Title: The effect of anti-platelet agents on end organ dysfunction and mortality in community acquired pneumonia: A protocol for a systematic review and meta-analysis

Sylvain A. Lother1,2, Lana Tennenhouse3, Rasheda Rabbani4, Ahmed M. Abou-Setta4, Nicole Askin5, Alexis F. Turgeon6,7, Srinivas Murthy8, Brett L. Houston9, Donald S. Houston9, Asher A. Mendelson2, Barret Rush2, Emily Rimmer7, John C. Marshall10, Souradet Y. Shaw11, Patrick R. Lawler12,13, Yoav Keynan1,14, Ryan Zarychanski2,9

Affiliations:
1 Section of Infectious Diseases, Department of Internal Medicine, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
2 Section of Critical Care, Department of Internal Medicine, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
3 Department of Internal Medicine, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
4 George & Fay Yee Centre for Healthcare Innovation, University of Manitoba, Winnipeg, Manitoba, Canada
5 Neil John Maclean Health Sciences Library, University of Manitoba, Winnipeg, Manitoba, Canada
6 Department of Anesthesiology and Critical Care, Université Laval, Quebec City, Quebec, Canada
7 Population Health and Optimal Health Practices Research Unit, Departments of Traumatology, Emergency Medicine, and Critical Care Medicine, Université Laval Research Center, CHU de Quebec-Université Laval, Quebec City, Quebec, Canada
8 Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada
9 Department of Medical Oncology and Hematology, CancerCare Manitoba, Winnipeg, Manitoba, Canada
10 Department of Surgery, University of Toronto, Toronto, Ontario, Canada
11 Department of Community Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
12 University of Toronto, Peter Munk Cardiac Centre at University Health Network, Toronto, Ontario, Canada
13 McGill University Health Centre, Montreal, Quebec, Canada
14 Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Manitoba, Canada

Protocol: Version 1.4
Date: February 27, 2024

Corresponding author:
Dr. Sylvain A. Lother
University of Manitoba, Health Sciences Center
GC 436, level 4, 820 Sherbrook St, Winnipeg, MB, R3A1R9
+1-(204)-787-2767, Sylvain.Lother@umanitoba.ca

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
ABSTRACT

Background: Community acquired pneumonia (CAP) is a common cause of morbidity and mortality globally. Poor outcomes are driven by maladaptive inflammatory and thrombotic host responses. Effective therapies that modulate host responses are lacking. Anti-platelet medications modulate thrombotic and inflammatory pathways and improve long term outcomes in COVID-19 pneumonia, however, the role of anti-platelets in other etiologies of CAP remains uncertain.

Methods: We will conduct a systematic review and meta-analysis of randomized controlled trials (RCTs) and observational studies including adult patients hospitalized for non-COVID-19 community acquired pneumonia (CAP) investigating the effect of anti-platelets (ASA or P2Y12 inhibitors) vs. control on all-cause mortality. We will search electronic databases including MEDLINE® (Epub Ahead of Print and In-Process, In-Data-Review & Other Non-Indexed Citations), Embase, Cochrane Central Register of Controlled Trials (CENTRAL), clinical trial registries (clinicaltrials.gov, International Clinical Trials Registry Platform) and conference abstracts from inception to August 2023. Two blinded reviewers will extract data in parallel from included studies after title and abstract screening and application of eligibility criteria. We will use the Cochrane Risk of Bias tool and Newcastle Ottawa Scale to assess risk of bias and study quality from included studies. The primary meta-analysis will be conducted separately for RCTs and observational studies using Random effect inverse variance model. For observational studies, adjusted mortality estimates will be presented as hazard ratios (HR) or adjusted odds ratios (OR) whenever possible. Heterogeneity will be expressed using the I^2 statistic. The
evidence will be evaluated using the Grading of Recommendations, Assessment, Development, and Evaluations (GRADE) framework.

Discussion: The overall treatment effect and safety of anti-platelets in non-COVID-19 CAP will be summarized. The findings may be used to inform the relevance and potential study design of a future RCT evaluating anti-platelets in CAP. If anti-platelets are shown to be safe and effective, this research is expected to contribute to a new standard of treatment for CAP, and a paradigm shift towards targeting host responses in serious infections.

Systematic Review Registration: This protocol is reported in accordance with the guidelines produced by PRISMA-P. The protocol was registered with Open Science Framework on January 30, 2024 (DOI https://doi.org/10.17605/OSF.IO/H2G7C)

KEY WORDS

Community acquired pneumonia, anti-platelets, aspirin, ASA, clopidogrel, mortality
BACKGROUND

Community acquired pneumonia (CAP) is a life-threatening lung infection and leading cause of hospitalization and mortality globally, accounting for 2.6 million annual deaths. Among hospitalized patients with CAP, 30-day overall mortality is 23% and 6-21% of patients require Intensive Care Unit (ICU) admission.

Poor clinical outcomes in CAP are driven by maladaptive inflammatory and thrombotic host responses to infection. Respiratory pathogens activate the innate immune system, driving local and systemic inflammation and hypercoagulability through platelet activation, endothelial dysfunction, and immunothrombotic mechanisms, that persist for days to months after infection. Excessive inflammation and coagulation contribute to organ dysfunction due to micro and macro-vascular thrombosis.

Vascular thrombosis risk is elevated in CAP and occurs in approximately 11% of patients at 30-days. An increased risk of venous thromboembolism (VTE) was seen in COVID-19, and the incidence of symptomatic VTE in COVID-19 and CAP is comparable (2.0% vs. 3.6%, respectively), and higher in mechanically ventilated patients. Influenza may be associated with an even greater risk of arterial thrombosis compared with COVID-19 (7.5% vs. 4.4%, respectively). Cardiovascular events, often driven by vascular thrombosis, complicate CAP in up to a third of hospitalizations and these events are associated with a greater than 3-fold increase in mortality.
Effective therapies that modulate the host response are lacking. Anti-platelet agents including acetylsalicylic acid (ASA) and P2Y12 inhibitors such as ticagrelor, clopidogrel, and prasugrel are familiar and widely accessible medications that have pleotropic effects with anti-thrombotic and anti-inflammatory activity. These mechanisms hold promise in blunting host immunothrombotic responses to infection.

In patients hospitalized with COVID-19 pneumonia, ASA demonstrated mixed effects in clinical trials, some showing benefit and others showing no significant effect. Further analyses suggest that ASA may benefit individuals at longer follow up duration (180-day). In non-COVID-19 pneumonia, a small randomized control trial (RCT) showed ASA reduced myocardial infarction (MI) and cardiovascular death in hospitalized patients. Several other retrospective and prospective cohort studies have suggested a potential benefit with anti-platelet agents, however due to the heterogeneity of CAP, mixed results, and differing populations, the overall effect of anti-platelet agents in hospitalized patients with CAP remains uncertain.

The purpose of this systematic review and meta-analysis is to evaluate the effect of anti-platelet agents on mortality, end organ failures, cardiovascular events, and bleeding for patients hospitalized with non-COVID-19 CAP. This protocol is reported in accordance with the guidelines produced by the Preferred Reporting items for Systematic Reviews and Meta-analysis for developing review protocols (PRIMSA-P).

Methods/Design
We will conduct a systematic review using methodological approaches outlined in the *Cochrane Handbook for Systematic Reviewers* and report the findings in accordance with the Preferred Reporting items for Systematic Reviews and Meta-analysis (PRISMA) criteria for RCTs, and the Meta-analysis of Observational Studies in Epidemiology (MOOSE) criteria for observational studies. The review question and methods have been constructed with experts in infectious diseases (AK, SL, SM, YK), critical care (AK, AM, AT, BR, JM, PL, SL, SM, RZ), hematology and thrombosis (BH, DH, EM, RZ), cardiology (PL), community health (SS), and knowledge synthesis methodology (AMAS, AT, JM, NA, RR, PL, SM, SS, RZ, YK). The roles of each team member are summarized in Appendix 1.

Eligibility criteria

The PICO statement and eligibility criteria for studies to be included or excluded from the systematic review and meta-analysis are provided in Table 1 and Table 2.

Table 1: PICO statement

<table>
<thead>
<tr>
<th>P - patients</th>
<th>Adults aged ≥ 18 years admitted to hospital for non-COVID-19 CAP</th>
</tr>
</thead>
<tbody>
<tr>
<td>I - interventions</td>
<td>Patients exposed to an anti-platelet agent (ASA or P2Y12 inhibitors)</td>
</tr>
<tr>
<td>C - comparators</td>
<td>Patients not exposed to an anti-platelet agent</td>
</tr>
<tr>
<td>O - outcomes</td>
<td>Mortality, end-organ failures, and thromboembolic complications</td>
</tr>
</tbody>
</table>

CAP, community acquired pneumonia
Table 2: Eligibility criteria for studies to be included or excluded from the systematic review and meta-analysis

<table>
<thead>
<tr>
<th>Inclusion criteria</th>
<th>Exclusion criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Study design</td>
<td>RCTs (including placebo controlled and open label) and observational studies (including retrospective, prospective, and bi-directional cohort studies)</td>
</tr>
<tr>
<td></td>
<td>Animal studies, case-control studies, cross-over studies, cluster randomized trials</td>
</tr>
<tr>
<td>Participants</td>
<td>Comparative studies of adult patients admitted to a hospital for non-COVID-19 CAP (author defined), and studies of patients with bacteremia, sepsis, acute lung injury, and/or acute respiratory distress syndrome that report comparative effectiveness data for at least one clinical outcome in the CAP subgroup (derived CAP population with exposure to an APT vs. not)</td>
</tr>
<tr>
<td></td>
<td>Studies who enrol ≥ 20% of patients with URTI without evidence of LRTI, ≥ 20% with hospital acquired pneumonia (author defined), or ≥ 20% of CAP caused by COVID-19</td>
</tr>
<tr>
<td>Interventions</td>
<td>Studies where participants received ASA or a P2Y12 inhibitor, at any dose or frequency of administration, and regardless of whether the APT was received prior to hospitalization</td>
</tr>
<tr>
<td></td>
<td>Studies where ≥ 20% of patients are receiving DAPT, ≥ 20% of patients are receiving an APT in conjunction with therapeutic-dose anticoagulation</td>
</tr>
<tr>
<td>Comparator</td>
<td>Patients not receiving an APT (placebo, standard of care, no intervention, or another non-APT intervention)</td>
</tr>
<tr>
<td></td>
<td>Active comparator studies (one APT compared to another APT)</td>
</tr>
</tbody>
</table>
| **Outcomes** | Primary outcome:
 - All-cause mortality (longest follow up)
 - ICU admission
 - Hospital LOS (days)
 - Use of IMV
 - Use of cardiovascular organ support (vasopressors and/or inotropes and/or ECLS)
 - Use of any organ support (composite including use of HFNO and/or NIPPV and/or IMV and/or vasopressors and/or inotropes and/or ECLS)
 - Arterial thromboembolic event (myocardial infarction and/or stroke)
 - Venous thromboembolic event (deep venous thrombosis and/or pulmonary embolism)
 - Major bleeding |
| | None of the listed outcomes are available from the study report(s) or through communication with the study authors |
| **Setting** | All hospital settings where patients with CAP are cared for |
| | Patients cared for in personal care homes, long term care, or other non-hospital settings |

Abbreviations:
- APT = anti-platelet; ASA = acetyl salicylic acid; CAP = community acquired pneumonia; DAPT = dual anti-platelet; ECLS = extracorporeal life support; HFNO = high flow nasal oxygen; IMV = invasive mechanical ventilation; LOS = length of stay; LRTI = lower respiratory tract infection; NIPPV = non-invasive positive pressure ventilation; RCT = randomized controlled trial; URTI = upper respiratory tract infection
Study design and setting

We will include parallel design RCTs (including placebo controlled and open label trials) and observational studies (including retrospective, prospective, and bi-directional study designs), presenting comparative data on the exposure and the non-exposure to the intervention in a population of patients hospitalized for non-COVID-19 CAP. The required study setting will be in hospital. Studies that include patients cared for in personal care homes, long term care, or other non-hospital settings will be excluded.

Participants

We will include comparative studies of hospitalized adult patients (>80% of the study population is ≥ 18 years old) admitted to hospital for non-COVID-19 CAP. The diagnosis of CAP will be author defined and may include clinical or administrative definitions. Studies of patients with bacteremia, sepsis, acute lung injury, and/or acute respiratory distress syndrome that report on comparative effectiveness data for at least one clinical outcome in the CAP subgroup (derived CAP population with exposure to an anti-platelet vs. not) will also be included.

Interventions and comparisons

Studies where patients received an anti-platelet agent (ASA or P2Y12 inhibitors, at any dose or frequency of administration) after study enrollment, regardless of whether the anti-platelet agent was received prior to hospitalization will be included. These patients will comprise the intervention group. Patients not receiving anti-platelet agents (may be receiving placebo,
standard of care, no intervention, or another non-antiplatelet (non-ASA or non-P2Y12 inhibitor) intervention) will comprise the comparator group.

Outcomes

Each outcome for RCTs and observational studies will be reported separately (not pooled) due to the inherent differences in study designs, and outcomes will be reported at longest available follow-up. The primary outcome will be all-cause mortality. For observational studies, the adjusted effect estimate on mortality will be reported as the primary analysis whenever possible, to control for possible confounding. Secondary outcome measures will include arterial thromboembolic events (myocardial infarction and/or stroke), venous thromboembolic events (deep venous thrombosis and/or pulmonary embolism), ICU admission, hospital length of stay, use of invasive mechanical ventilation (IMV), use of cardiovascular organ support (vasopressors and/or inotropes and/or extracorporeal life support), use of any organ support (composite outcome including use of non-invasive positive pressure ventilation (NIPPV) and/or IMV and/or vasopressors and/or inotropes and/or extracorporeal life support). NIV includes the use of high flow nasal oxygen (NFNO) defined as flow rate of > 30 L/min, continuous positive airway pressure (CPAP), or bi-level positive airway pressure (BiPAP). The primary safety outcome will be major bleeding (author defined).

Search Strategy and Identification of Studies

Using the OVID platform, we will search MEDLINE® (including Epub Ahead of Print and In-Process, In-Data-Review & Other Non-Indexed Citations), Embase and the Cochrane Central
Register of Controlled Trials (CENTRAL). Using individualized systematic search strategies for
each database, we will identify relevant citations of studies from inception to August 2023.
Search strategies will utilize a combination of controlled vocabulary (e.g.: “pneumonia”,
“pneumonia, bacterial”, “pneumonia, viral”, “aspirin”) and keywords (e.g.: “pneumoni*”,
“antiplatelet*”, “acetylsalicylic acid”). We will apply a modified version of the SIGN RCT and
observational study filters. We will not use language restrictions for any searches. The
Medline search strategy is presented in Appendix 2. Reference lists of relevant narrative
reviews, systematic reviews, and the included studies will be searched for additional citations.
To identify planned, on-going, or recently completed but unpublished clinical trials, we will
search clinicaltrials.gov and the International Clinical Trials Registry Platform (ICTRP), and
abstracts from relevant conferences. We will perform reference management in EndNote™

Study Selection and Data Extraction

We will examine all citations produced from the search strategy and remove duplicate citations.
We will screen all title and abstracts and select studies applying the eligibility criteria, recording
all decisions using the Rayyan artificial intelligence web-based platform. Full texts will be
obtained for all citations that meet eligibility criteria, and these studies will be examined
applying the inclusion and exclusion criteria, and the report of clinical outcomes. If full texts are
not in the English language, we will translate with the online translator Google Translate
(United States, Google LLC, 2016). The included studies will then be reviewed for data
extraction using standardized and piloted screening and data extractions forms in Microsoft®
Excel for Mac (version 16.69). Citations that cannot be excluded based on population, intervention, comparator, or study design will be moved to full text screening. Two reviewers will independently perform citation screening and full text screening, study selection, and data extraction in parallel. Conflicts between reviewers will be resolved by consensus or resolution of disagreements by a third reviewer as required.

From each study, we will extract study demographics including the study name, first author’s name, study design, publication year, journal, publication type (full article or abstract), publication language, sources of funding (industry vs. non-industry), study locations (continent), and number of centers. We will record participant characteristics in respective intervention and control arms, including total sample size, mean or median age and sex, and proportion of patients with immunocompromising condition(s), chronic respiratory or cardiovascular conditions, and history of MI or coronary artery disease (author defined). Participant diagnoses will be recorded including pathogen type (proportion bacterial, viral, or unknown), and illness severity (proportion in ICU at enrolment, baseline Sequential Organ Failure Assessment (SOFA) and/or Acute Physiology and Chronic Health Evaluation-II (APACHE-II) and/or Pneumonia Severity Index (PSI) and/or Confusion, Urea, Respiratory Rate, Blood Pressure-65 (CURB-65) score). We will record intervention characteristics, including the type of anti-platelet agent, total daily dose, proportion exposed to the anti-platelet agent prior to enrolment, whether the anti-platelet agent was started prospectively at the time of study enrolment, the duration of anti-platelet agent use after enrolment, and the proportion on concurrent therapeutic-dose anticoagulation. Lastly, we will record the duration of participant follow up and the outcomes.
of interest. For missing data, we will email the corresponding author for studies that are < 10 years old. If no response is received within 1 months, a second contact will be made, after which the data will considered missing.

Risk of bias assessment

We will assess the internal validity at both the study and outcome level of included RCTs using the Cochrane Collaboration Risk of Bias tool (version 2). This tool consists of 5 domains (bias arising from the randomization process, bias due to deviations from intended interventions, bias due to missing outcome data, bias in measurement of the outcome, and bias in selection of the reported result), and a categorization of the overall risk of bias. Each separate domain will be rated “low risk”, “some concerns”, or “high risk”. The overall judgment will be low risk if all domains are judged to be low risk. The study will be judged as having some concerns, if at least one domain is judged to raise some concerns (but not at high risk of bias for any domain).

Finally, the study will be judged as high risk if any one domain is judged high risk, or if the study is judged to have some concerns for multiple domains such that it substantially lowers the confidence in the results.

For observational studies, we will assess study quality using the Newcastle-Ottawa Scale (NOS). This tool consists of assessing quality within a list of numbered items in 3 domains, based on the selection of the study groups (4 numbered items), the comparability of the groups (1 numbered item), and the ascertainment of the outcome of interest (3 numbered items). High quality choices within each numbered item will be awarded a “star” (maximum 1 star per
numbered item in the selection and outcome domains, maximum 2 stars for the numbered
item in the comparability domain). Each study will be assigned a score of 0-9 stars. Studies
scoring ≥ 7 will be considered high quality studies, 4-6 moderate quality, and ≤ 3 low quality.

Risk of bias assessment will be performed independently by two reviewers. Discrepancies
between the two reviewers will be resolved by consensus or by resolution of conflicts by a third
reviewer as required. Information regarding risk of bias will be used to guide sensitivity analyses
and explore sources of heterogeneity.

Data analysis

Meta-analysis will be conducted using Random effect inverse variance model. In the primary
meta-analysis of the primary outcome, study level adjusted mortality estimates from
observational studies will be presented as hazard ratios (HR) and adjusted odds ratios (OR) and
will be pooled separately. Study level summary effect comparisons from RCTs will be presented
as risk ratios (RR) with 95% confidence intervals (CI) and pooled separately. A secondary meta-
analysis of the primary outcome will be performed using study level unadjusted reported effect
estimates and presented as RR with 95% CI. Reported OR will be converted back to RR before
conducting meta-analysis. Summary effect-estimates for secondary outcomes will be expressed
as RR with 95% CI for dichotomous data and weighted mean difference (WMD) with 95% CI for
continuous data. Provided there are sufficient included studies (≥ 10) in the analysis of the
primary outcome, a funnel plot will be used to investigate publication bias with the Egger test
and visual inspection to assess plot asymmetry. All analyses will be conducted using the
Assessment of Heterogeneity and Subgroup Analysis

The presence of statistical heterogeneity will be expressed using the I^2 statistic. In case of significant heterogeneity among studies ($I^2 > 50\%$), we will perform pre-defined subgroup analyses for the primary outcome, dependent on the number of included studies and the availability of appropriate outcomes and co-variates. These will include subgroups from studies with potential differences in methodologic considerations, included study populations, pneumonia type, or disease severity, factors that relate to the intervention, or duration of follow up (Table 3).

Table 3: Pre-defined sub-group analyses

<table>
<thead>
<tr>
<th>Methodological subgroups</th>
<th>Clinical subgroups (based on population factors)</th>
<th>Interventional subgroups</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cochrane risk of bias for RCTs (high vs. low)</td>
<td>Study population (entire study population with CAP vs. data generated in a subgroup of patients with CAP)</td>
<td>Type of anti-platelet agent used (ASA vs. other anti-platelet agent)</td>
</tr>
<tr>
<td>Newcastle Ottawa scale study quality for observational studies (high vs. intermediate/low)</td>
<td>Etiology of CAP (bacterial vs. viral vs. unknown/mixed)</td>
<td>Dose of ASA (high vs. low dose ≤ 81 mg/d)</td>
</tr>
<tr>
<td>Sample size (large (n>1,500) vs. small (n≤1500))</td>
<td>Illness severity (admitted to ICU at time of study enrollment vs. not in ICU)</td>
<td>Pre-hospital exposure to anti-platelet agent (chronic vs. new use of anti-platelet agent)</td>
</tr>
<tr>
<td>Data source for pneumonia diagnosis (clinical vs. administrative data)</td>
<td></td>
<td>Duration of anti-platelet agent use (≤ 7 days vs. > 7 days)</td>
</tr>
<tr>
<td>Outcome subgroups</td>
<td>Duration of follow up for the primary outcome (≤ 30 days vs. > 30 days)</td>
<td></td>
</tr>
</tbody>
</table>

External validity

We will apply the Grading of Recommendations, Assessment, Development, and Evaluations (GRADE) framework to summarize the strength of the evidence generated and make clinical practice recommendations.\(^{40}\)

DISCUSSION

The findings generated in this systematic review and meta-analysis will be summarized and presented at local and national conferences concurrently with publication in a peer reviewed journal. The findings will be used to inform the relevance and potential study design for a future large, international RCT of anti-platelet agents in CAP. Planned future studies will be presented to the Canadian Critical Care Trials Group and other national organizations that include general internists (Canadian Society of Internal Medicine), infectious disease experts (Association of Medical Microbiology and Infectious Disease Canada), and critical care experts (Critical Care Canada Forum) to seek future collaborations.

ABBREVIATIONS

- APACHE II: Acute Physiology and Chronic Health Evaluation-II
- APT: Anti-platelet
- ASA: Acetyl-salicylic acid
BiPAP Bi-Level Positive Airway Pressure
CAP Community Acquired Pneumonia
CI Confidence Interval
COVID-19 Coronavirus Disease-19
CPAP Continuous Positive Airway Pressure
CURB-65 Confusion, Urea, Respiratory Rate, Blood Pressure-65 score
DAPT Dual Anti-platelet
ECLS Extra-corporeal Life Support
GRADE Grading of Recommendations, Assessment, Development, and Evaluations
HFNO High Flow Nasal Oxygen
HR Hazard Ratio
ICTRP International Clinical Trials Registry Platform
ICU Intensive Care Unit
IMV Invasive Mechanical Ventilation
LOS Length of Stay
LRTI Lower Respiratory Tract Infection
MI Myocardial Infarction
MOOSE Meta-analysis of Observational Studies in Epidemiology
NIPPV Non-Invasive Positive Pressure Ventilation
NOS Newcastle Ottawa Scale
OR Odds Ratio
PICO Population Intervention Comparators and Outcomes
PRISMA Preferred Reporting items for Systematic Reviews and Meta-analysis
PSI Pneumonia Severity Index
RCT Randomized Controlled Trial
RR Risk Ratio
SOFA Sequential Organ Failure Assessment
URTI Upper Respiratory Tract Infection
VTE Venous Thromboembolism
WMD Weighted mean difference

DECLARATIONS

Ethics approval and consent to participate: Not applicable
Consent for publication: Not applicable
Availability of data and materials: Search strings will be published in the included appendix.
Data that is generated from extraction of included studies will be published in a peer reviewed journal and raw data will be publicly available on Open Science Forum or upon request with the corresponding author.
Competing interests: The authors declare that they have no competing interests
Funding: No sources of funding
Author contributions: Each author contributed to creating, editing, and approving the final draft of this manuscript. Individual roles of each co-author is detailed in Appendix 1.

Acknowledgements: Not applicable

REFERENCES

doi:10.1056/NEJMoa2105911

APPENDIX

Appendix 1: Systematic review team members

The review will be coordinated by a clinician scientist with infectious diseases and critical care training (SL), including development of the review question, literature search strategy, screening of relevant studies, data extraction and analysis, and preparation of the final manuscript. A second blinded reviewer (LT) with internal medicine training will screen relevant studies, extract data, and analyze risk of biases in duplicate. Experts from a variety of fields will provide content expertise, including infectious diseases (YK, AK, SM), critical care (AK, PL, AM, BR, SM, JM, AT, RZ), hematology and thrombosis (BH, RZ, EM, DH), cardiology (PL), community health and epidemiology (SS), and knowledge synthesis methodology (AMAS, NA, RR, YK, PL, SS, SM, JM, AT, RZ). An experienced librarian and medical information specialist with experience in systematic review search methodology will develop and test search strategies through an iterative process in consultation with the review team (NA). Another information specialist will peer review the search strategies prior to execution using the PRESS Checklist. A senior statistician with specific expertise in meta-analysis will oversee the analysis methods (RR). A clinician scientist with systematic review expertise in clinical trials and prospective observational studies (AMAS) will provide methodological advice. Two clinician scientists with expertise in infectious diseases, hematology and critical care will provide project oversight, methodological advice, along with content expertise, and resolution of disagreements among reviewers (YK, RZ).
Appendix 2: Search strategy for Medline (Ovid)

Ovid MEDLINE(R) and Epub Ahead of Print, In-Process, In-Data-Review & Other Non-Indexed Citations and Daily <1946 to August 22, 2023>

1. Platelet Aggregation Inhibitors/ or exp Anti-Inflammatory Agents, Non-Steroidal/ exp aspirin/ or abciximab/ or ancorid/ or clostatrol/ or clopidogrel/ or dipyridamole/ or disintegrins/ or epoprostenol/ or eptifibatide/ or exp heparitin sulfate/ or iloprost/ or pentoxifylline/ or piracetam/ or prasugrel hydrochloride/ or ticagrelor/ or ticlopidine/ or tirofiban/ or aminosalicylic acid/ or exp aminopyrine/ or apazone/ or benzydamine/ or clonixin/ or diclofenac/ or Diflunisal/ or diploma/ or Epirizole/ or Etanercept/ or Etodolac/ or etoricoxib/ or Fenoprofen/ or Feprazone/ or exp fenamates/ or Flurbiprofen/ or ibuprofen/ or Indomethacin/ or Indoprofen/ or Ketoprofen/ or ketorolac/ or Keterolac Tromethamine/ or Nabumetone/ or naproxen/ or Piroxicam/ or exp Salicylates/ or Sulindac/ or Suprofen/ or Tolmetin/ (antiplatelet* or anti platelet* or antithrombocyt* or anti thrombocyt* or antiaggrega* or anti aggrega* or nsaid* or nsaia*).ti,ab,kf. 2. exp aspirin/ or abciximab/ or ancorid/ or clostatrol/ or clopidogrel/ or dipyridamole/ or disintegrins/ or epoprostenol/ or eptifibatide/ or exp heparitin sulfate/ or iloprost/ or pentoxifylline/ or piracetam/ or prasugrel hydrochloride/ or ticagrelor/ or ticlopidine/ or tirofiban/ or aminosalicylic acid/ or exp aminopyrine/ or apazone/ or benzydamine/ or clonixin/ or diclofenac/ or Diflunisal/ or diploma/ or Epirizole/ or Etanercept/ or Etodolac/ or etoricoxib/ or Fenoprofen/ or Feprazone/ or exp fenamates/ or Flurbiprofen/ or ibuprofen/ or Indomethacin/ or Indoprofen/ or Ketoprofen/ or ketorolac/ or Keterolac Tromethamine/ or Nabumetone/ or naproxen/ or Piroxicam/ or exp Salicylates/ or Sulindac/ or Suprofen/ or Tolmetin/ (antiplatelet* or anti platelet* or antithrombocyt* or anti thrombocyt* or antiaggrega* or anti aggrega* or nsaid* or nsaia*).ti,ab,kf. 3. ((nonsteroid* or non-steroid* or analgesi c*) adj2 (antiinflammat* or anti inflammat*).ti,ab,kf. 4. ((platelet* or thrombocyte* or cyclooxygenase* or cyclo oxygenase* or prostaglandin synth* or prostaglandin endoperoxide or cox or cox1 or cox2 or adp receptor* or adenosine or glycoprotein or gpii* or thromboxane or fibrinogen receptor* or thrombin receptor or thromboxan*) adj2 (inhibit* or antagonist*).ti,ab,kf. 5. (acenterine or acesal or acetan or acetard or acetic#l or acetilum or acetonyl or acetophen or ac#tosal* or acetylsalic* or acetyl* salic* or acetylin or acetylo* or acety?sal or actori n or acylpyrin* or adiro or aggrenox or alabukan or alasil or aloxi primum or anadin or anaspirin or anopryrin or asaphen or asasantin* or ascriptin or aspercin or aspica or aspir or aspirenum or aspiricor or aspirin* or aspirisucro or aspiflow or as pivotab or aspiol or aspir or aspro or axanum or axotal or bissopirine or boxazin or breoprin or buffasal or bufferin or buffinol or calcacetosal or calspirin or calvesprate or cardiprin or cardioasa* or cardio?spirin a or casprin or caspirin or catalgix or colfarit or concorasa or coryphen or curilen or decagesic or dispersin or dispir or ducoover or duoplatin or durlaza or easpiren or ecosprin or ecotrin or emprin or endosprin or entaprin or enteroprin or enterosarine or enterospirine or entroph en or eskotrin or eudorin or euthermine or extren or faspir or globentyl or halfprin or idotyl or imagesic or istopirin or ievipirine or juvepirine or kalmopyrin or kinderaspirin or magnecyl or medaprin or mejoral or melabon or meproaspirin or methoxsal or micrinin or micristin or miniprin or nitroaspirin or norgesc or novasen or orphengesic or ostoprin or pabaixin or planolar or poloprin or polopipryna or premaspin or prismspan or rasprin or regasprin or renolon or rhonal or rivasa or robaxisal or rumarid or salaceti or salicyla* or salicylic or sedergine or solprin or solupsan or svelux or syna?gos or tevapirin or trancoprin or trinomia or tycalsin or uniprin or vazalone or vicoprin or vosprala or zactrin or zorprin).ti,ab,kf. 6. (aloxiprin or alaprin or palaprin or paloxin or rumatral or superpyrin or tiatral or anagrelide or agrelid or agrelin or aneguilde or xagrid or ancod or viprinex or agkistrodon or applaggin or aprosulate or apsalatone or ataprost or atopaxar or beraprost* or buflomedil or pixane or cangrelor or kengreal or kengreal or)}
cataflam or diflunisal or dolobid or doloci or nudi diflunisal or novodiflunisal or apodiflunisal or ditrazol* or droxicam or ombolan or duometacin or flynploy or endolac or epirizole or mep#rizole or vimovo or etanercept or etodolac or erc ridoxan or etodolic or ramodar or ultradol or etofenamate or algesalone or etophenamate or etoricoxib or arcoxia or duexa or daitac or felbinac or fenamate* or fenamic or fenbufen or fendofenac or fenclozic or fensal or alnosal or alnovin or fenflumizol* or fenprofen or fenopron or trandor or fentiaz* or fepraze or flobufen or flufenam* or fluphenam* or dgnodolin or flunoxaprofen or fluproquazone or flurbiprofen* or flurbiprofen or ansaid or cebtid or ocflug or flugalin or nitroflurvpobrofen* or fosfosal or furapronen or enprofen or furcloprofen or furofenac or glucete*acin* or teorem* or codifen or vicoprogen or ibuprofen or advil or ibumeth or motrin or salprofen or algfast or dolomate or dolomin or fidi profen or ibalgin or nurofen or comb#noxx or combqesic or cetafen or dolerin or fidiproxen or ibupron or ibutren or ibuvalen or modafen or sinuphen* or ibuproxam or ilonidap or flogosen or indameth* or indomet* or algometric or omsasin or inodcin or liometac n or indoprofen or dexindoprofen* or isoxicam or kebuzone or racheton or ketazon or phlorguen or copirene or ketoprofen or artrosioline or ketorolac or toradol or tromedal or acular or licofelone or lobuprofen or lonzaloc or loroxenac or losmiprofen or loxoprofen or loxonin or lumiracoxib or prexige or mabuprofen or meclofenam* or meclophenam* or meclomen or medofenam* or mefenam* or numefenam* or contraflam or pontal or porsthan or mefacit or pinalgesic or ponalar or ponalig or apo mefenam* or met?iazin* or met?oxbutrope or flubenil or milategra st or microprofen or mofebutizona n or mobutazon or mofezolac or nabumeton* or aponabumeton* or arthraxon or relazen or nabucox or naproxen* or aleve or naprosin or anaprox or proxen or synflex or trexina or treximet or nepafenac or nivenac or neurofenac or ni#tindol* or nilium* or nimesulide or odal profen or orpanoxin or oxamet*acin or indoxamic or oxaprozin or dan#prox or oxicam or oxinda#lac or pulubiprofen or pem edolac or piketoprogen or pimeprofen or piropoxen or piropxin or numidan or p#razolac or piroxicam or feldene or brexicam or pir?pofen or r#angasil or pranoprofen or proglumetacin or tolindol or protacin* or proquazone or sulindac or aposulin or sulin or clinoril or klinoril or sulindal or kenalin or novosoundacz or susulindac or suprofen or maldocil or procufen or profenal or suprofen or tenoxicam or reuteno or arruunic or tilcotil or t#aproxen* or sugam or tiaramide or tilnoprofen or tioxaprofen or tolfenam* or tolfedine or tolmetin* or tolectin or tropesin* or repanidial or valerylalsaly* or vedaprofen or quadrisol or ximoprofen or zaltoprofen or soreton or soleton or zidometacin* or zomepirac*),ti,ab,kf.

(aminophenazon* or aminofe nazon* or amidophen or aminopyrine or dipurine or amidazophen or eufibrol or ampyrone or aminoantipyrine or apazone or prolixan or tolyprin or azapropazone or ben#damine or bumanidzone or eumotol or quarel in or strexate or carsalam or cholisate or clamet?acin* or duperan or mindolinc or dipyrnon* or met?amizol* or biopyrin or novalgetol or novalgin or pyralgin or sulpyrin* or novamidazophen or methamprynol or algopyrin or analgin or narone or nomelubrine or nolotil or et?enzamide or glycosalicy* or tifurac),ti,ab,kf. 7490

or/1-9 466553

pneumonia/ or bronchopneumonia/ or pleuropneumonia/ or exp pneumonia, bacterial/ or pneumonia, necrotizing/ or pneumonia, pneumocystis/ or pneumonia, viral/ or pulmonary eosinophilia/ 135323
12 community-acquired infections/
13 respiratory tract infections/
 influenza, human/ or exp influenzavirus A/ or exp influenzavirus B/ or influenzavirus C/
 or streptococcal infections/ or pneumococcal infections/ or Streptococcus pneumoniae/ or Streptococcus pyogenes/ or Respiratory Syncytial Virus, Human/ or Respiratory Syncytial Virus/ or pneumovirus/ or metapneumovirus/ or exp pneumovirus infections/ or Mycoplasma pneumoniae/ or Mycoplasma Infections/ or Paramyxoviridae Infections/ or Parainfluenza Virus 2, Human/ or Parainfluenza Virus 4, Human/ or Respirovirus Infections/ or respirovirus/ or Parainfluenza Virus 1, Human/ or Parainfluenza Virus 3, Human/ or Legionnaires' Disease/ or Legionella pneumophila/ or rhinovirus/ or common cold/ or Adenovirus Infections, Human/ or Adenoviruses, Human/ or Herpesviridae Infections/ or chickenpox/ or Herpesvirus 3, Human/ or Epstein-Barr Virus Infections/ or Herpesvirus 4, Human/ or Chlamydia pneumoniae/ or Chlamydia Infections/ or Psittacosis/ or Klebsiella pneumoniae/ or Klebsiella Infections/ or exp Haemophilus influenzae/ or Haemophilus Infections/ or measles/ or Measles virus/ or Whooping Cough/ or Bordetella pertussis/ or Moraxella catarrhalis/ or Moraxellaceae Infections/ or Staphylococcus aureus/ or Staphylococcal Infections/ or exp Rickettsiaceae Infections/ or exp Rickettsia/ or exp bronchitis/ or Pseudomonas aeruginosa/ or Pseudomonas Infections/ or Yersinia pestis/ or exp Yersinia Infections/ or Coxiella burnetii/ or Q fever/ or Severe acute respiratory syndrome-related coronavirus/ or Severe Acute Respiratory Syndrome/ or Middle East Respiratory Syndrome Coronavirus/ or Coronavirus Infections/ or Hantavirus Infections/ or exp Orthohantavirus/ or Rubella/ or Rubella virus/ or Cytophagae Infections/ or Cytophaga Infections/ or exp Dengue/ or dengue virus/ or Coccidioidomycosis/ or Coccidioides/ or Pneumocystis Infections/ or Pneumocystis/ or Aspergillosis/ or exp Pulmonary Aspergillosis/ or exp Aspergillus/ or Histoplasmosis/ or histoplasma/ or Histoplasma/ or histoplasmosis/ or histoplasma/ or Toxoplasma/ or Toxoplasma/ or toxoplasma/ or toxoplasma/ or Francisella/ or Franciscella/ or Francisella tularensis/ or Francisella tularensis/ or Paracoccidioidomycosis/ or Paracoccidioides/ or Blastomycosis/ or Blastomyces/ or Escherichia coli Infections/ or Escherichia coli/ or Actinomyces/ or Actinomyces/ or Nocardia Infections/ or exp Nocardia/ or sepsis/ or exp bacteremia/ or exp fungemia/ or shock, septic/ or parasitemia/ or exp viremia/ or exp respiratory distress syndrome/ or acute lung injury/ or pulmonary atelectasis/
14 (pneumoni* or bronchopneumoni* or pleuropneumoni* or peripneumoni* or lobitis or loeffler* or loffler* or carrington* or weingarten* or bronchoalveolit* or lung fever* or cavitary necrosis or (bronch* adj2 (vesicular* or capillar* or suffocativa)) or (tropic* adj2 eosinophil*) or ((pulmon* or lung* or bronch* or lobe or lobular or lobar or multilob*) adj2 (inflamm* or infiltrat* or eosinophil*)).ti,ab,kf. 269526
15 (communityacquir or communityassociat* or ((acquir* or associat*) adj3 communit*) adj3 infect*).ti,ab,kf. 5763
16 (urti$1 or lrti$1 or ((respiratory or bronchial or broncho* or bronchus or pulmonary or airway* or tracheobronch*) adj2 (infect* or mycosis))).ti,ab,kf. 82941
17 (influenza* or flu or fluos or gripe or h1n1 or h2n2 or h3n2 or h5n1 or h7n7 or h7n9 or streptococce* or pneumococc* or pyogenes or scarlatinae or rsv or (respiratory adj2 syncytial) or respirosyncytial* or rs virus or pneumovir* or orthopneumovir* or pneumovir* or metapneumovir* or paramyxovir* or eaton or lyopneumoni* or 1090059
18 (sepsis/ or exp bacteremia/ or exp fungemia/ or shock, septic/ or parasitemia/ or exp viremia/ or exp respiratory distress syndrome/ or acute lung injury/ or pulmonary atelectasis/ (pneumoni* or bronchopneumoni* or pleuropneumoni* or peripneumoni* or lobitis or loeffler* or loffler* or carrington* or weingarten* or bronchoalveolit* or lung fever* or cavitary necrosis or (bronch* adj2 (vesicular* or capillar* or suffocativa)) or (tropic* adj2 eosinophil*) or ((pulmon* or lung* or bronch* or lobe or lobular or lobar or multilob*) adj2 (inflamm* or infiltrat* or eosinophil*)).ti,ab,kf. 269526
19 (communityacquir or communityassociat* or ((acquir* or associat*) adj3 communit*) adj3 infect*).ti,ab,kf. 5763
20 (urti$1 or lrti$1 or ((respiratory or bronchial or broncho* or bronchus or pulmonary or airway* or tracheobronch*) adj2 (infect* or mycosis))).ti,ab,kf. 82941
21 (influenza* or flu or fluos or gripe or h1n1 or h2n2 or h3n2 or h5n1 or h7n7 or h7n9 or streptococce* or pneumococc* or pyogenes or scarlatinae or rsv or (respiratory adj2 syncytial) or respirosyncytial* or rs virus or pneumovir* or orthopneumovir* or pneumovir* or metapneumovir* or paramyxovir* or eaton or lyopneumoni* or 1666229
28
mycoplasm* or parainfluenza* or rubula or rubulavirus* or respirovirus* or pneumophil* or legionnaire* or legionell* or veteran* disease or rhinovirus* or common cold or cold virus or coryza or adenovirus* or mastadenovirus* or hadv or herpes virus or herpetovirus* or herpesvirus* or chicken pox or chickenpox or varicell* or alphaherpesvirus* or betaherpesvirus* or epsteinbarr or epstein barr or lymphocryptovirus* or chlamydophil* or chlamydi* or chlamidi* or ornithosis or psittacosis or psittaci or klebsiell* or friedlander or pneumobacillus* or haolococcus* or haemophilus or hemophilus or pfeiffer* or measles or rubella or morbilli or morbillivirus* or rougiovale or whooping cough or pertussis or bordetell* or abetit in or tusis or tussisconvulsivae or catarrh* or moraxella* or psychobacter* or staph or staphylococcus* or aureus or mrsa or mssa or orsa or vrsa or vssv or ricketts* or scrub typhus or orientia or tsutsugamushioni or bronchit* or bronchialiti* or boop or laryngotracheitis* or laryngotracheobronchitis* or tracheobronchitis* or aegruinos* or pyocyane* or blue pus or pseudomonas* or yersinia* or pestis or yersiniosis or plague or pestilential fever or burnet* or coxiella or q fever or coxiellosis or derrickburnett* or derrick burnett* or nine mile fever or queensland fever or q fever or sars or severe acute respiratory syndrome or sars-cov-1 or sudden acute respiratory syndrome or middle east respiratory syndrome or mers or merscov* or hantaviral* or hantavirus* or muerto canyon* or orthohantavirus* or rubella or rubivirus* or cmv or hcmv or cytomegal* or dengue or aden fever or bouquet fever or breakbone fever or break bone fever or solar fever or sun fever or denv or coccidiodiomycosis* or pneumocystis* or carinii or jirovecii or aspergillosis or aspergillus or fumigatus or histoplasmosis* or cave disease or darling* disease or ajellomyces or capsulatus* or posadasia or toxoplasmosis* or gondii or tularia*em* or deerfly fever or deer fly fever or tularensis* or francisella or lemming fever* or ohara* disease or yato by* or yatoby* or paracoccidioides* or lutz splendore almeida or blastomytosis or blastomyces or Gilchrist* or coxsackie* or enterovirus* or echovirus* or echo virus* or candidiasis or candida or candidamycosis* or monilia* or candidosis or torulopsis or escherichia or e coli or colibacillus* or coliform or ((bacill* or bacteri*) adj2 coli) or actinomyces* or nocardia* or nocardiosis or nocardia).ti,ab,kf. (sepsis* or septic* or bacter*em* or bacill*em* or fung*em* or candid*em* or toxic forward failure or (shock adj2 toxic or endotoxin* or bacter* or lung)) or py*em* or pyoseptic* or phylol*em* or parasit*em* or vir*em* or (distress syndrome adj2 (lung or pulmonary or breath* or respiratory)) or rds or ards or (acute* adj2 (lung* or pulmonary or respiratory) adj2 (injur* or distress or failure)) or adult respirat* distress or ((post trauma* or posttrauma* or collapse*) adj2 (lung* or pulmonary or respirat* or alveol*)) or diffus* alveol* damage* or atelectasis).ti,ab,kf. 332643
20 or/11-20 2337520
exp "clinical trials as topic"/ or randomized controlled trial/ or random allocation/ or double blind method/ or single blind method/ or clinical trial/ or placebos/ (clinical trial phase iii or clinical trial phase iv or controlled clinical trial or randomized controlled trial or multicenter study or clinical trial).pt. (clinical adj trial*) or ((singl* or double* or tripl*) adj (blind* or mask*)) or placebo* or (random* adj2 allocat*) or random?ed).tw. 1157417
1245413
epidemiologic studies/ or exp case control studies/ or exp cohort studies/ or cross-sectional studies/ 3141222
observational study.pt. 145169
(case control or (cohort adj (study or studies or analy*)) or ((followup or follow up or observational) adj (study or studies)) or longitudinal or prospective or crosssection* or cross section*).tw. 1975089
or/22-27 5415915
(biography or case reports or comment or editorial or interview or letter or news or newspaper article or review or meta analysis or systematic review).pt. 7908032
exp animals/ not humans.sh. 5148283
(adolescent/ or exp child/ or exp infant/) not exp adult/ 2146405
28 not (29 or 30 or 31) 3950729
32 10 and 21 and 32 2099

PRISMA–P 2015 Checklist

This checklist has been adapted for use with systematic review protocol submissions to BioMed Central journals from Table 3 in Moher D et al: Preferred reporting items for systematic review and meta-analysis protocols (PRISMA–P) 2015 statement. *Systematic Reviews* 2015 4:1

An Editorial from the Editors-in-Chief of *Systematic Reviews* details why this checklist was adapted - Moher D, Stewart L & Shekelle P: Implementing PRISMA–P: recommendations for prospective authors. *Systematic Reviews* 2016 5:15

<table>
<thead>
<tr>
<th>Section/topic</th>
<th>#</th>
<th>Checklist item</th>
<th>Information reported</th>
<th>Line number(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADMINISTRATIVE INFORMATION</td>
<td></td>
<td></td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Title</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Identification</td>
<td>1a</td>
<td>Identify the report as a protocol of a systematic review</td>
<td>☒</td>
<td>☐</td>
</tr>
<tr>
<td>Update</td>
<td>1b</td>
<td>If the protocol is for an update of a previous systematic review, identify as such</td>
<td>☐</td>
<td>☒</td>
</tr>
<tr>
<td>Registration</td>
<td>2</td>
<td>If registered, provide the name of the registry (e.g., PROSPERO) and registration number in the Abstract</td>
<td>☒</td>
<td>☐</td>
</tr>
<tr>
<td>Authors</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contact</td>
<td>3a</td>
<td>Provide name, institutional affiliation, and e-mail address of all protocol authors; provide physical mailing address of corresponding author</td>
<td>☒</td>
<td>☐</td>
</tr>
<tr>
<td>Contributions</td>
<td>3b</td>
<td>Describe contributions of protocol authors and identify the guarantor of the review</td>
<td>☒</td>
<td>☐</td>
</tr>
<tr>
<td>Section/topic</td>
<td>#</td>
<td>Checklist item</td>
<td>Information reported</td>
<td>Line number(s)</td>
</tr>
<tr>
<td>-------------------</td>
<td>----</td>
<td>---</td>
<td>----------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>Amendments</td>
<td>4</td>
<td>If the protocol represents an amendment of a previously completed or published protocol, identify as such and list changes; otherwise, state plan for documenting important protocol amendments</td>
<td>☐ ☒</td>
<td>NA</td>
</tr>
<tr>
<td>Support</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sources</td>
<td>5a</td>
<td>Indicate sources of financial or other support for the review</td>
<td>☒ ☐</td>
<td>349</td>
</tr>
<tr>
<td>Sponsor</td>
<td>5b</td>
<td>Provide name for the review funder and/or sponsor</td>
<td>☒ ☐</td>
<td>NA</td>
</tr>
<tr>
<td>Role of sponsor/funder</td>
<td>5c</td>
<td>Describe roles of funder(s), sponsor(s), and/or institution(s), if any, in developing the protocol</td>
<td>☒ ☐</td>
<td>NA</td>
</tr>
<tr>
<td>INTRODUCTION</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rationale</td>
<td>6</td>
<td>Describe the rationale for the review in the context of what is already known</td>
<td>☒ ☐</td>
<td>77-118</td>
</tr>
<tr>
<td>Objectives</td>
<td>7</td>
<td>Provide an explicit statement of the question(s) the review will address with reference to participants, interventions, comparators, and outcomes (PICO)</td>
<td>☒ ☐</td>
<td>114-118; 131-133, Table 1</td>
</tr>
<tr>
<td>METHODS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eligibility criteria</td>
<td>8</td>
<td>Specify the study characteristics (e.g., PICO, study design, setting, time frame) and report characteristics (e.g., years considered, language, publication status) to be used as criteria for eligibility for the review</td>
<td>☒ ☐</td>
<td>138-139, 145-167, Table 2</td>
</tr>
<tr>
<td>Information sources</td>
<td>9</td>
<td>Describe all intended information sources (e.g., electronic databases, contact with study authors, trial registers, or other grey literature sources) with planned dates of coverage</td>
<td>☒ ☐</td>
<td>185-188</td>
</tr>
<tr>
<td>Search strategy</td>
<td>10</td>
<td>Present draft of search strategy to be used for at least one electronic database, including planned limits, such that it could be repeated</td>
<td>☒ ☐</td>
<td>188-199</td>
</tr>
<tr>
<td>STUDY RECORDS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data management</td>
<td>11a</td>
<td>Describe the mechanism(s) that will be used to manage records and data throughout the review</td>
<td>☒ ☐</td>
<td>202-214</td>
</tr>
<tr>
<td>Selection process</td>
<td>11b</td>
<td>State the process that will be used for selecting studies (e.g., two independent reviewers) through each phase of the review (i.e., screening, eligibility, and inclusion in</td>
<td>☒ ☐</td>
<td>211-214</td>
</tr>
<tr>
<td>Section/topic</td>
<td>#</td>
<td>Checklist item</td>
<td>Information reported</td>
<td>Line number(s)</td>
</tr>
<tr>
<td>--------------</td>
<td>---</td>
<td>--</td>
<td>-----------------------</td>
<td>----------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>meta-analysis)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data collection process</td>
<td>11c</td>
<td>Describe planned method of extracting data from reports (e.g., piloting forms, done independently, in duplicate), any processes for obtaining and confirming data from investigators</td>
<td>☒ No</td>
<td>216-234</td>
</tr>
<tr>
<td>Data items</td>
<td>12</td>
<td>List and define all variables for which data will be sought (e.g., PICO items, funding sources), any pre-planned data assumptions and simplifications</td>
<td>☒ No</td>
<td>216-232</td>
</tr>
<tr>
<td>Outcomes and prioritization</td>
<td>13</td>
<td>List and define all outcomes for which data will be sought, including prioritization of main and additional outcomes, with rationale</td>
<td>☒ No</td>
<td>169-183</td>
</tr>
<tr>
<td>Risk of bias in individual studies</td>
<td>14</td>
<td>Describe anticipated methods for assessing risk of bias of individual studies, including whether this will be done at the outcome or study level, or both; state how this information will be used in data synthesis</td>
<td>☒ No</td>
<td>236-256</td>
</tr>
<tr>
<td>DATA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Synthesis</td>
<td>15a</td>
<td>Describe criteria under which study data will be quantitatively synthesized</td>
<td>☒ No</td>
<td>263-286, Table 3</td>
</tr>
<tr>
<td></td>
<td>15b</td>
<td>If data are appropriate for quantitative synthesis, describe planned summary measures, methods of handling data, and methods of combining data from studies, including any planned exploration of consistency (e.g., I², Kendall's tau)</td>
<td>☒ No</td>
<td>263-286</td>
</tr>
<tr>
<td></td>
<td>15c</td>
<td>Describe any proposed additional analyses (e.g., sensitivity or subgroup analyses, meta-regression)</td>
<td>☒ No</td>
<td>279-286, Table 3</td>
</tr>
<tr>
<td></td>
<td>15d</td>
<td>If quantitative synthesis is not appropriate, describe the type of summary planned</td>
<td>☒ No</td>
<td>NA</td>
</tr>
<tr>
<td>Meta-bias(es)</td>
<td>16</td>
<td>Specify any planned assessment of meta-bias(es) (e.g., publication bias across studies, selective reporting within studies)</td>
<td>☒ No</td>
<td>273-275</td>
</tr>
<tr>
<td>Confidence in cumulative evidence</td>
<td>17</td>
<td>Describe how the strength of the body of evidence will be assessed (e.g., GRADE)</td>
<td>☒ No</td>
<td>291-294</td>
</tr>
</tbody>
</table>