Modified one-step conservative surgery for placenta accreta spectrum versus caesarean hysterectomy: The CMNT PAS prospective comparative Non-Randomized pilot study.

Hassine S ABOUDA, MD
Haithem ALOUI, MD
Sofiene B MARZOUK, MD
Hatem FRIKHA, MD
Rami HAMMAMI, MD
Rachid HENTATI, MD
Badis CHENNOUFI, MD
Hayen MAGHREBI, MD

1 University of Tunis El Manar, Faculty of Medicine of Tunis
Tunis Maternity and Neonatology Center

2 Department ‘C’ of Gynaecology and Obstetrics

3 Department of Anaesthesiology and Intensive Care
Tunis, Tunisia

The authors have declared that no competing interests exist. The authors received no specific funding for this work.

Address corresponding to:

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Roles of protocol contributors:

Abstract word count: 228

Total word count: 5574

Why was this study conducted?

Conducting a pilot study to determine the expected difference in estimated blood loss between conservative surgical treatment and caesarean hysterectomy in placenta accreta, as well as to ascertain the sample size required for a definitive study.

What are the key findings?

Regarding primary outcomes: estimated blood loss volume was lower in CG compared to CSG but not statistically significant. Our main goal is to determine the sample size for our principal study and provide adequate data for any other team wishing to study the...
conservative surgical treatment of placenta accreta. So, for our original study, the sample size for a power of 90% and an alpha risk of 5%, the size of each group must be 22 patients.

III. What does this study add to what we already know?

Enabling other teams to compare conservative surgical treatment for placenta accreta with caesarean hysterectomy.

Abstract:

Introduction:
The surgical procedure known as one-step conservative surgery for placenta accreta spectrum involves the excision of the placenta and its attachment site on the myometrium. We aimed to conduct a non-randomized comparative study between conservative surgical treatment of placenta accreta spectrum and classical caesarean hysterectomy, under the name of the "CMNT PAS" study. To determine the sample size and the expected difference between the two groups, we conduct this pilot study.

Study design:
It was a monocentric prospective observational study from January 4, 2020, to August 17, 2022. Patients were allocated into two groups: Group Conservative Surgery (CSG) in which the method detailed in prior research by Palacios-Jaraquemada was slightly modified by our team, control group (CG) when the caesarean hysterectomy was performed.

Results:
Our main goal is to determine the sample size for our principal study and provide adequate data for any other team wishing to study the conservative surgical treatment of placenta accreta spectrum. So, the sample size for a power of 90% and an alpha risk of 5%, the size of each group must be 22 patients. Regarding primary outcomes: estimated blood loss volume was lower in CG compared to CSG but not statistically significant.

Conclusion:
Our pilot study found that the caesarean hysterectomy is similar to conservative surgical treatment for placenta accreta in estimated blood loss. However, the latter helps preserve uterus and possibly fertility.
Key words:
caesarean hysterectomy, conservative management, placenta accreta spectrum, postpartum haemorrhage, transfusion.

Introduction:
Placenta accreta is often diagnosed postpartum when the placenta remains undelivered after childbirth. Attempting manual removal can lead to severe postpartum haemorrhage (PPH), posing life-threatening risks. The occurrence of placenta accreta is associated with abnormal invasion at the placental implantation site [1].

The surgical procedure known as one-step conservative surgery involves the excision of the placenta and its attachment site on the myometrium. This method has been detailed in prior research by Palacios-Jaraquemada JM [2, 3], upon which we have built with some modifications. We aimed to conduct a non-randomized prospective comparative study between conservative surgical treatment of placenta accreta spectrum and classical caesarean hysterectomy, under the name of the "CMNT PAS" study. The first obstacle we encountered was the absence of a similar study in the literature upon which to base the determination of the necessary sample size. The literature is rich in scattered clinical cases but lacks any comparative studies. The second obstacle we faced was determining the expected minimum difference. Therefore, we conducted this preliminary study necessary for the benefit of our research and the scientific community for future studies [4].

In this study, we intend also to conduct a simple comparison in a small series and will elaborate on the surgical technique in detail, in preparation for the main study: "CMNT PAS".

Methods
Our study took place in the Department “C” of Gynecology and Obstetrics in the Maternity and Neonatology Center of Tunis and started on January 4, 2020, following approval from the local ethics committee and the establishment of patient consent forms. The pilot study concluded on August 17, 2022, during which we determined the required sample size [4]. Subsequently, we proceeded with the main study, which concluded on January 30, 2024. We specify that the patients included in the pilot study were not integrated into the main study. On February 2, 2024, we deemed that the necessary data had been collected, and we terminated the study (Fig. 1).
We operate a Level 3 maternity unit equipped with a dedicated neonatology resuscitation team and an anaesthesia intensive care team specialized in
obstetrical pathologies, particularly adept at managing conditions that can lead to profuse bleeding (Fig. 2) and pose life-threatening risks. The recruitment of patients and their allocation into the two groups was carried out continuously throughout the duration of the study.

For this pilot study, we conducted a monocentric prospective observational case-control study. The study protocol was approved by the Ethics Committee of the Maternity and Neonatology Center of Tunis, Tunis, Tunisia (approval no. 03102020). It is also registered in ClinicalTrials.gov (ID: NCT06253832) by respecting the 24 items in the WHO Trial Registration Data Set (TRDS) version 1.3.1.

We declare that we have received no financial support and have no conflicts of interest.

Proficiency in the surgical technique, which involved specialized haemostasis and dissection maneuvers, was achieved by senior obstetrician who already has experience in managing placenta accreta spectrum [5]. All cases are operated on by the same surgeon.

Various formulas exist for assessing blood loss [6], but they have not been validated in pregnant women due to the influence of pregnancy-related variables. In our search, we identified a formula used specifically in the context of caesarean sections and in populations similar to ours. Consequently, we have chosen to utilize Brecher's formula [7, 8].

Following the acquisition of written informed consent, all patients undergoing scheduled or emergency caesarean section for placenta accreta were enrolled. The diagnosis was based on obstetrical imaging findings, either highly suspected or confirmed. MRI was routinely conducted for scheduled caesarean deliveries, while ultrasound sufficed for cases of delayed transfer or patients in active labor.

Based on imaging studies, false positives are around 30%, which is why it's essential to verify before surgical procedures [9], so our criteria of confirmation per-operative were:

- Impossibility of manual removal of the placenta, without forcing.
- Massive bleeding from the implantation site after placental removal.

Post-operative, histologic confirmation of PAS was obtained in all cases (Fig. 2).

Delivery typically occurred at 36 weeks of gestation. The primary endpoints focused on safety, assessed through a composite outcome comprising estimated blood loss, changes in haemoglobin levels (ΔHB), need for red blood cell transfusions, procedure duration, and transfer to the intensive care unit (ICU).
Secondary endpoints included ICU length of stay, incidence of intravascular disseminated coagulopathy, and occurrence of intraoperative complications such as gastrointestinal and bladder injuries. The follow-up of patients during hospitalization is ensured by the obstetrics and anaesthesia-reanimation team of the CMNT to detect any potential complications.

Patients were stratified into two groups: the Conservative Surgery Group (CSG), where modified one-step conservative surgery was performed, and the Control Group (CG), which underwent emergent caesarean hysterectomy. The allocation was determined by the surgical technique and the decision of the attending surgeon.

Data was set and analyzed anonymously via SPSS software version 29.0.2.0. Quantitative data was presented in means (SD) or medians (IQR) and compared, as suited, by Student’s t test or Mann Whitney-U test. Fisher’s exact test was used to compare proportions. A p-value < 0.05 was needed for statistical significance.

So, first we checked the normality and homogeneity of variances of the two samples before deciding on the most appropriate statistical test. If the data pass the normality and homogeneity of variances tests, we can proceed with a student’s t-test for independent samples. Otherwise, the Mann-Whitney U test will be more appropriate. To study the normality of variances, we used the Shapiro-Wilk Test. To test the homogeneity of variances, we used the Levene's Test. We used the software G*Power 3.1.9.2 to calculate the sample size [10]. To calculate the sample size required, the appropriate formula is as follows [11, 12]:

\[
n = \frac{2 \times s^2 \times (z_{\alpha/2} + z_{1-\beta})^2}{(m_1 - m_2)^2}
\]

where \((m_1 - m_2)\) is the minimum difference of interest to detect. \(S^2\) is the common variance assumed to be the same in both groups. It can be calculated by the formula:

\[
s^2 = \frac{(n_1 - 1) \times s_1^2 + (n_2 - 1) \times s_2^2}{n_1 + n_2 - 2}
\]

where \(s_1^2\) and \(s_2^2\) are the variances of the two groups and \(n_1\) and \(n_2\) are the sample sizes.
To illustrate and explain our surgical technique, we provided a maximum of photos and three explanatory videos. One video for the caesarean hysterectomy, one for Modified one-step conservative surgery for placenta accreta spectrum, and a video for the insertion of a double lumen catheter.

Modified one-step conservative surgery for placenta accreta spectrum:

We have included cases of placenta accreta (Fig 3D, 3H), increta (Fig 3B, 3C) and percreta (Figure 3E, 3F, 3G).

After appropriate conditioning and monitoring, the caesarean section was performed under spinal anaesthesia. Once placenta accreta spectrum is confirmed intraoperatively, the procedure is momentarily halted to administer general anaesthesia. This approach allows us to avoid unnecessary general anaesthesia in case of a false positive for placenta accreta spectrum.

Our modifications include the systematic placement of a double JJ probe under spinal anaesthesia [13] (S1. video).

The laparotomy was performed through a midline incision from the umbilicus to the pubic symphysis (Fig 4). Adhesion collapse is performed (Fig. 5). We prioritize ligation of newly formed blood vessels between the uterus and surrounding structures, careful dissection of the bladder (Fig. 6). Careful detachment of the bladder-uterus peritoneum (BUP) was then carried out to lower the bladder and reduce the risk of bladder wounds (Fig. 7).

Placental boundaries are identified through extrauterine palpation, followed by an adjusted transverse hysterotomy. Intrauterine palpation delineates the inferior margins of the placenta, guiding the later resection of the placental bed. Here, we note that the original technique involves a fundal hysterotomy. However, this results in two uterine incisions (Fig. 8), which can complicate reconstruction. As we further refine our technique, we have chosen a single incision approach to facilitate both foetal extraction and uterine reconstruction. (S2 video).

After foetal extraction, placenta is kept in place. The umbilical cord was ligated to its insertion, or a Jean Louis Faure forceps is placed, and the uterus was quickly sutured with the placenta kept in place (Fig. 9).

We also modified our approach by omitting the ligation of hypogastric arteries or uterine arteries [14, 15]. Instead, we applied a tourniquet [5].

We then proceed to meticulously remove the placental bed until healthy tissues are reached (Fig. 10). Inferiorly, the excision was performed 2 cm above the BUP to ensure an adequate amount of myometrium for facilitating closure. Subsequently, uterine reconstruction is undertaken.

Regarding uterine reconstruction, the surgical assistant approximates the edges of the uterine defect. A variable number of separate myometrial stitches are then
performed as primary sutures. A second layer of simple interrupted sutures is performed to reinforce the reconstruction.

Anterior defects encompassing up to 50% of the uterine circumference were deemed appropriate for uterine repair. The tourniquet was immediately removed after finishing uterine repair. The JJ probe is removed post-surgery, and haemostasis is ensured through the modified B-Lynch suturing technique. This is also a modification introduced to the original technique (Fig. 11).

Postoperative bladder assessment is systematically conducted using a physiological serum. The surgeon places a drain in the Douglas pouch following intraperitoneal irrigation. The figure 12 summarize the surgical technique.

Caesarean hysterectomy:

A midline laparotomy incision was made extending from the umbilicus to the pubic symphysis. The hysterotomy was performed away from the placental insertion site. Placenta accreta was assessed clinically post-delivery, but manual placental removal was not attempted. The umbilical cord was ligated at its insertion, and the uterus was promptly sutured while maintaining the placenta in situ. Delicate dissection of the bladder-uterus peritoneum (BUP) was then conducted to lower the bladder and minimize the risk of bladder injury. Following removal of the BUP, a Foley catheter (CH18) was placed in the lower segment, and a double knot was tied anteriorly. The tourniquet was removed immediately upon completion of the hysterectomy (Fig. 13, S3 video).

Different approaches for Placenta accreta spectrum:

Three distinct approaches have emerged in the management of abnormal placentation: the American radical method, most commonly involving caesarean hysterectomy [1, 16], which poses challenges, particularly for younger women; the conservative method, widely employed in France, entails leaving the placenta in situ [17]. This approach, despite its historical use dating back to the first successful treatment published in 1933 [18], may entail postoperative complications such as haemorrhage, disseminated intravascular coagulation, retained placental infection, and sepsis. It can lead to secondary hysterectomy with a rate of 22% [19]. Although it is associated with a risk of recurrent placenta accreta [16] Additionally, uterine-sparing surgical techniques have been developed [20].

In 2004, Palacios-Jaraquemada JM of Buenos Aires, Argentina, introduced a novel conservative surgical technique known as one-step conservative surgery for placenta percreta.[21]. The surgeon himself describes this technique as
complex. Thus, despite its potential benefits, adoption of this technique remains limited, largely due to the misconception that it is a complex procedure requiring extensive training and applicable to only a select few patients [20]. Consequently, efforts have been made to simplify the one-stage conservative surgery for placenta accreta spectrum through step-by-step approaches [20].

Various teams have also attempted to adopt and modify this technique under different names [22, 23]. For instance, the triple P procedure [23] involves perioperative placental localization and delivery of the foetus through a transverse uterine incision above the upper border of the placenta, pelvic devascularization, and placental non-separation, often requiring uterine devascularization and intravascular balloon placement, which may be challenging in standard maternity facilities. This technique is primarily indicated for cases of placenta percreta. In the 4 cases reported, the average intraoperative blood loss was 500 mL or less.

Another variation, the two-step conservative surgery, is employed when ideal surgical conditions for hysterectomy are lacking (e.g., lack of an experienced team, limited blood, or other resources). In this procedure, like one-step conservative surgery, the placenta is left in situ initially, with the option for hysterectomy or conservative treatment thereafter. Tissue dissection in cases of two-step surgery is typically easier and associated with reduced bleeding compared to one-step dissection [16].

Additionally, a modified approach termed one-stage modified conservative uterine surgery (MOSCUS) has been outlined [24]. MOSCUS involves a combination of uterine myometrial resection and transverse B-Lynch suture.

In conjunction with these approaches, interventional radiology techniques such as uterine artery embolization and intravascular balloon placement are variably associated but face challenges in finding widespread acceptance. Indeed, in the context of caesarean hysterectomies, a range of supplementary management strategies has been proposed, including intraoperative embolization and preoperative placement of intravascular balloons. Specifically, there is interest in uterine artery embolization post-foetal extraction and preceding hysterectomy. This approach has shown promising outcomes, notably in reducing blood loss, decreasing the need for transfusions, and minimizing the volume of packed red blood cells required. However, outcomes regarding intravascular balloon placement have displayed variability. It's worth noting that the available evidence primarily consists of retrospective analyses with relatively small sample sizes [1].
In Tunisia, the prevailing method is caesarean hysterectomy, with or without concurrent utilization of uterine-sparing surgical techniques. Our team has not assigned a specific name to our technique, as various groups are still refining the adaptation of one-step conservative surgery for placenta accreta spectrum. This technique was initially described for placenta percreta but suffered from a lack of reproducibility due to its complexity. Therefore, we attempted to simplify it by selecting non-percreta placentas and making some modifications. The two figures 11 and 12 summarize the surgical technique for placenta percreta, the most difficult situation.

Results:
During the pilot study phase, a cohort of 12 patients was recruited, with 6 patients allocated to the CSG and 6 patients to the CG. Baseline characteristics, encompassing demographic, obstetrical, medical, and surgical history (as detailed in Table 1), were comparable between the two study groups.

Table 1. Baseline Characteristics
All our placentas were anterior, type 1 and 2. Intraoperatively, they were all accreta, with no cases of placenta percreta. Concerning primary outcomes: Estimated blood loss volume (Fig. 14: showing normality of the variance) who let us determine sample size was similar in the CG group compared to the CSG group (1298 ml vs 891 ml, p = 0.159) (Fig. 15, Table 2).

Table 2. Primary outcomes

<table>
<thead>
<tr>
<th></th>
<th>CG</th>
<th>CSG</th>
<th>NS</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age mean (SD), y</td>
<td>33.67 ± 3.08 [31-39]</td>
<td>37.17 ± 2.3 [34-42]</td>
<td>NS⁶</td>
<td>-</td>
</tr>
<tr>
<td>Parity median [IQR]</td>
<td>2.5 [2-4]</td>
<td>4 [3-5]</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Gestity median [IQR]</td>
<td>3.5 [2-5]</td>
<td>4.5 [3-7]</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Size mean (SD), inches</td>
<td>63.39 ± 0.93</td>
<td>62.73 ± 0.6</td>
<td>NS</td>
<td>-</td>
</tr>
<tr>
<td>Weight mean (SD), pounds</td>
<td>185.19 ± 9.25</td>
<td>189.6 ± 10.25</td>
<td>NS</td>
<td>-</td>
</tr>
<tr>
<td>Diabetes, No.</td>
<td>3</td>
<td>4</td>
<td>-</td>
<td>0.024</td>
</tr>
<tr>
<td>Gynecological scar, No.</td>
<td>0</td>
<td>1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Number of caesarean sections median (SD)</td>
<td>1.5 ± 0.55</td>
<td>3.5 ± 1.27</td>
<td>-</td>
<td>0.065</td>
</tr>
<tr>
<td>History of uterine aspiration, No.</td>
<td>2</td>
<td>0</td>
<td>-</td>
<td><0.001</td>
</tr>
<tr>
<td>Baseline Hb‡ median [IQR], g/dl</td>
<td>12.45 [11.9-14.8]</td>
<td>11 [9.9-15.1]</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

*Conservative Surgery group, † Control group, ‡ Haemoglobin, § non-significant, £ Test de Levene, ∞ Test de Shapiro-Wilk, Ω Test de Student for independent samples, μ Fisher's exact test, Π Test de Mann-Whitney U.
Our main goal is to determine the sample size for our principal study and provide adequate data for any other team wishing to study the conservative surgical treatment of placenta accreta. So, for our original study, to have a minimum reduction of 407 ml in our endpoint, namely estimated blood loss, the sample size for a power of 80% and an alpha risk of 5%, the size of each group must be 22 patients.

Haemoglobin variation also was similar between the two groups (2.5 g/dl vs 1.8 g/dl, p= 0.24). Patients in the CSG group require twice units of red blood comparing to CG. The rate of ICU transfer was 3 vs 2 (CSG vs CG). Surgery duration was 125 minutes in CG vs 190 minutes in CSG (p= 0.104) (Table 2). No related maternal deaths were noted either in the early or in the late postoperative period.

At this stage of the study, regarding fertility, only one patient underwent diagnostic hysteroscopy and laparoscopy due to fertility desire: the right ostium...
showed no anomalies, the left ostium was obscured, and there was evidence of chronic endometritis lesion (video). During laparoscopy, omental adhesions to the anterior abdominal wall were observed at the level of the median scar. The uterus appeared normal, with no bilateral passage of methylene blue. We encountered no bladder or digestive wounds. Only one patient in the conservative treatment group had clotting disorder (Table 3).

Table 3. Secondary endpoints

<table>
<thead>
<tr>
<th></th>
<th>CG† (n=6)</th>
<th>CSG* (n=6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bladder wounds</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Digestive wounds</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Clotting disorders</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Length of stay ICU* mean, No. (day)</td>
<td>2 (1)</td>
<td>3 (2.33)</td>
</tr>
<tr>
<td>Length of stay postoperative, mean (SD), day</td>
<td>3.33 ± 1.211 [2, 5]</td>
<td>3.17 ± 0.753 [2, 4]</td>
</tr>
</tbody>
</table>

*Conservative Surgery group, † Control group, II Intensive care unit

Discussion:

In our pilot study, our goal is to determine the sample size. So, to have a minimum reduction of 407 ml in our endpoint, namely estimated blood loss, the sample size must be 22 patients. Recognizing the inherent limitations in the prenatal diagnosis of placenta accreta spectrum (PAS), it's important to note that achieving a precise correlation between imaging findings and complications remains challenging [25]. However, in clinical practice, the extent of invasion serves as a valuable indicator for anticipating complications and estimating blood loss [26]. Notably, Type 1 PAS predominates, representing approximately 80% of cases. Importantly, this subtype tends to present with reduced haemorrhagic risks and a higher likelihood of successful conservative reconstructive interventions compared to other subtypes. In our study, we had only type 1 and 2. Recent research findings indicate that MRI has demonstrated potential in identifying individuals at risk of caesarean hysterectomy by assessing myometrial invasion. With a sensitivity of 96% for predicting hysterectomy, specific cutoff values have been proposed: 3.5 for the placenta accreta index derived from ultrasound, and 2.5 cm for the maximum dimension of invasion as determined by magnetic resonance imaging [27]. All our patients had an MRI because it allows us to better study the insertion of the placenta accreta [26].
In the obstetric setting, a comprehensive patient history should always include inquiries regarding any history of "unsafe abortion" [28]. This proactive approach helps clinicians anticipate potential challenges, especially in cases of low parametrial invasions [29]. In such scenarios, employing techniques like ureteral catheterization or surgical identification becomes essential to mitigate the risk of inadvertent injuries. Nevertheless, it's crucial to recognize that despite the diligent application of preventive measures, complete avoidance of damage may not always be feasible [29]. In our study, all cases had jj probe and no bladder injuries.

A significant study published in 2021, known as the "PACCRETA study" [30], found that conservative management exhibited lower incidences of transfusion exceeding >4 units of packed red blood cells, hysterectomy, total estimated blood loss exceeding 3000 mL, any blood product transfusion, and adjacent organ injury. However, it was associated with higher rates of embolization, endometritis, and readmission within 6 months compared to caesarean hysterectomy, but it talks about conservative treatment where the placenta is left in place.

Upon literature review, our study emerges as the inaugural pilot investigation centring on the prospective comparative analysis between conservative surgical intervention and caesarean hysterectomy for placenta accreta. In practice, the management, and outcomes of placenta accreta spectrum (PAS) exhibit significant variation across countries and hospitals among the same country, often relying on expert consensus rather than level I evidence. Regrettably, most clinical inquiries regarding PAS management lack prospective data [31].

The various adaptations of the conservative technique [22, 27] have shown improvements in blood loss and complications compared to our initial observations. These data will be further consolidated in a larger series in the principal study. The absence of vascular ligations in our practice may be a contributing factor. However, it's noteworthy that we haven't experienced any deaths thus far. Moreover, the slightly elevated blood loss, albeit not significantly, could advocate for the preservation of the uterus and, subsequently, fertility. This warrants careful consideration, especially in obstetric practice.

One limitation of our study lies in the non-randomized allocation of groups, left to the discretion of the attending surgeon. Undeniably, this introduces a significant source of bias. However, given the critical prognosis associated with this pathology and the variability in intraoperative findings among patients, such an approach was deemed necessary [31]. A recent review highlights that randomized controlled trials are not invariably considered the "gold standard" for evidence in obstetrics and gynecology [32].
In a previous study, we demonstrated that the use of a tourniquet in caesarean hysterectomy for placenta accreta could reduce bleeding [5]. Continuing in this line to improve the management of placenta accreta, we decided to conduct a study comparing conservative surgical treatment to radical treatment by caesarean hysterectomy using tourniquet in CSG instead of arterial ligation. It may seem unsafe not to perform vascular ligations, but we found that there is a gain in operating time and avoidance of complications such as vascular injury and bleeding using tourniquet [5]. The prospect of enrolling women in a substantial randomized controlled trial to ascertain the optimal management strategy for this uncommon yet critical condition appears unlikely. Observational cohort studies based on population data present a promising alternative for evaluating the outcomes linked with the intended delivery method in a diverse cohort of women affected by this condition [30]. This is why we opted for a prospective observational non-randomized cohort study.

Conclusion:

In our pilot study, our goal is to determine the sample size. So, to have a minimum reduction of 407 ml in our endpoint, namely estimated blood loss, the sample size must be 22 patients. We found that the caesarean hysterectomy is similar to conservative surgical treatment for placenta accreta in estimated blood loss. However, the latter helps preserve uterus and possibly fertility.

REFERENCES:

3. Palacios-Jaraquemada JM, Fiorillo A, Hamer J, Martinez M, Bruno C. Placenta accreta spectrum: a hysterectomy can be prevented in almost 80% of cases using a resective-reconstructive technique. The journal of maternal-fetal & neonatal medicine : the official journal of the European Association of Perinatal Medicine, the Federation of Asia and Oceania Perinatal Societies, the International Society of Perinatal Obstet. 2022;35(2):275-82.

18. Capechi E. Placenta accreta abandonata in utero cesarizzato. Ritorno progressivo di questo allo stato normale senza alcuna complicanza (reasorbimento autodigestione uterina della placenta?). Placenta accreta left in situ in utero with cesarea. Progressive restoration to normal state without any complication (Autodigestion and uterine placental reabsorption?) [In Italian]. Policlin 1933; 40: 347

Figures legends:

Figure 1: study periods.

Figure 2: The number of surgical drapes and compresses used during a cesarean section for placenta accreta spectrum. A: emergency cesarían hysterectomy for PAS. B: Modified one-step conservative surgery for placenta accreta spectrum.

Figure 4: Medline incision. A: tracing. B: Incision progression.

Figure 5: Adhesion collapse. A: Exposure of the adhesion. B: The surgeon protects the bladder. C: Tracing the collapse line. D: The adhesion is nearly collapsed.

Figure 6: Newly formed blood vessels. A: placenta percreta with newly formed blood vessels (blue arrow). B: careful dissection of the bladder (blue arrow).
Figure 7: Careful detachment of the bladder-uterus peritoneum (BUP). **A:** Appearance of placental protrusion through the uterine wall after lowering the BUP. **B:** Difficult peritoneal detachment.

Figure 8: Fundal hysterorrhaphy. **A:** Beginning of the hysterotomy line (blue arrow). **B:** Angle of the hysterorrhaphy. **C:** Beginning of hysterorrhaphy.

Figure 9: Result after non-modified one-step conservative surgery for placenta percreta. **A:** Placenta percreta (two blue arrow). **B-C:** Uterine reconstruction and hysterorrhaphy sutures (white arrows).

Figure 10: Line of healthy tissues (black arrow)

Figure 11: **A:** Exposure of the uterus by the surgical assistant. **B:** the modified B-Lynch suturing technique.

Figure 12: Modified one-step conservative surgery for placenta percreta. **A, B:** Intraoperative appearance of placenta percreta. **C:** Identification of the bladder. **D:** Exteriorization of the placenta, umbilical cord clamped by Jean Louis Fauve forceps. **E:** Identification of the placental insertion site. **F:** Meticulously remove of the placental bed until healthy tissues are reached.

Figure 13: Caesarean Hysterectomy. Hysterorrhaphy (white arrow). Infracervical incision line (black arrow).

Figure 14: Quantile-Quantile (Q-Q) Plots for estimated blood loss.

Figure 15: Graph of lost blood loss in two Groups.