Impact of COVID-19 on diabetes mellitus outcomes and care in sub-Saharan Africa:

A scoping review.

Wenceslaus Sseguya\textsuperscript{1,4*}, Silver Bahendeka\textsuperscript{3,4}, Sara MacLennan\textsuperscript{1}, Nimesh Mody\textsuperscript{2} & Aravinda Meera Guntupalli\textsuperscript{1},

\textsuperscript{1} Institute of Applied Health Sciences, University of Aberdeen, Aberdeen, United Kingdom

\textsuperscript{2} Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom

\textsuperscript{3} Mother Kevin Postgraduate Medical School, Uganda Martyrs University, Kampala, Uganda

\textsuperscript{4} Department of Internal Medicine, St Francis Hospital Nsambya, Kampala, Uganda

*Corresponding author

Email: w.sseguya.21@abdn.ac.uk (WS)
Abstract

Background

The COVID-19 pandemic impacted diabetes mellitus clinical outcomes and chronic care globally. However, little is known about its impact in low-resource settings such as sub-Saharan Africa. Hence, to address this, we systematically conducted a scoping review to explore the COVID-19 impact on diabetes outcomes and care in countries of sub-Saharan Africa.

Methods

We applied our search strategy to PubMed, Web of Science, CINAHL, African Index Medicus, Google Scholar, Cochrane Library, Scopus, Science Direct, ERIC and Embase to obtain relevant articles published from January 2020 to March 2023. Two independent reviewers were involved in the screening of retrieved articles. Data from eligible articles were extracted from quantitative, qualitative and mixed methods studies. Numerical data were summarised using descriptive statistics, while a thematic framework was used to categorise and identify themes for qualitative data.

Results

We found 42 of the retrieved 360 articles eligible, mainly from South Africa, Ethiopia and Ghana (73.4%). COVID-19 increased the risk of death (OR 1.30 – 9.0, 95% CI), hospitalisation (OR 3.30 – 3.73: 95% CI), and severity (OR: 1.30-4.05, 95% CI) in persons with diabetes mellitus. COVID-19 also increased the risk of developing diabetes mellitus in hospitalised cases. The pandemic, on the other hand, was associated with disruptions in patient self-management routine and diabetes mellitus care service delivery. Three major themes emerged, namely, (i) patient-related health management challenges, (ii) diabetes mellitus care service delivery challenges, and (iii) reorganisation of diabetes mellitus care delivery.

Conclusion
COVID-19 increased mortality and morbidity among people living with diabetes mellitus. In addition, the COVID-19 pandemic worsened diabetes mellitus care management. Sub-Saharan African countries should, therefore, institute appropriate policy considerations for persons with diabetes mellitus during widespread emergencies.
Introduction

Global evidence suggests that the coronavirus disease 2019 (COVID-19) resulted in a worldwide surge in mortality, morbidity, and disability, which predominantly occurred among older adults and individuals with chronic disease conditions [1,2]. COVID-19 has been reported to worsen diabetes mellitus (DM) clinical outcomes in particular, and DM care in general generally [3–8]. However, very little in this context is known in low- and middle-income countries, particularly in sub-Saharan Africa (SSA).

While SSA is estimated to be host to 24 million of the estimated 537 million people with DM globally, the region records the highest rate of DM-related premature mortality [9]. Furthermore, SSA is predicted to experience the highest rate of rise in DM prevalence than any other region by 2040, depicting the magnitude of a growing threat [9]. DM is an under-researched area in SSA, which may underlie the limited understanding of the scale of the COVID-19 impact on persons living with DM (PLWD) and related vulnerabilities within the region. To address this gap, we carried out a scoping review to assimilate knowledge in this area that supports evidence-based policy consideration and stimulates future research in this field in SSA.

We, therefore systematically conducted a scoping review of published qualitative, quantitative and mixed methods literature to explore the COVID-19 impact on DM outcomes and care in SSA. Our scoping review aimed to: (i) identify and characterise impact of COVID-19 infection on clinical outcomes of DM; (ii) describe DM care aspects that were impacted by the COVID-19 pandemic; and (iii) identify existing gaps in knowledge and research.

Methods

Study design
We report our scoping review in line with the Preferred Reporting Items for Systematic Reviews and Meta-analyses extension for Scoping Reviews (PRISMA-ScR) (S1 PRISMA-ScR Checklist).

The initial protocol for this scoping review is reposited with Open Science Framework [https://doi.org/10.17605/OSF.IO/9JCKF].

Data sources and search strategy

We searched ten electronic databases, i.e., PubMed, Web of Science, Cumulative Index to Nursing and Allied Health Literature (CINAHL), African Index Medicus, Google Scholar, Cochrane Library, Scopus, Science Direct, Education Resource Information Centre (ERIC) and Embase. We defined our search strategy guided by the SPIDER (Sample population, Phenomenon of Interest, Design, Evaluation and Research type) framework as outlined by Cooke et al. [10] to identify relevant literature from qualitative and mixed methods studies. Additionally, to capture relevant literature from quantitative studies, we enriched our search strategy by incorporating appropriate elements of the PICO (Population, Intervention, Comparison and Outcome) framework [11]. The detailed search strategy applied to all citation databases with their respective search strings is provided as supplementary material (S2 Search strategy). A search across all databases was initially conducted in May 2022 and later updated using the same search strategy in March 2023 to include any relevant records published between the two periods. This also opened up possibilities for including studies with data on various ‘waves’ of COVID-19 infection and emerging interventions as the pandemic progressed. All retrieved records were merged into a single MS® Excel file for subsequent removal of duplicate records and screening.

Selection criteria

The retrieved records were screened for eligibility through two stages, i.e., an initial review of article title and abstract and a subsequent full-text review of articles to be considered in final inclusion. An initial screening for the title and abstract was independently conducted by WS.
and AMG and reviewed by SB, who also resolved any disagreements in screening decisions.

The same approach was applied for full-text screening. We defined agreement as a matching decision independently held by the reviewers involved in the screening process.

The inclusion criteria were (i) articles from any country listed under SSA by the World Bank in 2021 [12], (ii) articles focusing on or concerning DM and COVID-19, (iii) peer-reviewed articles and reports and (iv) published from 01 January 2020 – 22 March 2023. The exclusion criteria were (i) no full-text availability, (ii) articles not published in the English language, (iii) non-human studies, (iv) reviews, (v) articles with irrelevant scope, (vi) duplicate articles, and (vii) articles published as multicountry studies involving countries outside SSA but without disaggregation of country-specific data (Fig 1).

**Data extraction and management**

Data variables of interest from the selected articles were extracted and charted in the extraction form. The data extraction form was developed by WS and reviewed by AMG, SB, and SM. It was then tested with two randomly selected articles from each set of quantitative, qualitative, and mixed methods studies for appropriateness. Appropriate revisions were made and continuously refined and updated throughout the data extraction process. Data extraction and charting were conducted by WS and independently reviewed by AMG and SB during the extraction and charting phase.

**Data synthesis**

We used an inductive thematic approach to synthesise and collate findings of qualitative and mixed-methods studies and open-ended results of quantitative studies.

We used SPSS® version 27.0 (IBM Corp, Armonk: New York) to summarise findings from quantitative studies as mean (SD), range (minimum and maximum), proportions and frequencies, where appropriate. Due to the variability in methodological designs of interventions and outcome measures across studies, a meta-analysis was not performed.
Results

Selection and characteristics of included studies

A total of 360 unique records were retrieved from database searches, 42 of which were eligible for final inclusion (Fig 1). Inter-reviewer reliability analysis using the Cohen’s kappa showed substantial agreement between reviewers at title and abstract screening (k=0.626, p<0.01), and moderate agreement at full-text screening (k=0.545, p<0.01). The detailed description of information of the included studies is shown in Table 1.

The included studies were all observational but dominated by cross-sectional design (69%), with sample sizes ranging from 18 [13] to 3,460,932 [14]. The studies were predominantly retrospective (66.7%) and published between 2021 and 2022 (85.7%). The majority originated in South Africa (40.5%) and were mainly hospital-based (83.3%) and employed quantitative methods (90.4%). The extracted data variables were, DM prevalence among COVID-19 cases, outcomes of DM related to COVID-19 and their predictors, patient-related health management aspects, DM care service delivery aspects, and organisation of DM care related to the pandemic.
<table>
<thead>
<tr>
<th>Study</th>
<th>Study design</th>
<th>Location and period (study timeline)</th>
<th>Sample</th>
<th>Phenomenon studied/intervention</th>
<th>Evaluation / outcome</th>
<th>Key findings</th>
</tr>
</thead>
</table>
| Mash RJ, et al.     | Observational cross-sectional study | rural & urban district hospitals, South Africa                    | 1,376 patients admitted with COVID-19       | ▪ Prevalence of comorbidities   
▪ Predictors of mortality and length of hospitalisation | ▪ Proportion   
▪ Odds ratio | 1. 25.2% had diabetes (20.3% among rural)  
Type 2 diabetes (AOR 1.84, 1.24 - 2.73, 95%CI) was independently associated with a higher risk of death.  
73.2% (n=272) had uncontrolled diabetes (HbA1c>8%), 78.6% from rural hospitals |
| Dave JA, et al.     | Observational cohort       | rural & urban district hospitals, western Cape, South Africa     | 9,305 persons with diabetes diagnosed with COVID-19 | ▪ Prevalence of new-onset diabetes   
▪ Predictors of hospitalization and death | ▪ Proportion   
▪ Odds ratio | 11.3% of the diabetes cases were newly diagnosed during the COVID-19 episode.  
Diabetes had a high risk for COVID-19 hospital admission (OR:3.73, 95%CI 3.53,3.94) and mortality (OR:3.01,95%CI: 2.76,3.28)  
Insulin use was associated with increased risk for hospitalisation (OR:1.39, 95% CI:1.24,1.57) and mortality (OR:1.49, 95% CI:1.27,1.74)  
Metformin was associated with reduced risk for hospitalisation (OR 0.662, 95% CI:0.55,0.71) and mortality (OR 0.77, 95% CI:0.64,0.92)  
Being male increased risk of COVID-19 |
<table>
<thead>
<tr>
<th>Study</th>
<th>Design</th>
<th>Setting</th>
<th>Patients</th>
<th>Prevalence of comorbidities</th>
<th>Proportion of deaths among persons with diabetes</th>
<th>Odds ratio</th>
<th>Mortality Risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Van Hoving DJ, et al. [17]</td>
<td>Observational Cohort</td>
<td>Rural and urban hospitals in South Africa</td>
<td>261 hospitalised patients admitted for COVID-19 investigation</td>
<td>19.2%</td>
<td>Diabetes (19.2%) was among the common comorbidities in the admitted patients.</td>
<td>1.3 (1.2-1.5)</td>
<td>1.70 (1.51, 1.92)</td>
</tr>
<tr>
<td>Ratshikho pha E. et al. [18]</td>
<td>Observational cross-sectional study</td>
<td>Urban hospitals, South Africa</td>
<td>10,149 health workers</td>
<td>51%</td>
<td>27.6% of COVID-19 cases had diabetes.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Claassen N, et al. [19]</td>
<td>Observational cross-sectional study</td>
<td>Urban hospital in Cape Town, South Africa</td>
<td>568 admitted patients with confirmed SARS-CoV2</td>
<td>51%</td>
<td>Diabetes was associated with a higher risk of death (OR 2.7, 95% CI: 1.8 - 3.9)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abraha HE, et al. [20]</td>
<td>Observational cohort</td>
<td>rural and urban hospitals in Northern Ethiopia</td>
<td>2,617 RT-PCR positive COVID-19 admitted patients</td>
<td>3.1% of all cases and 18.4% of severe cases had comorbid diabetes.</td>
<td>Diabetes was associated with higher in-hospital mortality among COVID-19 patients (uRR: 7.73, 95% CI:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Author(s)</td>
<td>Study Design</td>
<td>Location</td>
<td>Study Period</td>
<td>Characteristics of cases</td>
<td>Proportion of comorbidities</td>
<td>Clinical outcomes</td>
<td>Odds ratio</td>
</tr>
<tr>
<td>-----------</td>
<td>--------------</td>
<td>----------</td>
<td>--------------</td>
<td>-------------------------</td>
<td>----------------------------</td>
<td>-------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>Kaswa R, et al. [21]</td>
<td>Observational cross-sectional study</td>
<td>Rural hospital, Eastern Cape, South Africa</td>
<td>March 2020 - July 2020 (Retrospective)</td>
<td>242 Hospitalised adult (&gt;=18 years) with laboratory-confirmed COVID-19</td>
<td>Diabetes occurred in 36.8% of the cases</td>
<td>Diabetes was the commonest comorbidity associated with higher mortality</td>
<td></td>
</tr>
<tr>
<td>Mbarga NF, et al. [22]</td>
<td>Observational cohort</td>
<td>Urban hospitals in Cameroon</td>
<td>April 2020 - July 2020 (Prospective)</td>
<td>313 Patients admitted with suspected or confirmed COVID-19</td>
<td>5.8% of cases had diabetes</td>
<td>Diabetes was associated with increased COVID-19 severity (OR: 4.05, 95% CI 1.12,14.15; p=0.01)</td>
<td></td>
</tr>
<tr>
<td>Kwaghe VG, et al. [23]</td>
<td>Observational cross-sectional study</td>
<td>Urban hospital in Abuja, Nigeria</td>
<td>March 2020 - June 2020 (Retrospective)</td>
<td>200 admitted COVID-19 patients</td>
<td>18.5% of the cases had diabetes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leulseged TW, et al. [24]</td>
<td>Observational case-control</td>
<td>Urban hospital in Ethiopia</td>
<td>June 2020 - September 2020 (Retrospective)</td>
<td>COVID-19 admitted patients Case =49 (death) Controls = 98 (recovered)</td>
<td>Having diabetes was associated with higher death outcomes than those with no diabetes (53.3% vs 46.7%, p=0.001)</td>
<td>Diabetes patients exhibited higher odds of dying compared to those with no diabetes (AOR:3.26, 95% CI:1.35,7.87), p= &lt;0.01.</td>
<td></td>
</tr>
<tr>
<td>Study Source</td>
<td>Study Type</td>
<td>Setting</td>
<td>Sample Size</td>
<td>Key Findings</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>------------</td>
<td>---------</td>
<td>-------------</td>
<td>--------------</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| Brey Z, et al. [25] | Observational cross-sectional study | Urban community setting in Cape Town, South Africa (Retrospective) | 2,500 community health workers | - Home delivery of medication for chronic disease patients
- Effectiveness
- Challenges and threats
- 46.2% of the delivery target was achieved
- The intervention was affected by incomplete, outdated and missing patient records and failure to reach registered phone contacts.
- Perceived opportunities were improved relationships of community health workers with linkage facilities and improved risk factor tracking.
- Perceived threats were stigma associated with home delivery |
| Abate HK, et al. [26] | Observational cross-sectional study | Rural and urban hospitals in Ethiopia August 2020 - September 2020 (Prospective) | 576 adult type 2 diabetes patients | - Predictors of adherence to exercise recommendations
- Proportion
- Odds ratio
- 26.4% only adhered to physical exercise recommendations.
- Rural residence was associated with higher odds of adherence to physical exercise recommendations (AOR: 1.95, 95% CI: 1.16-3.27, p<0.05)
- Being female was associated with higher odds of physical exercise adherence (AOR: 1.36, 95%CI, 1.27-2.72, p<0.01) |
- Predictors of survival and mortality
- Proportion
- Survival rate
- 17% of COVID-19 hospitalised patients had diabetes.
- Patients with diabetes had reduced COVID-19 survival, p=0.015 |
<table>
<thead>
<tr>
<th>Study Details</th>
<th>Study Type</th>
<th>Setting</th>
<th>Sample Size</th>
<th>Main Findings</th>
</tr>
</thead>
</table>
| Boulle et al. [14] | Observational cohort | Rural and urban hospitals in West Cape Province, South Africa | 3,460,932 patients with PCR-confirmed COVID-19 | Predictors of COVID-19 death
Diabetes was associated with COVID-19 death with the risk of death increasing with higher HbA1c values: <7% (HR 1.44, 95% CI: 1.06-1.96, p=0.02), 7%<9% (HR 1.81, CI: 1.39-2.35, p<0.001), ≥9% (HR 1.60, CI: 1.27-2.0, p<0.001) all vs those without diabetes. |
Diabetes patients with COVID-19 had a mortality rate of 36.7% |
| Ikram AS & Pillay S. [29] | Observational cohort | Urban hospital in KwaZulu Natal, South Africa | 236 hospitalised patients >13 years with laboratory-confirmed SARS-CoV-2 infection | Predictors of mortality
Diabetes had higher odds of COVID-19 severity compared to those with diabetes (OR: 1.97, 95% CI: 0.99-3.89) |
Diabetes had higher odds of COVID-19 severity than those who had no diabetes (AOR: 3.93, 95% CI: 1.12-16) |

Characteristics of cases

- 16.6% of cases had diabetes.
- Diabetes had higher odds of COVID-19 severity than those who had no diabetes (AOR: 3.93, 95% CI: 1.12-16)
<table>
<thead>
<tr>
<th>Study Details</th>
<th>Study Design</th>
<th>Setting</th>
<th>Sample Size</th>
<th>Main Findings</th>
</tr>
</thead>
</table>
| Leulseged TW, et al. [31] | Observational cohort | Rural and urban hospitals in Ethiopia | 1,345 patients admitted with RT-PCR confirmed COVID-19 | - Proportion of severe cases: 29.9% had diabetes. 
- Characteristics of cases: Diabetes had a higher median duration of recovery (15 days) than those with no diabetes. 
- Predictors of recovery: Having diabetes was associated with 45.1% (p=0.006) lower odds of achieving clinical recovery compared to those without diabetes (AOR=0.549, 95% CI:0.337,0.894; p=<0.05). |
- Clinical characteristics: 90.5% of those with complications had diabetes. 
- Proportion of those with diabetes died: 23.8% |
| van der Westhuizen JN, et al. [33] | Observational cross-sectional study | Rural hospital in Western Cape Province, South Africa | 1,447 patients admitted with confirmed COVID-19 and pre-existing or newly diagnosed diabetes | - Proportion of cases: 86.5% had HbA1c >7%, median (IQR): 10% (8-12%). 
- Predictors of death: Being male (OR=2.05, 95%C1=1.07,3.93) and on insulin (OR=2.25, 95%C1=1.05,4.89) was associated with higher odds of death |
| Delobelle AP, et al. [34] | Observational cross-sectional study | Urban primary settings in South Africa | Facility workers = 09 Community- | - Appraisal of care and management: Cancellation of routine non-communicable disease clinic services and chronic patient 'clubs' |
Reduced availability of healthcare workforce

Introduction of clinic booking for clinics that improved clinic congestion.

Home delivery of medication using community health workers was adopted to decongest health facilities.

Improved performance of community health workers.

General decrease in the number of health facility visits and deliveries.

Higher proportion of patients with uncontrolled diabetes.

Characteristics of cases

Proportion of patients with diabetes related comorbidities occurring in 2% of patients (36.3%) of the study population. Family, friends, and close relatives were family members and friends who were familiar with the patient who had diabetes and who could provide support and assistance.

Characteristics of cases

Proportion of patients with diabetes-related complications occurring in 4.3% of the study population. Long COVID occurred in 4.3% of patients with diabetes, compared with prior to COVID-19 period.

Proportion of patients with diabetes and other NCDs (NCD = CVD, asthma, etc.) involved in the study population.

Comorbid diabetes occurred in 2% of patients.

General increase in workload among the health workforce.

Improved performance of community health workers.

Home delivery of medication using community health workers was adopted to decongest health facilities.

Improved performance of community health workers.

General decrease in the number of health facility visits and deliveries.

Higher proportion of patients with uncontrolled diabetes.

Characteristics of cases

57.3% of patients had known complications including retinopathy (95% CI = 36.3 – 63.3, p < 0.05).

- Higher proportion of patients with uncontrolled diabetes.
- Reduced availability of healthcare workforce.
- Improved performance of community health workers.
- Home delivery of medication using community health workers was adopted to decongest health facilities.
<table>
<thead>
<tr>
<th>Study</th>
<th>Observational</th>
<th>Study Setting</th>
<th>Study Population</th>
<th>Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Habineza JC, et al. [37]</td>
<td>Cross-sectional study</td>
<td>Rural and urban communities in Rwanda</td>
<td>52 young adults with type 1 diabetes</td>
<td>Pandemic experiences and coping mechanisms Proportion of participants who reported reduced frequency of meals: 42%</td>
</tr>
<tr>
<td>Baguma S, et al. [38]</td>
<td>Cohort study</td>
<td>Urban Hospital in Northern Uganda</td>
<td>664 hospitalised patients with confirmed COVID-19</td>
<td>Characteristics of cases and predictors of mortality Proportion of deaths with diabetes: 34.4% Odds ratio of deaths with diabetes: AOR=9.014, 95% CI=1.726 - 47.067</td>
</tr>
</tbody>
</table>

Reduced frequency of meals was reported in 42% of the patients. 80.8% reported a drop in family income; 57.7% reported a reduction in meal frequency; 43.1% reported reduced physical activity. Hypoglycaemia was the major acute complication (87.5%). Access to diabetes management supplies during the COVID-19 pandemic did not significantly differ from pre-COVID-19. 81.8% increase in patients accessing healthcare by foot. Diabetes was associated with higher odds of death compared to those who had no diabetes (AOR=9.014, 95% CI=1.726 - 47.067).
<table>
<thead>
<tr>
<th>Retrospective</th>
<th>Prospective</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Awucha NE, et al. [40]</strong></td>
<td><strong>Kaswa RP. &amp; Meel B. [41]</strong></td>
</tr>
<tr>
<td>Observational cross-sectional study</td>
<td>Observational cross-sectional study</td>
</tr>
<tr>
<td>Rural and urban community settings in Nigeria May 2020 - June 2020 (Prospective)</td>
<td>Urban hospital in Eastern Cape, South Africa July 2020 - January 2021 (Retrospective)</td>
</tr>
<tr>
<td>374 persons aged 15 years and older</td>
<td>100 patients who died of COVID-19</td>
</tr>
<tr>
<td>Proportion of patients with difficulty in accessing essential medicines during the COVID-19 pandemic was significantly higher than before the pandemic (29.6% vs 5.6%, ( p&lt;0.001 ))</td>
<td>37% of patients had diabetes</td>
</tr>
<tr>
<td><strong>Usui R, Kanamori S, Aomori M. &amp; Watabe S. [42]</strong></td>
<td><strong>Tagoe ET, Nonvignon J, van Der Meer R.</strong></td>
</tr>
<tr>
<td>Observational cross-sectional study</td>
<td>Observational cross-sectional study</td>
</tr>
<tr>
<td>Rural and urban hospitals in Côte d’Ivoire March 2020 - July 2020 (Retrospective)</td>
<td>Rural and urban hospitals in Ghana November 2020 - February 2021</td>
</tr>
<tr>
<td>67 COVID-19 infected persons</td>
<td>18 healthcare professional and health facility administrators</td>
</tr>
<tr>
<td>Proportion of COVID-19 deaths occurred in patients with diabetes</td>
<td>COVID-19 impact on diabetes service delivery</td>
</tr>
<tr>
<td><strong>Impact Themes:</strong></td>
<td><strong>Themes:</strong></td>
</tr>
<tr>
<td>high medicine and service costs and medicine shortages (disruption in supply chain, rationing, increased pricing of medicines)</td>
<td></td>
</tr>
<tr>
<td>Researcher</td>
<td>Study Type</td>
</tr>
<tr>
<td>------------</td>
<td>------------</td>
</tr>
<tr>
<td>Megiddo I, &amp; Godman B. [13]</td>
<td>Prospective</td>
</tr>
<tr>
<td>Sikhosana LM, Jassat W &amp; Makatini Z. [43]</td>
<td>Observational cross-sectional study</td>
</tr>
<tr>
<td>Elijah MI, et al. [44]</td>
<td>Observational cohort</td>
</tr>
</tbody>
</table>

- poor patient information management (substandard anthropometric procedures, increase in records with missing data, misplacement of patient record files)
- few trained healthcare providers (COVID-19 treatment prioritisation, patient rejection of referrals, high patient load)
- low healthcare provider motivation (unsupportive management)
- service organisation challenges (extended patient reviews, clinic overcrowding, increased clinic waiting times)
- national health policy-related concerns (policy restrictions could not allow flexibility in planning and cost sharing)
<table>
<thead>
<tr>
<th>Study Authors</th>
<th>Study Design</th>
<th>Setting</th>
<th>Patients</th>
<th>Main Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hardy OY, et al. [45]</td>
<td>Observational cross-sectional study</td>
<td>Urban hospital in Ghana</td>
<td>175 adult patients hospitalised with COVID-19</td>
<td>Prevalence of comorbid diabetes, Predictors of hospitalisation, Proportion Correlation</td>
</tr>
<tr>
<td>Huluka KD, et al. [46]</td>
<td>Observational cross-sectional study</td>
<td>Urban hospital in Addis Ababa, Ethiopia</td>
<td>463 SARS CoV-2 positive patients aged ≥18</td>
<td>Clinical characteristics of cases, Proportion</td>
</tr>
<tr>
<td>Nyasulu SP, et al. [47]</td>
<td>Observational cross-sectional study</td>
<td>Urban hospital in South Africa</td>
<td>413 ICU admitted COVID-19 patients aged ≥18</td>
<td>Characteristics of cases and outcomes, Proportion</td>
</tr>
<tr>
<td>Solanki G, et al. [48]</td>
<td>Observational cross-sectional study</td>
<td>Rural and urban communities in South Africa</td>
<td>188,292 private health insurance patients who tested positive for COVID-19</td>
<td>Risk of hospitalisation, Odds ratio</td>
</tr>
<tr>
<td>Diarra M, et al. [49]</td>
<td>Observational cross-sectional study</td>
<td>Rural and urban hospitals in Senegal</td>
<td>67,608 patients</td>
<td>Clinical characteristics, Predictors of mortality, Proportion Relative risk</td>
</tr>
</tbody>
</table>

36.6% patients had type 2 diabetes
38.2% of cases had diabetes
33.1% of those who experienced severe COVID-19 had diabetes.
38.2% cases had diabetes
35.8% of COVID-19 deaths had diabetes

Diabetes was associated with high risk for hospitalisation (OR 3.6; 95% CI 3.27 - 3.94)
Relative risk for COVID-19 mortality was high in persons with comorbid diabetes (aRR=1.31, 95%CI=0.77-
<table>
<thead>
<tr>
<th>Study</th>
<th>Design</th>
<th>Setting</th>
<th>Participants</th>
<th>Methods</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tolessa T, et al. [50]</td>
<td>Observational cohort study</td>
<td>Western urban hospital Ethiopia</td>
<td>September 2020 - June 2021</td>
<td>304 severe COVID-19 hospital-admitted patients</td>
<td>Incidence of diabetes among patients was 14.5%. Overall diabetes incidence rate at the end of follow-up (34 days) was 13.7/1,000 person-days observation (95% CI 10.2, 18.4). Median occurrence of diabetes was 11 days (95% CI: 7, 13). Predictors of diabetes included older age (&gt;41 years: AHR = 2.54, 95% CI: 1.12, 5.52, compared to &lt;25 years; AHR = 2.49, 95% CI: 1.15, 5.57, compared to &lt;25 years; p=0.04) and residing in urban settings (AHR = 2.49, 95% CI: 1.15, 5.57, compared to rural, p=0.02). Increased risk of developing diabetes increased for the first 20 days and was constant thereafter (Kaplan-Meier survival estimate)</td>
</tr>
<tr>
<td>David JN, et al. [51]</td>
<td>Observational cross-sectional study</td>
<td>Rural community in South Africa</td>
<td>September 2020 - December 2020</td>
<td>544 type 2 diabetes patients attending routine care</td>
<td>14.6% of patients perceived home delivery of medicines as time-saving, 10.9% perceived it as reducing exposure to coronavirus infection. Overall, home delivery of medicines resulted in 0.46% reduction in HbA1c compared to non-HDM (p=0.04). Patients perceived HDM as reducing exposure to coronavirus infection.</td>
</tr>
<tr>
<td>Study</td>
<td>Study Type</td>
<td>Setting</td>
<td>Participants</td>
<td>Prevalence of diabetes</td>
<td>Predictors of diabetes</td>
</tr>
<tr>
<td>-------</td>
<td>------------</td>
<td>---------</td>
<td>--------------</td>
<td>-----------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>Sane HA, et al. [52]</td>
<td>Observational cross-sectional study</td>
<td>Urban hospitals in Addis Ababa, Ethiopia, September 2020 - September 2021 (Retrospective)</td>
<td>244 COVID-19-admitted patients with diagnosed diabetes</td>
<td>Prevalence of new-onset diabetes</td>
<td>Proportion</td>
</tr>
<tr>
<td>Jassat W, et al. [53]</td>
<td>Observational cross-sectional study</td>
<td>Rural and urban hospital in South Africa, November 2020 - June 2021 (Prospective)</td>
<td>3,217 COVID-19 hospitalised patients</td>
<td>Prevalence of diabetes</td>
<td>Proportion</td>
</tr>
<tr>
<td>Mengist BJ, Animit Z &amp; Tolossa T. [54]</td>
<td>Observational cohort</td>
<td>Rural and urban hospitals in Northwest Ethiopia, March 2020 - March 2021 (Retrospective)</td>
<td>552 COVID-19 hospitalised patients</td>
<td>Prevalence of diabetes</td>
<td>Proportion</td>
</tr>
</tbody>
</table>
Prevalence and incidence of DM among COVID-19 cases

As shown in Table 2, comorbidity of DM and COVID-19 was very prevalent, with up to 51% pre-existing cases reported, and a mean (SD) figure of 23% (±13.8). Prevalence as high as 31.1% was also reported for new-onset DM among COVID-19 hospitalised cases, and a high incidence rate of 37/1,000 person days [50].

Table 2: Studies reporting on different COVID-19 outcome variables.

<table>
<thead>
<tr>
<th>Outcome variable</th>
<th>Range or value</th>
<th>Study reference</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Comorbidity of DM and COVID-19</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Incidence of DM in COVID-19 cases (per 1,000-person day’s observation)</td>
<td>13.7</td>
<td>[50]</td>
</tr>
<tr>
<td>Prevalence of new-onset DM among COVID-19 cases</td>
<td>7.3% - 31.1%</td>
<td>[16,50,52,53]</td>
</tr>
<tr>
<td><strong>COVID-19-related outcomes in DM patients</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Proportion of DM deaths attributed to COVID-19</td>
<td>5.3% - 66%</td>
<td>[17,19,24,28,29,32,33,42,46,47]</td>
</tr>
<tr>
<td>DM risk for COVID-19 mortality (odds ratio, 95% CI)**</td>
<td>1.30 – 9.0</td>
<td>[14–16,19,20,24,38,49,54]</td>
</tr>
<tr>
<td>Proportion of DM hospitalisation attributed to COVID-19***</td>
<td>17%</td>
<td>[27]</td>
</tr>
<tr>
<td>DM risk for COVID-19 hospitalisation (odds ratio, 95% CI)**</td>
<td>3.30 - 3.73</td>
<td>[16,35,48]</td>
</tr>
<tr>
<td>Proportion of DM-related COVID-19 severity</td>
<td>16.1% - 33.1%</td>
<td>[20,30,39,46]</td>
</tr>
<tr>
<td>DM risk for COVID-19 severity (odds ratio, 95% CI)**</td>
<td>1.30 - 4.05</td>
<td>[18,22,30]</td>
</tr>
<tr>
<td>Duration of hospitalisation of DM patients with COVID-19</td>
<td>4.7 - 15.0 days</td>
<td>[22,31]</td>
</tr>
<tr>
<td>Proportion of PLWD experiencing COVID-19 complications</td>
<td>4.3% - 90.5%</td>
<td>[32,35]</td>
</tr>
<tr>
<td><strong>Predictors of COVID-19-related clinical outcomes in DM</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Predictors of COVID-19 mortality in PLWD (odds ratio, 95% CI)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age (per 5-year ageing interval)</td>
<td>1.13 - 1.37</td>
<td>[16]</td>
</tr>
<tr>
<td>Gender (Male)</td>
<td>1.50 - 2.04</td>
<td>[16,18,33]</td>
</tr>
<tr>
<td>Medication (Insulin)</td>
<td>1.49 - 2.25</td>
<td>[16,33]</td>
</tr>
<tr>
<td>Glycaemic control (HbA1c≥7%)</td>
<td>1.39 - 1.60</td>
<td>[14]</td>
</tr>
<tr>
<td>Predictors of COVID-19 hospitalisation in PLWD (odds ratio, 95% CI)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age (per 5-year ageing interval)</td>
<td>1.13 - 1.17</td>
<td>[16]</td>
</tr>
<tr>
<td>Gender (Male)</td>
<td>1.29 - 1.54</td>
<td>[16]</td>
</tr>
<tr>
<td>Medication (Insulin)</td>
<td>1.24 - 1.57</td>
<td>[16]</td>
</tr>
<tr>
<td>Predictors of new-onset DM in COVID-19 patients (odds ratio, 95% CI)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age (&gt;41years)</td>
<td>1.15 - 5.57</td>
<td>[50]</td>
</tr>
</tbody>
</table>
As shown in Table 2, mortality, hospitalisation, severity, and complications were the major outcomes related to COVID-19 in DM. The proportions of COVID-19-attributed mortality [17, 19, 24, 28, 29, 32, 33, 42, 46, 47], hospitalisation [27], and severity [20, 30, 39, 46] for PLWD were noticeable across the studies. The major predictors of COVID-19-related mortality and hospitalisation in PLWD were age, gender, DM treatment, and glycaemic control. For every 5-year age interval, being male, insulin treatment and HbA1c ≥7.0% were independently associated with higher odds for both COVID-19-related mortality [14, 16, 18, 33] and hospitalisation [16]. On the other hand, new-onset DM, defined as DM diagnosed in hospitalised COVID-19 patients with prior normoglycaemia, was associated with age over 41 years, male gender and urban residence [50, 52].

**Impact of the COVID-19 pandemic on DM care**

Using an inductive thematic approach, we constructed three major themes from qualitative, mixed methods studies and open-ended quantitative results. The findings were thematically categorised as patient-related health management challenges, DM care service delivery challenges, and reorganisation of DM care delivery (S3 Themes). Table 3 presents a summary of studies that reported on each theme category.

Table 3: Studies reporting COVID-19 pandemic’s impact on various aspects of DM care management.

<table>
<thead>
<tr>
<th>Major theme</th>
<th>Sub-theme</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patient-related health management challenges</td>
<td>Self-management challenges</td>
<td>[15, 33, 36, 37]</td>
</tr>
<tr>
<td></td>
<td>Affordability challenges</td>
<td>[13, 37]</td>
</tr>
<tr>
<td></td>
<td>Health service accessibility challenges</td>
<td>[13, 37, 51]</td>
</tr>
<tr>
<td>DM care service delivery</td>
<td>Health workforce challenges</td>
<td>[13, 34]</td>
</tr>
<tr>
<td>Healthcare infrastructure challenges</td>
<td>[13]</td>
<td></td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>Health information challenges</td>
<td>[25]</td>
<td></td>
</tr>
<tr>
<td>Medicines and medical supplies</td>
<td>[13]</td>
<td></td>
</tr>
<tr>
<td>Re-organisation of DM care delivery</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Patient-level reorganisation of care access</td>
<td>[25,34,51]</td>
<td></td>
</tr>
<tr>
<td>Clinic-level reorganisation of management</td>
<td>[34]</td>
<td></td>
</tr>
<tr>
<td>Community-level re-organisation of community health worker services</td>
<td>[25,34,51]</td>
<td></td>
</tr>
</tbody>
</table>

Patient-related health management challenges

The three sub-themes that emerged under patient-related health management challenges were, self-management challenges, affordability challenges, and health service accessibility challenges. Self-management challenges reported among PLWD during the COVID-19 pandemic include reduced daily meal frequency [36,37], inadequate physical activity [26,37], and worsening glycaemic control [15,33,34]. Affordability challenges were related to increased costs of medicines [13] and reduced individual or household income [37]. PLWD also experienced health service accessibility challenges reported as increased clinic waiting time [13] and limited transport means to healthcare facilities [16,51]. Type 1 DM-specific challenges were limited food access, reduced affordability of living costs and accessibility of DM care services [37].

DM care service delivery challenges

Four sub-themes emerged under DM care delivery challenges, namely, health workforce challenges [13,34], healthcare infrastructure challenges [13,34], health information management challenges [13,25], and medicines and medical supplies [13]. Health workforce challenges were characterised by health workers' hesitancy towards work and the limited number of available DM specialists. This resulted in fewer active health workers at health facilities that increased workload [13,34]. At the same time, inadequate healthcare infrastructure limited available physical clinic space due to overwhelming patient numbers.
The COVID-19 pandemic was also characterised by poor management of health information and medical records attributed to the heavy workload of health workers and the fear of the risk of cross-infection while collecting patient data [13,25]. Additionally, the pandemic worsened shortages of medicine and medical supplies at health facilities [13].

Reorganisation of DM care delivery

Four sub-themes, as shown in Table 3, were categorised under the reorganisation of DM care delivery as a result of the pandemic, namely, patient-level reorganisation of care access [25,34,51], clinic-level reorganisation in management [34], and community-level reorganisation of community health worker services [25,34,51]. The reorganisation of DM care delivery was in response to the challenges patients and healthcare facilities faced in accessing and delivering DM care services. The interventions included delivery of patient medicines to their homes through their community health workers [25,34,51], which addressed the risk of infection and mitigated the health facility accessibility challenges faced by patients during lockdowns [34]. At clinic level, routine non-communicable disease ‘walk-in’ clinics were replaced with a clinic booking system to manage patient appointments and control clinic patient numbers [34]. At the community level, community health workers were empowered to monitor and follow up on patients with non-communicable diseases, including DM, aimed at reducing the workload of health facility staff [25,34,51].

Discussion

Our scoping review of 42 articles highlighted COVID-19’s impact on DM outcomes and care in SSA. It also lays down existing gaps in knowledge and research. To the best of our knowledge, this is the first systematic scoping review in SSA to investigate outcomes of DM with COVID-19 and the pandemic’s effect on DM care. Our results show an inequitable representation in DM research in countries of SSA, with research outputs mainly contributed by South Africa.
Overall, our scoping review shows that COVID-19 increased the risk of mortality and hospitalisation in PLWD, which were associated with older age, poor glycaemic control, insulin use and being male. These risk factors have also been reported in the US [57], China [58] and the UK [59]. We observed that PLWD had up to nine times higher risk of death, more than three times higher risk of hospitalisation and up to four times higher risk for severity due to COVID-19 compared to those without DM. Notably, similar findings but with varying levels of mortality and morbidity have been reported in China and the USA by Kumar et al. [60]. They revealed higher odds of COVID-19-related mortality (2.16, 95% CI: 1.74-2.65) and severity (2.75, 95% CI: 2.09-3.62) in PLWD than those without DM. COVID-19's impact on DM clinical outcomes in SSA is significant and consistent with reports from the World Health Organization that indicate COVID-19 is deadlier in PLWD in Africa due to the region’s characteristic poor glycaemic control [61,62]. Additionally, COVID-19 was associated with an increased risk of developing new-onset DM, especially among hospitalised COVID cases over 41 years, males and urban residents. We observed a DM incident rate of 13.7/1,000 person-days (the equivalent of 5/1,000 person-years) and a prevalence of new-onset DM of up to 31% among COVID-19 cases in SSA. This rate is, however, considerably lower than what has been reported in the US (23-83/1,000 person-years) [63], England (37.2/1,000 person-years) [64] and China (13.5/1,000 person-years) [65]. Whereas the variation in diabetes incidence among COVID-19 patients in SSA may be due to underreporting, COVID-19's epidemiological threat to the growing burden of DM in SSA needs to be tracked.

As a pandemic, COVID-19 also impacted DM indirectly by causing disruptions in patient self-management routines and delivery of DM services in SSA. As our scoping review highlights, this impact manifested through challenges posed by instituted COVID-19 restrictions. For PLWD, we observe that this negatively affected their dietary intake and engagement in physical activity and limited their access to healthcare. The experience in SSA was however, in marked contrast with reports from India [66] and the UK [67], which showed no notable negative COVID-19
impact on access to essential services among PLWD. This stark variation may be explained by
the different countries’ approaches to containing COVID-19, which in most SSA countries
mainly targeted geographical containment, closure of non-essential services and prohibition of
gatherings [68]. These unprecedented approaches created blockades to accessibility and
affordability of various services, including health and social services [69–71]. On other
grounds, there was a considerable shortage of health workforce, physical infrastructure and
severe shortages of DM medicine and medical supplies. Whereas we acknowledge the pre-
existence of challenges in the health workforce, healthcare infrastructure and medical supplies
in SSA before the COVID-19 pandemic, the magnitude might have worsened during the
pandemic due to a shift in healthcare resource prioritisation toward COVID-19
[72][73][74][73,75].

Interestingly, we also observed from our scoping review that the pandemic presented some
opportunities for DM care innovation. For instance, the delivery of medicine to patient homes
implemented in South Africa reportedly reduced the risk of COVID-19 infection among PLWD,
mitigated DM care access challenges and ensured continued chronic patient follow-up [40].
Home delivery of medicine has also been reported to improve treatment adherence among
chronic disease patients in Rwanda, which shows its feasibility in other SSA countries [76]. The
pandemic, as demonstrated in South Africa, has also evidenced the value of integrating chronic
non-communicable disease prevention and care in the services of community health workers.
Additionally, clinic booking systems introduced to replace walk-in clinics in public health centres
were found to mitigate clinic overcrowding, reduce clinic waiting time, and provide better
doctor-to-patient time. These changes in the reorganisation of healthcare service delivery
proved vital in addressing many challenges posed by the COVID-19 pandemic and offer lessons
to policy and practice in future planning.

Gaps in knowledge and research
In our scoping review, we note various gaps in knowledge that can inform subsequent research. Firstly, there is a gap in the published literature on the use of guidelines for managing COVID-19 and DM in SSA countries, which would help evaluate their appropriateness for future similar occurrences. Secondly, the studies in our scoping review did not report on vaccine uptake or how the different ‘waves’ of COVID-19 infection influenced COVID-19 outcomes among PLWD. This would provide an understanding of the outcomes of PLWD across evolving pandemic dynamics and health system interventions. Exploiting research opportunities to address such gaps in knowledge can provide further and comprehensive understanding to shape appropriate post-pandemic DM care approaches and health system preparedness in addressing chronic care vulnerabilities during possible future pandemics.

Limitations

While this scoping review provides reliable information by scoping various research types and sources, there are some limitations. Firstly, our scoping review only included articles published in English. This may have limited studies published from non-English speaking countries within SSA; therefore, some relevant studies may have been missed. However, considering what was retrieved from most SSA countries, we predict this number to be likely minimal. Secondly, the included studies were dominated by three countries, which may limit the generalisation of findings to SSA. Thirdly, the studies were mainly conducted in the initial phase of the pandemic in 2020, indicating that changes experienced after that may render some findings unrepresentative of the post-2020 dynamics including the impact of emerging COVID-19 variants. Moreover, the limited disaggregation of data by studies in our scoping review, especially age, gender and type of DM, limited the drawing of specific conclusions and analyses. Finally, we only included peer-reviewed literature, which may have excluded some valuable literature sources such as manuscripts, institutional reports and archives.
Nevertheless, this scoping review provided critical information and insights on how COVID-19 impacted PLWD and healthcare systems in SSA.

Conclusions

COVID-19 increased mortality and morbidity among PLWD and the occurrence of DM. In addition, the pandemic worsened DM self-care and DM service delivery generally. Therefore, further research in SSA is needed to understand the disease syndemism of pandemics such as COVID-19 and DM to inform future management strategies and policy considerations.
References


30. Leulseged TW, Abebe KG, Hassen IS, Maru EH, Zewde WC, Chamiso NW, et al. COVID-


44. Elijah IM, Amsalu E, Jian X, Cao M, Mibeik, Kerosi DO, et al. Characterization and
431 determinant factors of critical illness and in-hospital mortality of COVID-19 patients: A
433 doi:10.1016/j.bsheal.2022.06.002

434 Hardy YO, Libhaber E, Ofori E, Amenuke DAY, Kontoh SA, Dankwah JA, et al. Clinical
435 and laboratory profile and outcomes of hospitalized COVID-19 patients with type 2
436 diabetes mellitus in Ghana – A single-center study. Endocrinol Diabetes Metab. 2023;6.
437 doi:10.1002/edm2.391

446 characteristics associated with mortality of COVID-19 patients admitted to an intensive
448 e0279565. doi:10.1371/journal.pone.0279565

450 Tolossa T, Lema M, Wakuma B, Turi E, Fekadu G, Mulisa D, et al. Incidence and
451 predictors of diabetes mellitus among severe COVID-19 patients in western Ethiopia: a


503 descriptive cohort study within the OpenSAFELY platform. Wellcome Open Res. 2022;7:
142. doi:10.12688/wellcomeopenres.17735.1


508 Pandemic-Induced Dietary and Lifestyle Changes and Their Associations with Perceived
509 Health Status and Self-Reported Body Weight Changes in India: A Cross-Sectional

512 Econ. 2022;84: 102641. doi:10.1016/j.jhealeco.2022.102641

514 measures in response to COVID-19 in nine sub-Saharan African countries. BMJ Glob
515 Heal. 2020;5: e003319. doi:10.1136/bmjgh-2020-003319

517 COVID-19 pandemic on young persons with type 1 diabetes in western Uganda.

519 70. Kebirungi H, Mwenyango H. Impacts of COVID-19 Pandemic Lockdown on the
520 Livelihoods of Male Commercial Boda-Boda Motorists in Uganda. In: Laituri M,
521 Richardson RB, Kim J, editors. The Geographies of COVID-19: Geospatial Stories of a
523 doi:10.1007/978-3-031-11775-6_16

525 impacts on other areas of health. BMJ Glob Heal. 2021;6: e004110. doi:10.1136/bmjgh-
526 2020-004110


74. Moolla I, Hiilamo H. Health system characteristics and COVID-19 performance in high-income countries. BMC Health Serv Res. 2023;23: 244. doi:10.1186/s12913-023-09206-z


Supporting information

S1 PRISMA-ScR Checklist
S2 Search strategy
S3 Themes
Records identified through initial electronic citation database searching (08 May – 10 May 2022) 
\( n = 452 \)
- PubMed (n=71); Web of Science (n=52); CINAHL (n=14); AIM (n=17); Google Scholar (n=64); Cochrane (n=110); Scopus (n=14); ERIC (n=05); Science direct (n=19); Embase (n=86)

Records identified through updated electronic citation database searching (21 March – 22 March 2023) 
\( n = 146 \)
- PubMed (n=25); Web of Science (n=27); CINAHL (n=08); AIM (n=05); Google Scholar (n=25); Cochrane (n=16); Scopus (n=04); ERIC (n=00); Science direct (n=09); Embase (n=27)

Records retrieved from both searches 
\( n = 598 \)

Duplicates (n=238)

Records screened by title and abstract after removal of duplicates 
\( n = 360 \)

Records excluded by title & abstract 
\( n = 241 \)

Articles excluded: 77
- Included countries outside SSA (n=37)
- Full-text unavailable (n=03)
- Content not relevant to the scope of enquiry (n=33)
- Reviews (n=4)

Full-text articles assessed for eligibility 
\( n = 119 \)

Total articles included in the final review 
\( n = 42 \)

Fig. 1: PRISMA-ScR diagram reporting outcomes of the systematic scoping review process.