Article

Title:
Folate receptor alpha protein expression in ovarian serous cystadenocarcinoma tumors of The Cancer Genome Atlas: exploration beyond single-agent therapy

Authors:
Christianne Persenaire, MD\(^1\); Benjamin G. Bitler, PhD\(^1,2\); and Bradley R. Corr, MD\(^1\)

1. Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
2. Department of Obstetrics & Gynecology, Division of Reproductive Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
3. Correspondence: christianne.persenaire@cuanschutz.edu

Corresponding Author:
Christianne Persenaire, MD
1665 Aurora Court
Anschutz Cancer Pavilion, 2\(^{nd}\) Floor
Aurora, CO 80045
Phone: (484) 557-2111
Email: christianne.persenaire@cuanschutz.edu

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Simple Summary: Epithelial ovarian cancer can be highly lethal, with limited therapeutic options for patients without BRCA mutations or non-homologous recombination deficient disease. Folate receptor alpha (FRα)-targeting agents have shown promise in the setting of platinum-sensitive and platinum-resistant ovarian cancer, both alone and in combination with available therapies, but the relationship of FRα to other treatment-driving biomarkers is unknown. This study identifies potential targetable mutations in FRα-expressing tumors, including PIK3CA and FGF/R family proteins, and provides a basis for future investigations of novel combinations of FRα-targeting agents with PIK3CA, mTOR, FGF/R, and VEGF inhibitors.

Abstract: Epithelial ovarian cancer (EOC) can be highly lethal, with limited therapeutic options for patients with non-homologous recombination deficient (HRD) disease. Folate receptor alpha (FOLR1/FRα)-targeting agents have shown promise both alone and in combination with available therapies, but the relationship of FRα to other treatment-driving biomarkers is unknown. The Cancer Genome Atlas (TCGA) was queried to assess protein and mRNA expression and mutational burden in patients with differential FRα protein-expressing ovarian tumors, and the results referenced against the standard 324 mutations currently tested through FoundationOne Companion Diagnostics to
identify targets of interest. Of 585 samples within TCGA, 121 patients with serous ovarian tumors for whom FRα protein expression was quantified were identified. FRα protein expression significantly correlated with FOLR1 mRNA expression ($p=7.19 \times 10^{-14}$). Progression free survival (PFS) for the FRα-high group (Q1) was 20.7 months, compared to 16.6 months for the FRα-low group (Q4, Logrank, $p=0.886$). Overall survival (OS) was 54.1 months versus 36.3 months, respectively; however, this result was not significant (Q1 vs. Q4, Logrank, $p=0.200$). Mutations more commonly encountered in patients with high FRα-expressing tumors included PIK3CA and FGF family proteins. Combinations of FRα-targeting agents with PI3K, mTOR, FGF(R) and VEGF inhibitors warrant investigation to evaluate their therapeutic potential.

Keywords: epithelial ovarian cancer, folate receptor alpha, mirvetuximab soravtansine, serous ovarian adenocarcinoma, targeted therapeutics
1. Introduction:

Ovarian cancer is the second most common gynecologic malignancy affecting women in the United States and accounts for more deaths than all other gynecologic malignancies combined. The standard of care for women with epithelial ovarian cancer (EOC), including ovarian, fallopian tube, and primary peritoneal cancers, remains a combination of cytoreductive surgery and taxane/platinum-based chemotherapies. However, despite advancements in treatment with approved targeted therapies such as poly(ADP-ribose) polymerase (PARP) inhibitors and vascular endothelial growth factor (VEGF) inhibitors, disease recurrence still occurs at an alarming rate of 70-80% [1]. Recurrent disease most commonly progresses to a non-curable, platinum-resistant state, and there remains a critical need to develop new therapeutic approaches.

Over the past decade, folate and its membrane-bound receptor have garnered increased interest as a potential molecular target, as rapidly dividing cancer cells are highly dependent on folate metabolism for DNA replication [2]. Folate receptor alpha (FOLR1/FRα), specifically, is a transmembrane protein involved in cellular folate transport whose expression is highly restricted in somatic tissues. Approximately 80% of EOC constitutively overexpress this receptor, and elevated expression has been found to be associated with a more aggressive tumor phenotype [3].

FRα-targeting agents range in design from monoclonal antibodies and small molecules to folate-drug and antibody-drug conjugates (ADCs). Farletuzumab, for example, is a fully humanized IgG1 antibody that targets FRα-positive cancer cells, while CT900 is a
small molecule thymidylate synthase inhibitor that is transported into tumor cells by its high affinity for the FRα receptor [4]. Vintafolide is a folate-drug conjugate in which a water-soluble folic acid derivative is linked through a peptide spacer to a potent microtubule destabilizing agent called desacetylvinblastine monohydrazide, a vinca alkaloid [4]. Once released within the cell, the vinca alkaloid acts to inhibit the beta-tubulin polymerization necessary for cell division to induce cell cycle arrest.

ADCs are a novel class of antineoplastic agents that can utilize FRα as a biomarker-driven target. These entities typically consist of a monoclonal antibody directed against a tumor-associated antigen to which a cytotoxic agent (‘payload’) is conjugated; once internalized, the payload is released to mediate its cytotoxic effects. This design has the theoretical benefit of minimizing systemic toxicity while maximizing efficacy [5], and the inherent capacity of FRα to internalize large molecules makes the receptor ideally suited for targeting with ADCs such as mirvetuximab soravtansine (MIRV), STRO-002, and MORab-202. Along with farletuzumab, these ADCs, as well as ELU001, a C’Dot drug conjugate (NCT05001282); TPIV200/hu-FR-1, a multi-epitope anti-folate receptor vaccine (NCT02764333) [6]; and ITL-306, a cell-based therapy derived from tumor-infiltrating lymphocytes (TIL) whose activity increases when the agent encounters tumor-specific FRα (NCT05397093); are under active investigation.

MIRV is an ADC with the most clinical evaluation in EOC of its drug class to date. It is comprised of an FRα-binding antibody, cleavable linker, and the maytansinoid DM4, a potent tubulin-targeting agent. Upon antigen binding, the FRα-ADC complex is rapidly
internalized and DM4 is released to induce cell cycle arrest and apoptosis. MIRV has the additional benefit of bystander killing, as the cleavable linker design allows active DM4 metabolites to diffuse from the antigen-positive tumor cells into neighboring cells. STRO-002 is another FRα-specific ADC comprised of an anti-FRα human IgG1 antibody, SP8166, conjugated to a cleavable DBCO-3-aminophenyl-hemiasterlin drug-linker, while MORab-202 is an ADC in which farletuzumab and eribulin, a microtubule inhibitor, are linked via cleavable cathepsin B.

Early clinical studies of MIRV in patients with platinum-resistant ovarian cancer (PROC) showed promise, with an objective response rate (ORR) of 39% in a phase Ib trial with few grade 3/4 toxicities [9]. In November of 2022, MIRV was granted accelerated approval for FRα positive platinum-resistant ovarian cancer based on results from the SORAYA trial (NCT04296890). Single-agent use in patients with up to three prior lines of therapy, including required bevacizumab, demonstrated an ORR of 32.4%, including five complete responses (CR), and a median duration of response (DOR) of seven months. Response rates were similar regardless of the number of prior therapies received, including PARP inhibitors [10]. More recently, encouraging results from the international phase III randomized controlled trial, MIRASOL, comparing MIRV to investigator’s choice chemotherapy (IC) in patients with FRα positive PROC, were presented at the 2023 Annual Meeting of the American Society of Clinical Oncology (ASCO). Study authors found the median overall survival (OS) was 16.5 months with MIRV vs. 12.8 months with IC (HR 0.67, p = 0.0046), while the median progression free survival (PFS) was 5.62 months vs 3.98 months in each respective arm (HR 0.65, p
Objective response rate was 42.3% in the MIRV group versus 15.9% in the IC group (p < 0.0001). These findings made MIRV the first treatment to demonstrate a PFS and OS benefit in PROC compared to IC [11].

Other ADCs have had similarly encouraging results. In heavily pretreated patients with advanced EOC, for example, STRO-002 had an ORR of 33% in 33 evaluable patients across all FRα expression levels [12]. A phase I study of MORAb-202 in 22 patients showed a CR, partial response (PR), and stable disease in one, nine, and eight patients, respectively [13].

Prior efforts to target FRα with farletuzumab and vintafolide were hampered by limited single-agent activity [14, 15]. However, vintafolide showed a statistically significant improvement when used in combination with pegylated liposomal doxorubicin [16], suggesting FRα-targeting agents may prove more effective when used in combination with other agents [17]. Combinatory strategies with other FRα targeting agents are currently under investigation. For example, clinical trials with MIRV in combination with carboplatin (NCT04606914), rucaparib (NCT03552471), bevacizumab (NCT05445778), pegylated liposomal doxorubicin or pembrolizumab (NCT02606305), and gemcitabine (NCT02996825) are underway. Similarly, a study combining STRO-002 with bevacizumab (NCT05200364) is actively recruiting.

As the relationship of FRα to other treatment-driving biomarkers is currently unknown, the objective of this study was to analyze TCGA to assess protein/mRNA expression
and mutational burden in patients with differential FRα protein-expressing tumors and identify potential targets for combination drug therapies.

2. Materials & Methods:

The Cancer Genome Atlas (TCGA) Ovarian Serous Cystadenocarcinoma PanCancer Atlas was accessed via cBioportal (http://www.cbioportal.org) and queried in May 2022 to generate a list of patients for whom data regarding tumor levels of FRα protein expression were available. Protein expression was calculated based on the Clinical Proteomic Tumor Analysis Consortium (CPTAC, Figure 1A) [18].

We stratified patients into quartiles based on FRα expression, where Q1 = FRα high, Q2 = FRα high-intermediate (int.), Q3 = FRα low-int., and Q4 = FRα low. These quartiles were used to perform survival analyses and protein expression (Z-score) analyses, as well as to examine mRNA expression and gene mutations as a function of FRα expression. The results were then referenced against the standard 324 mutations currently tested through FoundationOne Companion Diagnostics (CDx), including those responsible for microsatellite instability, tumor mutational burden and loss of heterozygosity, to identify targets of interest. Statistical analyses were conducted and graphs generated in Prism GraphPad (v9.0) using Kaplan Meier curves, as well as Logrank, Chi-squared, Spearman’s rho, Pearson’s rho, Benjamini-Hochberg and student t-tests.
Figure 1: (A) Consort diagram establishing the TCGA PanCancer Atlas patient population for whom FRα expression data were available. (B) Columnar scatter plot of FRα protein expression values by quartile. (C) Columnar scatter plot of FRα mRNA expression by quartile. (D) Scatter plot depicting Pearson correlation of 0.75 between FOLR1 mRNA transcription and FRα protein expression. (E) Kaplan Meier curves depicting overall survival (OS) and progression free survival (PFS) by quartile.

3. Results:

Utilizing TCGA PanCancer Atlas (n=585), we identified 121 patients with serous ovarian tumors for whom FRα protein expression was quantified. Those patients were then
stratified into quartiles to assess for correlation with outcomes of interest (Figure 1A-B).

TCGA PanCancer Atlas comparison of mRNA expression, protein expression (CPTAC) and genomic alterations was utilized across the four quartiles and data collected for 18,695 mRNA transcripts and 7,620 proteins. Both mRNA expression and protein expression of FRα decreased in stepwise fashion from Q1 to Q4 (Figure 1B-C), and FOLR1 mRNA expression was significantly elevated (t-test; p=7.19x10^{-14}; FDR q=6.78x10^{-10}) across the different quartiles (Figure 1C). The Pearson correlation between FOLR1 mRNA transcription and FRα protein expression was 0.7452 (p<0.0001, Figure 1D).

When evaluating survival outcomes by quartile, PFS for the FRα-high group (Q1) was 20.7 months, compared to 16.6 months for the FRα-low group (Q1 vs Q4, Logrank, p=0.886). Overall survival was 54.1 months versus 36.3 months, respectively; however, this result was not significant (Q1 vs. Q4, Logrank, p=0.200) (Figure 1E, Table 1).

Table 1: Overall survival and progression free survival in patients with EOC stratified by levels of tumor FRα expression; p-values derived by Log Rank test.

<table>
<thead>
<tr>
<th></th>
<th>Median Survival in Months</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Q1 (High FOLR1)</td>
</tr>
<tr>
<td>Overall Survival Months (95% CI)</td>
<td>54.1</td>
</tr>
<tr>
<td></td>
<td>(43.2-NA)</td>
</tr>
<tr>
<td>Progression Free Survival Months (95% CI)</td>
<td>20.7</td>
</tr>
<tr>
<td></td>
<td>(12.9-27.8)</td>
</tr>
</tbody>
</table>
To identify potential molecular targets correlating to FRα expression, data for the 324 genes assessed through FoundationOne CDx were collected, as these represent mutations more frequently seen in patients with solid tumors, including EOC, and many represent areas of active investigation for which targeted therapies exist, or are currently in development. From these data, we compiled a list of the top thirty mutations across the FRα quartiles, with results as noted in Table 2. Spearman’s rank correlation coefficient was calculated for protein expression for genes part of FoundationOne CDx to identify proteins whose expression was strongly positively or negatively associated with that of FRα protein; these results are shown in Table 3.

Table 2: Most common mutations encountered in tumors with high, high-intermediate, low-intermediate, and low FRα expression; p-values derived by Chi squared test.
<table>
<thead>
<tr>
<th>Gene Symbol</th>
<th>Q1 (High FOLR1)</th>
<th>Q2 (High Int. FOLR1)</th>
<th>Q3 (Low Int. FOLR1)</th>
<th>Q4 (Low FOLR1)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>PIK3CA</td>
<td>9 (29.03%)</td>
<td>5 (16.67%)</td>
<td>7 (23.33%)</td>
<td>6 (20.69%)</td>
<td>0.703</td>
</tr>
<tr>
<td>ETV5</td>
<td>7 (22.58%)</td>
<td>6 (20.00%)</td>
<td>4 (13.33%)</td>
<td>4 (13.79%)</td>
<td>0.724</td>
</tr>
<tr>
<td>FGF12</td>
<td>7 (22.58%)</td>
<td>7 (23.33%)</td>
<td>6 (20.00%)</td>
<td>4 (13.79%)</td>
<td>0.793</td>
</tr>
<tr>
<td>KLHL6</td>
<td>7 (22.58%)</td>
<td>6 (20.00%)</td>
<td>4 (13.33%)</td>
<td>6 (20.69%)</td>
<td>0.814</td>
</tr>
<tr>
<td>RAD21</td>
<td>7 (22.58%)</td>
<td>9 (30.00%)</td>
<td>11 (36.67%)</td>
<td>7 (24.14%)</td>
<td>0.61</td>
</tr>
<tr>
<td>CCND1</td>
<td>6 (19.35%)</td>
<td>2 (6.67%)</td>
<td>2 (6.67%)</td>
<td>0 (0.00%)</td>
<td>0.0507</td>
</tr>
<tr>
<td>FGF19</td>
<td>6 (19.35%)</td>
<td>2 (6.67%)</td>
<td>2 (6.67%)</td>
<td>0 (0.00%)</td>
<td>0.0507</td>
</tr>
<tr>
<td>FGF3</td>
<td>6 (19.35%)</td>
<td>2 (6.67%)</td>
<td>2 (6.67%)</td>
<td>0 (0.00%)</td>
<td>0.0507</td>
</tr>
<tr>
<td>FGF4</td>
<td>6 (19.35%)</td>
<td>2 (6.67%)</td>
<td>2 (6.67%)</td>
<td>0 (0.00%)</td>
<td>0.0507</td>
</tr>
<tr>
<td>MAP3K13</td>
<td>6 (19.35%)</td>
<td>7 (23.33%)</td>
<td>5 (16.67%)</td>
<td>4 (13.79%)</td>
<td>0.807</td>
</tr>
<tr>
<td>SOX2</td>
<td>6 (19.35%)</td>
<td>5 (16.67%)</td>
<td>5 (16.67%)</td>
<td>6 (20.69%)</td>
<td>0.971</td>
</tr>
<tr>
<td>IRF4</td>
<td>5 (16.13%)</td>
<td>3 (10.00%)</td>
<td>4 (13.33%)</td>
<td>1 (3.45%)</td>
<td>0.431</td>
</tr>
<tr>
<td>TIPARP</td>
<td>5 (16.13%)</td>
<td>3 (10.00%)</td>
<td>4 (13.33%)</td>
<td>3 (10.34%)</td>
<td>0.876</td>
</tr>
<tr>
<td>ERBB4</td>
<td>5 (16.13%)</td>
<td>2 (6.67%)</td>
<td>1 (3.33%)</td>
<td>0 (0.00%)</td>
<td>0.0698</td>
</tr>
<tr>
<td>ATR</td>
<td>5 (16.13%)</td>
<td>4 (13.33%)</td>
<td>2 (6.67%)</td>
<td>1 (3.45%)</td>
<td>0.332</td>
</tr>
<tr>
<td>TERT</td>
<td>4 (12.90%)</td>
<td>3 (10.00%)</td>
<td>2 (6.67%)</td>
<td>0 (0.00%)</td>
<td>0.266</td>
</tr>
<tr>
<td>BCL6</td>
<td>4 (12.90%)</td>
<td>6 (20.00%)</td>
<td>4 (13.33%)</td>
<td>5 (17.24%)</td>
<td>0.856</td>
</tr>
<tr>
<td>RSPO2</td>
<td>4 (12.90%)</td>
<td>8 (26.67%)</td>
<td>3 (10.00%)</td>
<td>7 (24.14%)</td>
<td>0.257</td>
</tr>
<tr>
<td>XRCC2</td>
<td>4 (12.90%)</td>
<td>4 (13.33%)</td>
<td>4 (13.33%)</td>
<td>1 (3.45%)</td>
<td>0.539</td>
</tr>
<tr>
<td>BRD4</td>
<td>4 (12.90%)</td>
<td>2 (6.67%)</td>
<td>0 (0.00%)</td>
<td>6 (20.69%)</td>
<td>0.0532</td>
</tr>
<tr>
<td>NOTCH3</td>
<td>4 (12.90%)</td>
<td>2 (6.67%)</td>
<td>1 (3.33%)</td>
<td>6 (20.69%)</td>
<td>0.149</td>
</tr>
<tr>
<td>SDHA</td>
<td>4 (12.90%)</td>
<td>3 (10.00%)</td>
<td>2 (6.67%)</td>
<td>0 (0.00%)</td>
<td>0.266</td>
</tr>
<tr>
<td>CCNE1</td>
<td>4 (12.90%)</td>
<td>4 (13.33%)</td>
<td>5 (16.67%)</td>
<td>7 (24.14%)</td>
<td>0.632</td>
</tr>
<tr>
<td>BRAF</td>
<td>4 (12.90%)</td>
<td>5 (16.67%)</td>
<td>3 (10.00%)</td>
<td>4 (13.79%)</td>
<td>0.899</td>
</tr>
<tr>
<td>ERBB3</td>
<td>4 (12.90%)</td>
<td>1 (3.33%)</td>
<td>0 (0.00%)</td>
<td>1 (3.45%)</td>
<td>0.113</td>
</tr>
<tr>
<td>MCL1</td>
<td>4 (12.90%)</td>
<td>2 (6.67%)</td>
<td>1 (3.33%)</td>
<td>2 (6.90%)</td>
<td>0.552</td>
</tr>
<tr>
<td>BRCA1</td>
<td>3 (9.68%)</td>
<td>1 (3.33%)</td>
<td>1 (3.33%)</td>
<td>2 (6.90%)</td>
<td>0.665</td>
</tr>
<tr>
<td>BTG2</td>
<td>3 (9.68%)</td>
<td>2 (6.67%)</td>
<td>0 (0.00%)</td>
<td>1 (3.45%)</td>
<td>0.344</td>
</tr>
<tr>
<td>CDKN1A</td>
<td>3 (9.68%)</td>
<td>3 (10.00%)</td>
<td>1 (3.33%)</td>
<td>0 (0.00%)</td>
<td>0.27</td>
</tr>
<tr>
<td>FOXL2</td>
<td>3 (9.68%)</td>
<td>4 (13.33%)</td>
<td>1 (3.33%)</td>
<td>1 (3.45%)</td>
<td>0.373</td>
</tr>
</tbody>
</table>
Table 3: Proteins with an absolute Spearman’s Rho >0.98 suggesting association with FOLR1 expression; p-values derived by student’s t-test.

<table>
<thead>
<tr>
<th>Gene Symbol</th>
<th>Gene Name</th>
<th>Q1 (High)</th>
<th>Q2 (High In)</th>
<th>Q3 (Low In)</th>
<th>Q4 (Low)</th>
<th>Rho value</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>CTNNB1</td>
<td>alpha catenin</td>
<td>0.14</td>
<td>0.03</td>
<td>-0.02</td>
<td>-0.07</td>
<td>0.991</td>
<td>0.002</td>
</tr>
<tr>
<td>FH</td>
<td>fumarate hydratase</td>
<td>0.16</td>
<td>0</td>
<td>-0.05</td>
<td>-0.12</td>
<td>0.985</td>
<td>0.013</td>
</tr>
<tr>
<td>CDH1</td>
<td>e-cadherin</td>
<td>0.09</td>
<td>0.01</td>
<td>-0.08</td>
<td>-0.21</td>
<td>0.984</td>
<td>0.008</td>
</tr>
<tr>
<td>SDHA</td>
<td>succinate dehydrogenase complex flavoprotein subunit A</td>
<td>0.09</td>
<td>0</td>
<td>-0.01</td>
<td>-0.07</td>
<td>0.981</td>
<td>0.110</td>
</tr>
<tr>
<td>SRC</td>
<td>proto-oncogene C-Src</td>
<td>-0.08</td>
<td>-0.05</td>
<td>0.01</td>
<td>0.05</td>
<td>-0.977</td>
<td>0.271</td>
</tr>
<tr>
<td>AKT3</td>
<td>protein kinase B, gamma</td>
<td>-0.2</td>
<td>-0.01</td>
<td>0.04</td>
<td>0.12</td>
<td>-0.981</td>
<td>0.529</td>
</tr>
<tr>
<td>NF1</td>
<td>neurofibromin 1</td>
<td>-0.09</td>
<td>-0.06</td>
<td>-0.01</td>
<td>0.03</td>
<td>-0.982</td>
<td>0.627</td>
</tr>
<tr>
<td>QKI</td>
<td>quaking homolog, KH domain RNA binding</td>
<td>-0.05</td>
<td>0.03</td>
<td>0.07</td>
<td>0.13</td>
<td>-0.999</td>
<td>0.012</td>
</tr>
</tbody>
</table>

Only 160/324 genes on the FoundationOne CDx were identified via CPTAC. Quaking Homolog, KH Domain RNA Binding (QKI) was the most negatively correlated (Pearson r = -0.996) and Alpha Thalassemia/Mental Retardation Syndrome X-Linked (ATRX) was the most positively correlated (Pearson r = 0.993). BRCA1 protein expression was undetectable and BRCA2 protein expression did not correlate with FRα protein expression (Pearson r = 0.27). Data regarding protein expression for other genes in the HRD pathway were available only for ATM, CHEK2 and NBS1, and also showed no correlation.

4. Discussion:

Targeting FRα is an area of active investigation and one that holds significant promise. In this study, we used TCGA to identify potential molecular targets that could potentiate
the ORR of FRα-targeting agents and improve their therapeutic efficacy for patients with
EOC, particularly those with non-HRD, platinum-resistant disease. We identified an
increased frequency of potentially targetable PIK3CA and FGF family protein mutations
in FRα-expressing tumors.

Results in the Context of Published Literature:
Although early studies of single-agent MIRV, STRO-002, and MORAb-202 suggested
these have anti-tumor activity, several combinatorial approaches are under active
investigation. MIRV, for example, is being studied in combination with various
chemotherapies and targeted therapies such as pembrolizumab and bevacizumab
(NCT02606305). In 2018, as part of FORWARD II, Moore et al. published data from the
phase 1b escalation study of MIRV in combination with carboplatin in patients with
platinum-sensitive ovarian cancer (PSOC), which found a 71% ORR, including three CR
and nine PR, and a median PFS of 15 months [19]. Among others, these findings
prompted a single arm, phase II trial of carboplatin and MIRV for first-line treatment of
patients with advanced, FRα-positive EOC receiving neoadjuvant chemotherapy
(NCT04606914). A randomized phase II trial of MIRV in FRα-high, recurrent PSOC
also began enrolling patients in September 2021, with the goal of comparing platinum-
based chemotherapy followed by PARPi (if indicated) to carboplatin + MIRV followed by
MIRV monotherapy (NCT04274426).

For patients with PROC, another expansion cohort from FORWARD II found a
confirmed ORR of 43% in patients treated with a combination of MIRV and
pembrolizumab, with a median DOR of 6.9 months and median PFS of 5.2 months [20]. The same phase Ib study included a cohort of patients with PROC who received MIRV in combination with bevacizumab; for these patients, the confirmed ORR was 39%, including five CR and 21 PR; median PFS was 6.9 months. Patients who were bevacizumab-naïve, less heavily pretreated, and whose tumors had medium/high FRα expression had an ORR of 56% with a median DOR of 12 months and PFS of 9.9 months [21]. Given these findings, FORWARD II looked at the combination of MIRV, carboplatin and bevacizumab followed by MIRV and bevacizumab maintenance therapy in 41 patients with recurrent PSOC, with a confirmed ORR of 83%, median DOR of 10.9 months and PFS of 12.8 months [22]. These data suggest synergistic and durable anti-tumor effects of combinatorial approaches, and more trials are in active development.

In our effort to identify potential targets, we found PIK3CA is mutated in 29% of tumors with high FRα expression. PIK3CA, or phosphatidylinositol-4,5-bisphosphonate 3-kinase catalytic subunit alpha, is an oncogene that has been implicated in several cancers, including breast, colon, liver, and stomach cancers [23]. Point mutations in this gene can cause hyperactivation of the alpha isoform (p110α) of PI3K, which in turn results in constitutive activation of the intracellular PI3K/Akt signaling pathway. This pathway is linked to several critical physiologic and pathophysiologic functions, including those that drive tumor progression, such as cell proliferation, growth, metabolism, angiogenesis, and motility [24]. Several PI3K inhibitors, such as alpelisib, a small molecule, a-specific PI3K inhibitor that selectively inhibits p110α, are being evaluated, and early work suggests that PIK3CA-mutated cancers are sensitive to
treatment with these agents [25]. When given in combination with standard of care therapies, as with olaparib in ovarian cancer or fulvestrant in breast, these drugs may work synergistically to overcome tumor resistance and sensitize the tumor cells to treatment with currently approved agents [26, 27].

The propensity toward PIK3CA mutations in FRα high tumors also provides a basis for investigating combinations of FRα-targeting agents with mammalian target of rapamycin, or mTOR, inhibitors. This is because activation of the PI3K/Akt signaling pathway results in downstream activation of the mTOR pathway. As with the PI3K/Akt pathway, mTOR plays a key role in regulating cell proliferation, and functions as a regulator of autophagy and apoptosis; thus, alterations in this pathway can lead to unchecked cell proliferation. In ovarian cancer, specifically, the PI3K/Akt/mTOR pathway has been found to activated in approximately 70% of cases and has been linked to higher invasive and migratory capacity. The mTOR inhibitors temsirolimus and everolimus have been studied in clinical trials of patients with recurrent EOC and had promising results [28].

Importantly, while VEGF was not one of the top mutations identified based on FRα expression, receptor binding of VEGFR2 has been found to activate PI3K and Akt. Although the mechanism by which this occurs is not fully understood, it is thought to occur by TSAd-mediated activation of Src family kinases, which engage the receptor tyrosine kinase Axl to trigger ligand-independent autophosphorylation and promote association with PI3K and activation of Akt [29]. This association between VEGFR2 and
PI3K/Akt activation, as well as the higher rate of PIK3CA mutations in FRα-high tumors, may provide a mechanistic basis for the promising therapeutic efficacy seen in the early trials of patients treated with combinations of MIRV with bevacizumab mentioned previously. A phase 3 trial to evaluate MIRV in combination with bevacizumab versus bevacizumab alone in PSOC (GLORIOSA) began recruiting patients in December 2022 (NCT 05445778).

Other mutations more frequently observed in FRα-high tumors were those of the fibroblast growth factor, or FGF, family, including FGF3 (19.35% vs. 0%), FGF4 (19.35% vs. 0%), FGF12 (22.58% vs. 13.79%), and FGF19 (19.35% vs. 0%). Broadly speaking, the fibroblast growth factor receptor (FGFR) family of receptor tyrosine kinases consists of four transmembrane receptors, FGFR1-4, and twenty-two known FGF ligands that interact to activate downstream signaling pathways through an intracellular domain. One such pathway is the extracellular signal-regulated kinase (ERK)/mitogen-activated protein kinase (MAPK) pathway, which promotes cell survival, proliferation, angiogenesis, and differentiation—processes exploited in malignant transformation and tumorigenesis [30]. Several agents targeting FGF have been developed for clinical use, ranging from selective tyrosine kinase inhibitors and monoclonal antibodies to ADCs and FGF ligand traps. Two anti-FGFR therapies have been approved by the Food and Drug Administration to date, including erdafitinib for FGFR-3-altered urothelial cancer, and pemigatinib for FGFR-2 fusion cholangiocarcinoma [30]. Lenvatinib, an oral receptor tyrosine kinase inhibitor that has activity against FGFR1-4, as well as VEGFR1-3, platelet derived growth factor receptor-
beta, and the RET and kit proto-oncogenes, is currently approved for patients with advanced endometrial cancer without microsatellite instability. Given the higher FGF mutation rate seen in FRα-high tumors in this study, investigation into combinations of FRα-targeting therapies with anti-FGF/R modalities may prove a fruitful area of inquiry. It should be noted that the BRCA and HRD pathway genes did not demonstrate a clear correlation with FRα expression. The combinatory strategy with PARP inhibitors was first assessed in NCT03552471 utilizing MIRV and rucaparib in recurrent ovarian, fallopian tube, peritoneal or endometrial cancers. The ORR was 29% in the ovarian cancer cohort with a PFS >6months in 47.1% [31]. The lack of correlation of FRα expression and BRCA/HRD demonstrates that a synergistic effect between the two is unlikely, but an additive effect in distinct patient populations may warrant future investigation.

Strengths and Limitations:

A pitfall from previous trials was the method of determining FRα expression in primary tumors, which is critical, as subsequent trials observed a strong positive correlation between FRα expression and ORR. One of the strengths of this analysis was the finding that FRα protein expression significantly correlates with FOLR1 mRNA expression. This raises the possibility of examining mRNA expression in lieu of immunohistochemical based assays in future studies. Limitations of this study include those intrinsic to the use of publicly available datasets such as TCGA PanCancer Atlas, which has restricted scope with a limited number of analyzed samples. In this case, data regarding FRα
expression were available for only 121 of 585 patients included in the PanCancer Atlas. An additional limitation is the confounding effect of chromosomal locus on the amplification or overexpression of a target of interest. FOLR1 is found on chromosome 11; the differential expression of proteins found on chromosome 11 may thus be related to proximity to the FRα gene, resulting in similar transcriptional regulation.

5. Conclusion:

To date, only a few targetable mutations have been examined as part of combinatorial approaches to the treatment of ovarian cancer; based on our findings, there are multiple avenues for further investigation that have the potential to improve outcomes for patients with advanced EOC who currently lack other therapeutic options. In light of the promising results of MIRASOL, this work provides a compelling indication to explore and/or expand upon potential drug combinations of FRα-targeting agents with PI3K, mTOR and FGF/FGFR inhibitors, and bevacizumab to evaluate their therapeutic potential in advanced EOC.

Funding:

This work was supported in part by the University of Colorado Cancer Center’s Shared Resource, funded by NCI grant P30CA046934. This funding did not play a role in study design; collection, analysis, or interpretation of data; writing of the report; or the decision to submit the article for publication.

Author Contributions:
Each author was actively involved in this research and approved the final version for submission. The individual contributions are listed below:

Christanne Persenaire: drafted written manuscript, created figures, and contributed to reviews

Benjamin G. Bitler: conceptual design, drafted written manuscript, created figures, and contributed to reviews

Bradley R. Corr: conceptual design, drafted written manuscript, and contributed to reviews

Conflicts of Interest:

Dr. Bitler is funded via unrelated grants from DOD, NIH, ACS, and OCRA. Dr. Corr has received honorarium for advisory boards on Merck, AstraZeneca, Novocure, GSK, Immunogen, and Imvax. Dr. Corr also receives research funding from Clovis Oncology.

Dr. Persenaire declares no conflicts of interest.
References:

18. Data used in this publication were generated by the Clinical Proteomic Tumor Analysis Consortium (NCI/NIH)

Doi:10.1016/j.ygyno.2018.07.017

29. Ruan GX, Kazlauskas A. Axl is essential for VEGF-A-dependent activation of PI3K/Akt. *EMBO J.* 2012;31(7):1692-1703. doi:10.1038/emboj.2012.21
