Abdominal aortic aneurysms harbor different histomorphology not associated with classic risk factors – the HistAAA study

A clinico-pathologic cohort study on 364 abdominal aortic aneurysm specimen

Maja Carina Nackenhorst¹ M.D., Felix Menges² M.D., Bianca Bohmann² M.Sc., David Zschäpitz² M.D., Christine Bollwein³ M.D., Sven Flemming⁴ M.D., Nadja Sachs²,⁵ Ph.D., Wolf Eilenberg⁶ M.D., Ph.D., Christine Brostjan⁶ Ph.D., Christoph Neumayer⁶ M.D., Matthias Trenner⁷ M.D., Wiebke Ibing⁶,⁷ Ph.D., Hubert Schelzig⁶,⁷ M.D., Christian Reeps¹⁰ M.D., Lars Maegdefesse¹²,⁵ M.D., Ph.D., Heinz Regele¹ M.D., Markus Udo Wagenhäuser³,⁹ M.D., Claus Jürgen Scholz¹¹ Ph.D., Albert Busch²,¹⁰ M.D., Ph.D.

¹ Department of Pathology, Medical University of Vienna, Vienna, Austria
² Department for Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technical University Munich, Munich, Germany
³ Institute of Pathology, School of Medicine, Technical University of Munich, Munich, Germany
⁴ Department of General-, Visceral-, Transplant-, Vascular- and Pediatric Surgery, University Hospital of Würzburg, Würzburg, Germany.
⁵ German Center for Cardiovascular Research (DZHK), Berlin, Germany; partner site Munich Heart Alliance
⁶ Division of Vascular Surgery, Department of General Surgery, Medical University of Vienna and Vienna General Hospital
⁷ Division of Vascular Medicine, St.-Josefs Hospital, Wiesbaden, Germany.
⁸ Clinic of Vascular and Endovascular Surgery, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
⁹ Cardiovascular Research Institute Düsseldorf (CARID), Heinrich Heine University, Düsseldorf, Germany
¹⁰ Division of Vascular and Endovascular Surgery, Department for Visceral-, Thoracic and Vascular Surgery, Medical Faculty Carl Gustav Carus and University Hospital, Technische Universität Dresden, Dresden, Germany
¹¹ Wisplinghoff Laboratories, Cologne, Germany

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Address for correspondence

Albert Busch, MD PhD
Department for Visceral, Thoracic and Vascular Surgery, Technical University Dresden
Fetscherstrasse 74
01307 Dresden, Germany
email: albert.busch@uniklinikum-dresden.de
phone: +49 351 458-3072

Funding

A one-year license of EndoSize® (Therenva) and A4clinics Research Edition (Vascops) was funded by the German Heart Foundation (Deutsche Herzstiftung) with a grant given to A Busch (F/46/18).

Number of Tables and Figures:

Tables: 1
Figures: 4

word count:

Abstract: 300

text body: 2874

Keywords

Abdominal Aortic Aneurysm, histomorphology, aneurysm growth, AAA morphometry, inflammation;
Abstract

Objective: Abdominal aortic aneurysm (AAA) treatment is upon a diameter threshold by open (OAR) or endovascular aortic repair. Attempts for medical growth abrogation have failed. This study aims to elucidate the heterogeneity of AAA based on histomorphology in correlation to individual patient data and aneurysm metrics.

Patients and Methods: Aneurysm samples from the left anterior wall from four university center biobanks underwent histologic analysis including angiogenesis, calcification, fibrosis, type and grade of inflammation in adventitia and media. Clinical information included age, comorbidities, etc. as well as type of aneurysm (intact, symptomatic, ruptured, inflammatory). Aneurysm morphology included diameter and semi-automated geometric analysis using Endosize© (Therenva) segmentation. Additionally, aneurysm growth was assessed.

Results: 364 patients’ samples (85.4% male, median age 69 years) demonstrated acute (mix/granulocytes) or chronic (monocytes/plasma cells) type inflammation and score, coherent in adventitia and media (p < 0.001), not associated with the type of aneurysm (52x ruptured; 37x symptomatic; p = 0.51) or diameter (57 [52-69] mm; p = 0.87). The degree of fibrosis and the presence of angiogenesis were significantly higher (both p < 0.001) with increasing inflammation score, which significantly decreased with patient age (est = -0.015/year, p = 0.017). No significant differences in inflammation, fibrosis or angiogenesis were seen for ruptured (vs. intact), acute (vs. elective), male (vs. female) of diabetic (vs. non) patients, while current smoking was associated with more chronic inflammation (p = 0.007) and a higher degree of fibrosis (p = 0.03). Aneurysm geometric morphology (n=252) or differing annual growth rates (n=142) were not significantly associated with histologic characteristics.

Conclusion: Type and degree of inflammation are the most distinguishable histologic characteristics in the AAA wall between individual patients. Despite the association to age and smoking status, no significant correlation to any patient or aneurysm specific feature, especially not diameter or rupture exists.
Introduction

The abdominal aortic aneurysm (AAA) is the most frequent aortic aneurysm with an age-dependent incidence of approx. 5-11% in the elderly, predominantly male population.[1, 2] While rupture is the most feared complication with high mortality rates, elective treatment is stratified on a maximum transverse diameter threshold, rapid or eccentric growth.[3, 4] Surgical exclusion by either endovascular (EVAR) or open aortic repair (OAR) is recommended by international guidelines favoring EVAR if technically feasible. Currently, no medical treatment is available and over a dozen clinical trials on early AAA growth abrogation have failed to translate in vitro results into clinical success.[5, 6] Additionally, secondary complications such as early or late EVAR failure or suture aneurysm after OAR due to dilated sealing zones or disease progression are not infrequent.[7] Here, two shortcomings must be considered: a still incomplete understanding of the AAA pathogenesis and the possible heterogeneity of disease among individuals.

Since human tissue samples are only available from advanced disease stages, little is known about the initial and early mechanisms of AAA development.[1] A proteolytic imbalance with matrix remodeling, elastin degradation, angiogenesis and eventual calcification is believed to foster established disease.[8] Adaptive immunity might play a role in healing response.[9] The intraluminal thrombus (ILT) is considered a visco-elastic, but highly enzymatically active compartment with both, mechanical and biological properties affecting the aneurysm wall.[10, 11] A study based on a small patient series suggested a classification scheme for AAA based on pathohistologic appearances almost 30 years ago.[12] Since then, intra-individual differences have been demonstrated on expressionional, biomechanical and imaging level – yet are poorly reflected in current diagnostics or clinical decision-making.[13-16] Investigations of ascending and thoracic aortic aneurysm samples have demonstrated heterogenic appearance of tissue samples within and over aneurysm entities from different sites.[17, 18] However, no such analysis is available for a sizable AAA cohort.[19]
For this study, we hypothesize a vast pathohistologic heterogeneity of AAA specimen and aim to investigate its correlation to patient- and aneurysm-individual factors. To address this, we present a multicenter biobank based detailed histologic evaluation of AAA samples in association with clinical data, aneurysm morphometry and growth.

Patients and Methods

Patient identification, inclusion criteria, ethical statement and HistAAA consortium

The HistAAA consortium is composed of members from four university hospital vascular surgery departments with large biobanks from OAR procedures. Minimum inclusion criteria were a full thickness sample from the left anterior to midline anterior wall of the AAA sac during OAR enabling detailed histologic analysis (see below) and corresponding clinical and patient data (see below). Hence, all four biobanks from the participating institutions were screened retrospectively and the missing patient data was retrieved from electronic records. Indications for open repair were surgical reasons, patient will or operator’s choice in line with international guidelines, however, the percentage of OAR patients has declined over the study period due to more endovascular procedures.[3, 20] All eligible patients were included consecutively. Patient data was pseudonymized for biobanking and anonymized for further analysis. The study was performed in accordance with the declaration of Helsinki and tissue sampling was approved by the local ethics committees of the individual centers (Ethikkommission Klinikum rechts der Isar: 2799/10; Ethikkommission Düsseldorf: 2019-578; Ethikkommission Würzburg: 188/11; Ethikkommission Wien: Ref 1729/2014). The HistAAA study was specifically approved for the leading center (Ethikkommission Klinikum rechts der Isar: 576/18S). Collection times were: Munich Vascular Biobank – 2005-2019; Würzburg Biobank – 2011-2015; Vienna Vascular Biobank – 2014-2018; Düsseldorf Vascular Biobank – 2017-2019;

Basic patient and clinical data
Basic clinical data included: age, sex (male/female), AAA state (symptomatic, ruptured, asymptomatic, inflammatory [based on i.e. halo sign in CT-angiography][21]), maximum diameter (maximum transverse diameter applying multiplane reconstructions from 1-5mm CT-angiographies 1-14 days prior to OAR (measurements performed by board-certified vascular surgeon), AAA localization (infra-, juxta-, pararenal; infrarenal = neck length ≥ 10mm), concomitant iliac aneurysm (one/two sided; common iliac artery ≥ 25mm), co-morbidities (hypertension, diabetes, hyperlipidemia, coronary artery disease CAD, chronic obstructive pulmonary disease COPD, peripheral artery disease (PAD), smoking (current/ex/never), medication (anti-thrombocyte-aggregation, angiotensin-converting-enzyme inhibitor, statin, metformin/insulin) and laboratory results (C-reactive protein CRP, leukocyte/thrombocyte count, serum creatinine).[3] While baseline clinical data was an inclusion criterion, additional clinical data (not available for all patients, see below) was used for subgroup analysis (Suppl. Table V).

Sample acquisition, preparation and digitalization

A detailed histologic sample preparation can be found in the Supplement Methods section.

Histologic Analysis

Samples were analyzed by three pathologists (MN, CB, HR) according to the following criteria:

Intima: The updated American Heart Association (AHA) classification for atherosclerotic lesions was applied to the intima.[22] Additionally, the previously described Histological Scale of Inflammation (HISA)-Score was applied to all samples.[12]

Media: The media was scored according to presence or absence of calcification (0 = absence, 1 = presence), degree of inflammation (0 = no inflammation; 1 = low, 2 = intermediate, 3 = high degree of inflammation), composition of inflammatory infiltrate (1 = mainly composed of mononuclear cells, 2 = granulocytes, 3 = plasma cells or 4 = mixed infiltrate) (Fig. 1D-G, 3E-
H), presence of neoangiogenesis (0 = absence, 1 = presence) and the percentage of intact elastic fibers (<25%, 26-50%, >50%) (Fig. 3A-D).

Adventitia: Adventitial features were scored according to degree of inflammation (s. above), composition of inflammatory infiltrate (s. above) and degree of fibrosis (0 = no fibrosis, 1 = low, 2 = intermediate, 3 = high degree of fibrosis).

Degrees of inflammation and fibrosis were defined as follows:

Inflammation: 0 = no or only singular inflammatory cells; 1 = localized small infiltrates; 2 = localized and diffuse infiltrates; 3 = diffuse dense infiltrates (Fig. 1B, C).

Fibrosis: 0 = no proliferation of collagenous fibers; 1 = up to a third of visible adventitia with collagenous fiber proliferation; 2 = up to a half of visible adventitia with collagenous fiber proliferation; 3 = more than half of visible adventitia with collagenous fiber proliferation (Fig. 2D-F).

Additional patient and clinical data

The calculations of additional patient data and AAA growth data is described in the Supplement Methods section.

Morphometric AAA analysis

The morphologic analysis was performed semi-automatically with Endosize© (Therenva), a software for clinical assessment of AAAs as well as for EVAR planning (https://www.therenva.com/endosize) as previously described and validated by others and us.[20, 23, 24] More details can be found in the supplement methods section.

Statistics

Where applicable, average values are provided as median (interquartile range [IQR]) or mean and standard deviation. Categorical data is shown as counts and percentages. Unless indicated otherwise, continuous outcomes are analyzed by t-tests, linear regression, or
analysis of variance (ANOVA). Categorical data is analyzed by chi-squared tests or logistic regression. P-values < 0.05 were considered statistically significant.

Data analysis and visualization was performed with Microsoft Excel and R version 4.0.3 (R Foundation for Statistical Computing, Vienna, Austria), the latter along with extension packages ggplot2 (visualization) and pwrss (power analysis).

Results

Patient cohort and histologic appearance:

Overall, 364 AAA patients (85.4% male, median age 69 years) and their respective aneurysm wall samples were included. Patient characteristics are shown in **Table I**. The median diameter was 57mm [IQR: 52-69] and the majority were infra- (60.2%) and juxtarenal (28.9%) aneurysms, 52 patients presented with rupture.

In comparison to the non-aneurysmatic aorta, histologic analysis revealed angiogenesis, fibrosis and especially type and degree of inflammation in the adventitia and the media to be distinguishable characteristics (**Fig. 1A-C/H**). Medial elastic fiber content (96.9%: <25%) or calcification (90.5%: no) varied to a lower extent (**Suppl. Table I, Suppl. Fig. 1A**). All individual histologic features could be analyzed in >95% of samples (**Suppl. Table II**).

The type and degree of inflammation in the media and adventitia were highly significantly associated (**Fig. 1B-G, Suppl. Fig. 1B/C, Suppl. Table I**). Specifically, adventitial low inflammatory grade was likely to have a low medial inflammatory grade. Thus, for further analysis, the grade of inflammation was summarized for both layers. Similarly, the type of inflammation was summarized as acute (mixed infiltrate + granulocytes) or chronic (mononuclear cells + plasma cells) type and was most often synchronously reflected in both layers (**Suppl. Fig. 1B, Suppl. Table I**). A higher inflammation sum was more often seen in chronic type infiltrates ($p = 2.2e^{-16}$) (**Suppl. Fig. 1C**).

Baseline clinical data correlation:
Most notably, neither type nor degree of inflammation were associated with the clinical presentation as i.e. symptomatic (n = 37) or ruptured (n = 52) or the AAA diameter (Fig. 1 J/K, Suppl. Fig. 2A/B/D). Older patients showed significantly lower degrees of inflammation (+1y: est. = -0.015, p = 0.017) and were less likely to have chronic inflammation (p = 0.0073) (Suppl. Fig. 2A, C).

Angiogenesis in the media (31.6% positive) correlated significantly with higher inflammation score (p = 0.004) and was more abundant in chronic infiltrates (p = 0.015) (Fig. 2G, Fig. 3G, Suppl. Fig. 3A). Similarly, fibrosis of the adventitia was more severe with chronic type (p = 0.00038) and higher inflammation score (p = 0.000075) (Fig. 2D-G, Suppl. Fig. 3B). The degree of fibrosis was highly significant inversely correlated to increasing patient age (+1y: est.= -2.0; p = 0.0004) and showed no association with AAA diameter (Suppl. Fig. 3C).

Of note, 24 patients with OAR of the abdominal part of a thoraco-abdominal aneurysm (TAAA) were not included in the final analysis, however, also assessed for their histologic appearance. Here, an equal distribution of histopathologic and patient characteristics were seen, despite a significantly larger percentage of ruptured and symptomatic cases and a larger aneurysm diameter (Suppl. Table II).

Influence of sex, smoking and diabetes

The 53 female AAA patients (14.6%) in this study were significantly older (72 [67-77] years, p = 0.004) and had smaller aneurysm diameters at the time of operation (54 [49-60] mm, p = 0.005) (Suppl. Table III). Body metrics were significantly lower than in males and a higher percentage of ruptures (26.4% vs. 12.2%. p = 0.03) was seen. Yet, no significant differences between sexes were found for the individual or summarized histologic characteristics (Suppl. Table III, Fig. 2H).

Interestingly, current smoking (compared to never-/ex-smokers) showed a significant trend towards more fibrosis (p=0.027) and chronic inflammation (p=0.007) (Suppl. Table IV, Figure 2J). Of note, no differences in histomorphology were seen for diabetic patients, and specifically when administered metformin (Suppl. Table IV, Suppl. Fig. 5A, data not shown).
Regarding acute (ruptured + symptomatic) cases – patient age, aneurysm diameter and percentage of females were significantly increased compared to elective cases (Suppl. Table IV). Yet, no differences for angiogenesis, fibrosis and inflammation score or type were seen (Suppl. Fig. 5A, Suppl. Table IV).

Subgroup analysis on morphometry and growth

Besides AAA diameter, aneurysm neck configuration and vessel tortuosity was assessed semi-automatically as described above (Fig. 3J).[20] This data was available from 252 patients (Suppl. Table V). Again, no significant correlation between pathohistology and aneurysm neck diameter and length or aortic and iliac tortuosity indices were seen (Fig. 3K, Supp. Fig. 4A, Table I).

Data on aneurysm growth was available from 142 patients. The median annual growth rate in this cohort was 3.6 mm [2.5 – 5.3] (Suppl. Table V). No significant association between inflammation sum and type was found for the upper or lower quartile of growth rates for the entire cohort or based on the individual start diameter (Suppl. Fig. 4B, C). Additionally, no such association was seen for the upper or lower 10% of growth rates (data not shown).

Discussion

This study demonstrates for the first time that the individual type and degree of inflammation in the aneurysm wall of AAA patients ranges widely between individuals. Extent of fibrosis and presence of angiogenesis are, unsurprisingly, highly significantly associated with inflammation. Most notably, no clear association of these inflammatory characteristics and aneurysm diameter were seen. Additionally, ruptured or acute AAAs did not show any differences to intact aneurysms here either (Fig. 4).

Based on an à posteriori power analysis, given the current distribution of individual pathohistologic features, more than 110,000 patient samples would be required to see a
significant association of inflammation sum and AAA diameter, however, only about 1000 patients for a possibly significant association to acute (rupture + symptomatic) vs. elective state of AAA (Suppl. Fig. 6A, B). Similarly, while the type of infiltrate was not associated with diameter, increasing the sample size by 1.4-2.0 fold would result in an expected significant difference for acute cases (Suppl. Fig. 6C, D).

This emphasizes previous speculations on distinct inflammatory activity and angiogenesis in ruptured AAAs, which were, however, based on small sample numbers directly taken from the potential rupture site.[25, 26] Taking into account our finding that differing annual growth rates were not reflected by a differing histology, we carefully conclude that rupture might not be the consequence of an increasing inflammatory activity of the entire aneurysm sac, yet could be associated with specific types of infiltrates.

Regarding patient age, our study demonstrated lower inflammatory scores in older patients with corresponding lack of fibrosis and angiogenesis, potentially suggesting a reduced “target ability” for future non-surgical treatments due to reduced “cellular activity”. Thus medical growth abrogation as suggested and partially tested by others and us, might only be applicable to specific patient populations.[5, 27, 28] Vice versa, smoking cessation, as suggested by international guidelines, associated with reduced aneurysm growth was found to be linked to more chronic inflammation and more fibrosis suggestive of higher inflammatory activity.[1, 3, 4, 29] Targeting specific subtypes of inflammation in AAA is shaping up to be an interesting field of future research, especially in regards to targeted therapies.[27, 30, 31]

Based on a similar pathohistologic approach, Le Bruijn et al. investigated 72 AAA samples using histologic criteria, such as mesenchymal cell loss, fibrosis, transmural lymphoid infiltrates, ILT organization or micro-calcifications and concluded that abdominal and thoracic aneurysm samples show distinct differences in these categories.[19] Therefore, these criteria were included in a consensus statement on surgical pathology of the aorta from the Society for Cardiovascular Pathology and the Association for European Cardiovascular Pathology in 2016. The caveat is that they stem from investigations of the ascending aorta only and focus on the differences detected in non-classical (genetic) variants of the disease, known to make
up a relevant part of thoracic aneurysm disease.[17, 32] In line with our findings, they found calcification and elastic fiber degradation varying to a lower extent, while i.e. fibrosis or angiogenesis were markedly different between individuals.[19] Regarding inflammation, Rijbroek et al. investigated the distribution of 130 AAA samples on a five item scale, also taking into account chronic or acute inflammatory infiltrates.[12] In accordance with our results, they reported lower inflammatory grades and chronic infiltrates to be predominant and also did not identify a correlation with aneurysm diameter or rupture, while younger patients showed higher inflammation scores. Their “histologic inflammation scale of aneurysm” (HISA) showed a highly significant correlation to inflammation sum in our study (p < 0.001; Suppl. Table VI). In line with previous results, typical atherosclerotic classification via the AHA score showed only moderate variation and did not correlate well with inflammation sum (p = 0.06; Suppl. Table III B, VI).[19]

The seven clinically identified inflammatory aneurysms (i.e. halo sign upon CTA) included in the study showed an average inflammation sum score of 2.3±0.7 and fibrosis grade of 2.6±0.5, all with acute type inflammation (data not shown).[21, 33] As previously reported in a subset of patients, these did not correspond to the few cases of immunoglobulin G4 positive samples.[34] The high numbers of lymphoid follicles in AAA tissue reported previously were not seen in our samples.[8, 19, 35] Interestingly, while distinct histomorphologies between thoracic and abdominal aneurysms become more and more obvious, the characteristics shown here in a comparison cohort of abdominal samples for 24 patients with thoraco-abdominal aortic aneurysms showed no difference compared to our AAA cohort.[12, 17, 19, 32] This might indicate distinct disease development and morphology to be rather dependent on the embryologic origin of the aortic segment, rather than the extent of disease.[36, 37]

While aneurysm geometrics demonstrated no significant associations with histologic characteristics the question remains to what extent the ILT might affect histologic characteristics in the aneurysm wall or vice versa.[10] Due to its layered cell- and cytokine-rich composition, previous reports speculated on a severe influence of both mechanically and enzymatically on the structural wall properties.[11, 38] Specifically, the possible implications
on peak wall stress and rupture risk by i.e. finite element analysis warrant further research.[16, 39] In this context, experimental radiology using new tracers or specific magnetic resonance imaging probes have shown an unequal distribution of their respective target in human aortic aneurysm, both in circumferential and longitudinal direction.[40, 41]

Limitations of the study include the localization of sample acquisition. Our group previously demonstrated an uneven distribution around the circumference of the aneurysm wall in a series of five patients.[42] Here, samples were taken from the (left) anterior wall only, in line with previous studies.[12, 19] Naturally, type II error cannot be ruled out, however, might be small given the 364 patient samples provided. All results are by association only and no direct mechanism can be deducted. Thus any conclusion drawn must be considered with care. Reporting standards on AAA histology should be included in international grading schemes to enable better comparability of experimental results.[32]

Conclusion

Inflammatory type and grade are the most distinguishable histologic characteristics in the AAA wall between individual patients. Angiogenesis and fibrosis are highly significantly associated to inflammation. No significant correlation to any patient or aneurysm specific feature, especially regarding diameter or rupture was seen. The extent of abdominal aneurysm formation is not associated with a specific pathohistology. This intra-individual disease heterogeneity should be considered in future clinical, translational and experimental AAA research and warrants verification by gene expressionional and functional analysis.
Acknowledgement

We are most thankful for the skilled technical assistance of Renate Hegenloh and Nadja Glucka. Simon Weidle helped with clinical data acquisition.

Author contribution statement

MN and AB conducted the study and take overall responsibility for all steps; MC, FM, BB, DZ, SF, NS, WE, CBR, CR, LM, HR, CJS and MW collected and analyzed data; BB and CJS conducted statistical analysis; MN, CB and AB wrote the manuscript. AB acquired funding. All authors have read and approved the final version of the manuscript.

Conflict of Interest

All authors declare no relevant conflict of interest for this study.
References

Table I: Patient characteristics.

Values are given as absolute numbers and percentage and median with 95% confidence interval where applicable. (y=years, CAD=coronary artery disease; COPD=chronic obstructive pulmonary disease; PAOD=peripheral artery occlusive disease; renal insufficiency=serum creatinine >1.2mg/dL; ASS=aspirin; ACE=angiotensin converting enzyme; BMI = body mass index, BSA = body surface area, ASI = aortic size index; CRP=C reactive protein ↑↑ = >0.5mg/dL; leukocytes ↑↑ = count >10.000/µL, thrombocytes ↑↑ = count > 450.000/µL) (p value < 0.05 is considered significant and highlighted bold, Chi square/Mann Whitney U/ANOVA) (Individual data availability > 83% [Suppl. Table II] patient metrics 67%).
Figure Legends

Figure 1. Aortic and AAA histomorphology, frequency of histologic features and correlation with clinical presentation. (A) Non-aneurysmatic aorta with minimal atherosclerotic changes (male patient age 67y) showing clearly distinguishable Adventitia, Media and Intima (B) Representative example of ruptured AAA (arrow: tear in intimal cap) with thinned media and large intimal atheroma; (C) Representative example of AAA with a high degree of inflammation and a thickened adventitia (asterisk mark areas with high density of inflammation) with chronic inflammation composed of mainly mononuclear cells; (D-G) Different types of inflammatory infiltrates: (D,E: chronic type) (D) mononuclear infiltrates; (E) plasma cells; (F,G: acute type: (F) neutrophils; (G) mixed infiltrate (all HE staining); (H) Percentage of selected individual histologic features and inflammation type and sum (summarized for adventitia (A) /media (M). (J) Frequency table for clinical AAA presentation and inflammation sum (absolute numbers, percentage, Chi-square test). (K) Boxplot and linear regression for AAA diameter and inflammation sum. (p < 0.05 is considered significant and highlighted bold)

Figure 2. AAA fibrosis and inflammation, frequency of angiogenesis and sex comparison. (A-C) Degrees of adventitial inflammation: (A) mild: only small areas of infiltrate (arrow); (B) average: multiple aggregates of inflammation (arrows); (C) severe: confluent large infiltrates (arrows) (all HE); (D-F) Degrees of adventitial fibrosis: (D) mild: <30% of adventitia; (E) average: 30-50%; (F) severe: >50% of adventitia (all EvG); (G) Frequency table for adventitial fibrosis (upper) or medial angiogenesis (lower) and inflammation sum, respectively (absolute numbers, percentage, Chi-square test). Relative frequencies of inflammation sum and type as well as adventitial fibrosis stratified for sex (H) or smoking status (J) (Chi-square test). (p < 0.05 is considered significant and highlighted bold)

Figure 3. Media changes with loss of elastic fibers, inflammation and angiogenesis and AAA morphology acquisition and correlation. (A) Non-aneurysmatic aorta with only minimal loss/fragmentation of elastic fibers in the media; (B) Representative example of high degree of loss of elastic fibers in AAA (<25% intact); (C, D) high magnification cut outs of (A) and (B) for better visualization (all EvG). (E, F) Degrees of medial inflammation: (E) mild: focal small infiltrates (arrows); (F) average: various aggregates of inflammation (arrows); (G, H) high magnification cut-outs of (E) and (F) with perivascular infiltrates in (G) as a sign of medial angiogenesis (all HE). (J) Endosize© data acquisition: exemplary 3D CTA reconstruction after successful semi-automated segmentation using Endosize©. The neck diameter and length as well as α and β angles are calculated. The maximum AAA diameter (Dmax) is calculated
perpendicular to the center line (dotted line). The aortic/iliac tortuosity indices are calculated as the ratio centerline/raceline between P2 (lowest renal artery)/P4 (aortic bifurcation) and P4/P8 (inguinal ligament), respectively. (K) Boxplots with individual data points for aneurysm neck length in aortic tortuosity index in correlation to inflammation sum and type. Correlation with linear regression (sum) and ANOVA (type) (p < 0.05 is considered significant and highlighted bold)

Figure 4. Graphic Abstract. The comic demonstrates the inclusion criteria and the composition of the HistAAA consortium. The most important results are summarized for all analyses including the respective number of patients involved.
List of Supplements

- Supplement Material and Methods
- Supplement Tables I-VI
- Supplement Figures 1-6
<table>
<thead>
<tr>
<th>Inflammation Sum</th>
<th>Severe Fibrosis</th>
<th>Average Fibrosis</th>
<th>Mild Fibrosis</th>
<th>No Fibrosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>3 (0.9)</td>
<td>4 (1.2)</td>
<td>13 (3.8)</td>
<td>1 (0.3)</td>
</tr>
<tr>
<td>1</td>
<td>28 (8.1)</td>
<td>47 (13.6)</td>
<td>49 (14.2)</td>
<td>49 (14.2)</td>
</tr>
<tr>
<td>2</td>
<td>34 (9.9)</td>
<td>61 (17.7)</td>
<td>36 (10.4)</td>
<td>47 (13.6)</td>
</tr>
<tr>
<td>3</td>
<td>19 (5.5)</td>
<td>28 (8.1)</td>
<td>10 (2.9)</td>
<td>28 (8.1)</td>
</tr>
<tr>
<td>4</td>
<td>8 (2.3)</td>
<td>3 (0.9)</td>
<td>1 (0.3)</td>
<td>3 (0.9)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Angiogenesis</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Type</th>
<th>Male</th>
<th>Female</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Severe Fibrosis</td>
<td>31 (10.3)</td>
<td>53 (17.3)</td>
<td>0.0000075</td>
</tr>
<tr>
<td>Average Fibrosis</td>
<td>47 (15.2)</td>
<td>182 (61.1)</td>
<td>0.007</td>
</tr>
<tr>
<td>Mild Fibrosis</td>
<td>47 (15.2)</td>
<td>182 (61.1)</td>
<td>0.03</td>
</tr>
<tr>
<td>No Fibrosis</td>
<td>3 (1.0)</td>
<td>182 (61.1)</td>
<td>0.53</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Smoking</th>
<th>Never/ex</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Severe Fibrosis</td>
<td>31 (10.3)</td>
<td>53 (17.3)</td>
</tr>
<tr>
<td>Average Fibrosis</td>
<td>47 (15.2)</td>
<td>182 (61.1)</td>
</tr>
<tr>
<td>Mild Fibrosis</td>
<td>47 (15.2)</td>
<td>182 (61.1)</td>
</tr>
<tr>
<td>No Fibrosis</td>
<td>3 (1.0)</td>
<td>182 (61.1)</td>
</tr>
</tbody>
</table>
J

neck length (mm)

<table>
<thead>
<tr>
<th>P1</th>
<th>P2</th>
<th>P3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>p = 0.48</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

K

inflammation sum

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>type</td>
<td>no</td>
<td>acute</td>
<td>chronic</td>
<td></td>
</tr>
<tr>
<td>p = 0.23</td>
<td>p = 0.34</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

n = 252

L

aortic tortuosity index

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>p = 0.85</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
- abdominal **open aortic repair**
- sample from **left anterior aneurysm wall**
- **full thickness** histologic analysis
- baseline **clinical data**

Histologic Analysis

<table>
<thead>
<tr>
<th>Metric</th>
<th>Yes/No</th>
<th>Three Grades</th>
<th>No Variation</th>
<th>Highly Interconnected</th>
<th>Significantly Correlated</th>
<th>No Correlation</th>
<th>Significantly Correlated</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calcification/loss of elastic fibers</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type/Degree of inflammation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Degree of fibrosis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Angiogenesis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Clinical Data

- Type of AAA: ruptured/intact/symptomatic/inflammatory
- AAA diameter: numeric
- Patient age: numeric

Additional Cohort
- **TAAA abdominal OAR**
 - Comparison to AAA
 - Equally distributed histomorphology
 - N = 24

Subgroup Analysis

<table>
<thead>
<tr>
<th>Subgroup</th>
<th>Correlation Inflammation/Growth Rate</th>
<th>Correlation Inflammation/Neck Length/Aortic Turosity</th>
<th>Correlation Inflammation/Rupture/Neck Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>"AAA growth"</td>
<td>n = 142</td>
<td>n = 252</td>
<td>n = 364</td>
</tr>
<tr>
<td>"AAA morphometry"</td>
<td>no correlation</td>
<td>no correlation</td>
<td>no correlation</td>
</tr>
<tr>
<td>"AAA risk factor"</td>
<td>histology in relation to gender/rupture/smoking/diabetes</td>
<td>more fibrosis</td>
<td>no difference</td>
</tr>
</tbody>
</table>

All rights reserved. No reuse allowed without permission.