down to the subspecies level. Unlike the PCR method, which has the capability to directly categorize trypanosomes based on their species classification, the microscopy technique is limited in its ability to distinguish between different species and subspecies. In this review, the
polymerase chain reaction approach was successful in detecting the human-infectious parasite \textit{T. b. gambiense} in animals.37,38

In summary, the choice of diagnostic methods significantly impacts the reported prevalence rates of trypanosomiasis. This emphasizes the importance of carefully considering the methods used when interpreting and comparing prevalence data across different studies and locations. However, these choices are often influenced by factors like the availability of trained staff, cost, ease of use, and the diagnostic tool's useability.54 Nigeria, being a developing nation, faces challenges related to limited resources, funding, and healthcare personnel. This may explain why microscopy is frequently used for trypanosomiasis detection in Nigeria compared to other methods as it requires minimal equipment and is a cost-effective way to detect the disease.8

Conclusion

This study highlighted the high prevalence rate of African trypanosomiasis infection in both humans and animals in Nigeria, evidence of the persistent threat that the disease poses to the health of humans and animals. The identification of pigs, dogs, and cattle as reservoir hosts for the human-infective parasite \textit{Trypanosoma brucei gambiense} underscores the potential for cross-species transmission between humans and animals. Thus, highlighting the zoonotic potential of \textit{gambiense} Human African Trypanosomiasis (gHAT). This presents a significant challenge to the 2030 objective of eliminating gHAT as a public health concern and terminating its transmission to human populations.

To enhance the efficacy of disease control measures, additional research is imperative to elucidate the precise roles played by animal reservoir hosts and establish more effective diagnostic techniques for the detection of the trypanosomes in low resource endemic areas.
Table I: Flow chart of study selection process

Identification

Records identified from:
- Databases (n = 1977)
 - MEDLINE (n = 1159)
 - CINAHL (n = 94)
 - EMBASE (n = 724)

Records removed before screening:
- Duplicate records removed. (n = 40)

Screening

Records screened. (n = 1937)

Records excluded. (n = 1787)

Records sought for retrieval. (n = 150)

Reports assessed for eligibility. (n = 125)

Reports not retrieved. (n = 25)

Reports excluded:
- From other sub-Saharan African countries (n = 112)
- Prevalence not measured.

Include

Included studies (n = 11)

Retrieved through manual search (n = 5)

Total studies included (n = 16)
Table II: Summary of the characteristics of the reviewed articles

<table>
<thead>
<tr>
<th>Author/Year</th>
<th>Title</th>
<th>Aim</th>
<th>City/Area</th>
<th>Study Design</th>
<th>Study Population</th>
<th>Sample Size</th>
<th>Outcome Measured</th>
<th>Result</th>
<th>Prevalence rate</th>
<th>Diagnostic Method</th>
<th>Species Identified</th>
</tr>
</thead>
<tbody>
<tr>
<td>Daniel et al., 1993</td>
<td>Prevalence of bovine trypanosomiasis in Karim Lamido and Numan local government of Gongola State (Karim LGA and Numan LGAs)</td>
<td>To assess the prevalence of bovine trypanosomiasis in Karim Lamido and Numan local government of Gongola State.</td>
<td>Adamawa: Formerly Gongola</td>
<td>Cross-sectional</td>
<td></td>
<td></td>
<td></td>
<td>A total of 42 (3.9 %) Cattle were found to be infected with trypanosomes. Out of which 27 (64.3 %) were due to T. vivax, 13 (31 %) to T. congolense and 2 (4.8 %) to T. brucei.</td>
<td>3.90%</td>
<td>Microscopy</td>
<td>T. vivax</td>
</tr>
<tr>
<td>1993</td>
<td>Nigeria State of Northern Gongola LGAs</td>
<td>Survey Cattle</td>
<td>1065</td>
<td>Bovine trypanosomiasis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Year</td>
<td>Region</td>
<td>Objective</td>
<td>Species Found</td>
<td>Prevalence</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>---------------------------------</td>
<td>---</td>
<td>--</td>
<td>------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1994</td>
<td>Bauchi (Alkaleri and Gombe LGAs)</td>
<td>To investigate the sensitivity of four techniques currently in use for the parasitologic diagnosis of trypanosomiasis in sheep and goats in a region of northern Nigeria</td>
<td>A total of 19 (7.4%) sheep and 18 (5.0%) goats were positive giving a total infection rate of 37 (6.0%), 22 being positive with T. vivax, 9 with T. congolense and 6 with T. brucei</td>
<td>6%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2009</td>
<td>Kaduna</td>
<td>To assess the prevalence of bovine trypanosomiasis in cattle at Kaduna</td>
<td>A total of 109 cattle were infected with T. vivax</td>
<td>8.40%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cross-sectional Survey Cattle</td>
<td>Microscopy</td>
<td>6.0%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kachia Grazing Reserve, Kaduna State, Nigeria</td>
<td>Investigaton of livestock for presence of T. b. gambiense within Tafa</td>
<td>Aimed at screening livestock for possible presence of T. b. gambiense</td>
<td>Cattle</td>
<td>Sheep</td>
<td>Goats</td>
<td>Local dogs</td>
<td>Monkey</td>
<td>African trypanosomiasis</td>
<td>A total of 10 animals were positive for trypanosomes with an overall prevalence of 2.17%. The morphological identification indicated the presence</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kachia Grazing Reserve (KGR)</td>
<td>T. brucei brucei</td>
<td>T. congoles</td>
<td>T. vivax</td>
<td>Microscopy</td>
<td>2.17%</td>
<td>T. brucei</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
In Tafa Local Government Area of Niger State, Nigeria.

12 local dogs and 1 monkey were positive for Trypanosoma brucei, T. vivax and a mixed infection of T. brucei and T. congolense. Details by animal species showed 3 cattle (1.69%), 6 sheep (3.02%), and 1 goat (1.64%) infected with trypanosomes. Neither the dogs nor the monkey was positive for trypanosomes.

| Habeeb et al. | Molecular identification and To investigate the Kwara Cross-section Cattle 398 Bovine trypanosomiasis | A total of 3 Cattle were positive by microscopy, Microscopy: 0.8% | PCR | T. theileri | T. evansi | T. simiae |
al., 2021 prevalence of trypanosomes in cattle distributed within the Jebba axis of the River Niger, Kwara state, Nigeria. Survey representing 0.8% prevalence, while 12 samples representing 3.0% tested positive by nested PCR. With *T. congolense* more prevalent (50.0%).

<table>
<thead>
<tr>
<th>Trypanosome Species</th>
<th>PCR:</th>
</tr>
</thead>
<tbody>
<tr>
<td>T. congolense</td>
<td>3.0%</td>
</tr>
<tr>
<td>T. brucei</td>
<td></td>
</tr>
<tr>
<td>T. vivax</td>
<td></td>
</tr>
<tr>
<td>Observation</td>
<td>To evaluate the prevalence of trypanosomiasis among ruminants in Kano State and to elucidate aspects of the disease transmission in the area</td>
</tr>
<tr>
<td>-------------</td>
<td>---</td>
</tr>
<tr>
<td>Kalu et al., 1996</td>
<td>Kano State</td>
</tr>
<tr>
<td></td>
<td>Kano State</td>
</tr>
<tr>
<td></td>
<td>Kano State</td>
</tr>
<tr>
<td>Karsh et al., 2016</td>
<td>To conduct an active screening of T. b. gambiense in humans in Gboko, Nigeria</td>
</tr>
<tr>
<td>Silent Human Trypanosoma brucei gambiense</td>
<td>Infections sleeping around the focus in Old Gboko sleeping sickness</td>
</tr>
<tr>
<td>T. b. gambiense</td>
<td>TgsGP-polymerase</td>
</tr>
<tr>
<td>Animal reservoirs of Trypanosoma brucei gambiense around the old Gboko sleeping sickness focus in Nigeria</td>
<td>To ascertain the possible role of animal reservoirs in the epidemiology of the parasite in the old Gboko sleeping sickness focus</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Karsh ima et al., 2016</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Nigeria and characterized isolates using TgsGP polymerase chain reaction.

T. congolense savannah (2.0%), *T. vivax* (2.2%) and mixed infections (1.5%) in cattle as well as *T. brucei* (4.8%), *T. congolense* forest (1.8%), *T. congolense* savannah (1.0%) and mixed infections (1.2%) in pigs. *T. brucei gambiense* and other animal trypanosomes were identified among animals in the focus.
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3,342 cattle were found positive. The prevalence of bovine trypanosomiasis was found to be high at 46.8% (39.0 – 54.5%) and significant, seasonal variation was observed between the dry and the end of the wet season. T. b.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>T. congolense</td>
<td>T. vivax</td>
<td>T. b.</td>
<td>PCR</td>
<td></td>
</tr>
</tbody>
</table>
T. brucei was observed at a prevalence of 3.2% (1% – 5.5%); **T. congolense** at 27.7% (21.8% - 33.6%) and **T. vivax** at 26.7% (18.2% - 35.3%).

<p>| Nmor et al., 2010 | Human African trypanosomiasis in endemic focus of Abraka, Nigeria | To investigate the prevalence of human African trypanosomiasis (HAT), caused by T. b.gambiae. | Cross-sectional survey of Humans 474 | Human 22(9.6%) in Urhouka, 14(9.5%) in Umeghe and 8(7.9%) for Ugonu. | 9.30% | Microscopy | CATT | T.b.gambiae |</p>
<table>
<thead>
<tr>
<th>Year</th>
<th>Author</th>
<th>Study Title</th>
<th>Study Details</th>
<th>Main Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>1994</td>
<td>Omek</td>
<td>Pig trypanosomiasis: prevalence and significance</td>
<td>To determine the prevalence of trypanosome species pathogenic to Anambra and Benue states</td>
<td>524 (26.8%) were positive for trypanosome infections, 348 (66.5%) of which had a mixed T. brucei and T. congolense.</td>
</tr>
</tbody>
</table>
In the endemic Middle Belt zone of southern Nigeria, pigs and the significance of pig trypanosomosis in the Middle Belt zone of Southern Nigeria.

<p>| Onah and Ebenebe, 2004 | Isolation of a human serum-resistant Trypanosoma brucei from a gambiense | To re-evaluate the role of domestic pig as a reservoir for T. b. gambiense | Cross-sectional Survey Pigs 85 | Porcine trypanosomiasis | 19 positive cases were identified from the 85 sampled pigs. 15 (78.96%) were identified as single infection because of T. brucei. While the 22.35% Microscopy | T. brucei gambiense | T. congolense | CC-BY 4.0 International license It is made available under a (which was not certified by peer review) The copyright holder for this preprint this version posted April 22, 2024; https://doi.org/10.1101/2024.04.21.24306055 doi: medRxiv preprint |</p>
<table>
<thead>
<tr>
<th>Naturally infected pig in the Nsukka area of Enugu State</th>
<th>Remaining 4 (21.05%) were due to mixed infections of T. brucei and T. congolense.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Takee et al., 2013</th>
<th>Molecular survey of pathogenic trypanosomes in naturally infected Nigerian cattle</th>
<th>Cross-sectional survey of cattle</th>
<th>Parasite detection by microscopy</th>
</tr>
</thead>
<tbody>
<tr>
<td>To determine the prevalence and characteristics of trypanosome species and strains in Nigerian cattle</td>
<td>62 samples infected by one or more species of trypanosomes, for a prevalence of 15.1% (95% CI, 12–18%).</td>
<td>Microscopy: 15.1%</td>
<td></td>
</tr>
<tr>
<td>Parasitology: 12% (95% CI, 18%).</td>
<td>PCR: 63.7% (95% CI, 12–18%).</td>
<td>Microscopy: T. brucei</td>
<td></td>
</tr>
<tr>
<td></td>
<td>T. vivax</td>
<td>T. congolense</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parasite detection by microscopy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microscopy: 15.1%</td>
</tr>
<tr>
<td>Parasitology: 12% (95% CI, 18%).</td>
</tr>
</tbody>
</table>
cattle using PCR for the first time.

PCR detection showed 262 samples infected by one or more species of Trypanosoma, for an overall prevalence of 63.7% (95% CI, 59.4–68.8%) and T. congolense was the most prevalent 48.7% (95% CI, 4.2–54.3), followed by T. vivax 26.0% (95% CI, 21.8–31.1%) and T. brucei 4.4% (95% CI, 3.3–7.1%).
<table>
<thead>
<tr>
<th>Uba et al., 2016</th>
<th>Knowledge and prevalence of human African trypanosomiasis among residents of kachia grazing reserve.</th>
<th>To determine the knowledge, practices and prevalence of HAT among residents of the grazing reserve.</th>
<th>Cross-sectional Survey</th>
<th>Humans</th>
<th>300</th>
<th>Human African Trypanosomiasis</th>
<th>Prevalence of mixed infections was 13.9% (95% CI, 10.6–17.4%) being co-infection by T. congolense and T. vivax.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Of the 300 respondents that were examined and screened for HAT, none had palpable cervical lymph nodes enlargement, and none tested positive on CATT; hence HAT prevalence was zero. 0.00% CATT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Author(s)</td>
<td>Title</td>
<td>Methodology</td>
<td>Location</td>
<td>Species Identification</td>
<td>Result</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------------</td>
<td>---</td>
<td>----------------------------</td>
<td>----------------------------</td>
<td>------------------------</td>
<td>--</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Umeaku et al., 2019</td>
<td>Identification of Trypanosoma brucei gambiense in naturally infected dogs in the Nsukka Survey</td>
<td>Cross-sectional survey</td>
<td>Kachia local government area, Kaduna state, Nigeria, 2012</td>
<td>T. brucei group. Two of the dogs were Tbg: 10.52% PCR T. b. gambiense</td>
<td>All 19 dogs sampled had canine trypanosomosis caused by trypanosomes of the T. brucei group. Two of the dogs were Tbg: 10.52% PCR T. b. gambiense</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Authors</td>
<td>Title</td>
<td>Methodology</td>
<td>Location</td>
<td>Year</td>
<td>Prevalence</td>
<td>Species</td>
<td></td>
</tr>
<tr>
<td>------------------</td>
<td>--</td>
<td>---</td>
<td>--------------</td>
<td>------</td>
<td>------------</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Wayo, 2017</td>
<td>Prevalence of trypanosomiasis in sheep in the Kachia grazing area</td>
<td>Cross-sectional survey</td>
<td>Kaduna</td>
<td>2017</td>
<td>45 (40.9%)</td>
<td>T. brucei, T. vivax, T. congolense (40.0%), T. Brucei (28.8%), T. congolense (40.9%)</td>
<td></td>
</tr>
</tbody>
</table>
reserve, Kachia, Kaduna State, Nigeria

the area, to allow for proper planning of control activities and serve as valuable scientific data.

\(vivax \) (17.7%) and mixed infections (13.3%)
REFERENCES

15. Ilembobade AA. Tsetse and trypanosomosis in Africa: the challenges, the opportunities.

