Human metabolic chambers reveal a coordinated metabolic-physiologic response to nutrition

Andrew S. Perry, MD1*, Paolo Piaggi, PhD2*, Shi Huang, PhD3*, Matthew Naylor, MD4, Jane Freedman, MD1, Kari North, PhD5, Jennifer Below, PhD6, Clary Clish, PhD7**, Venkatesh L. Murthy, MD, PhD8**, Jonathan Krakoff, MD2**, Ravi V. Shah, MD1**

Affiliations
1Vanderbilt Translational and Clinical Cardiovascular Research Center, Vanderbilt University School of Medicine, Nashville, TN, USA
2Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, AZ, USA
3Department of Biostatistics, Vanderbilt University School of Medicine, Nashville, TN, USA
4Sections of Cardiovascular Medicine and Preventive Medicine and Epidemiology, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
5CVD Genetic Epidemiology Computational Laboratory, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
6Vanderbilt Genetics Institute, Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
7Broad Institute of MIT and Harvard, Cambridge, MA USA
8Department of Medicine, University of Michigan, Ann Arbor, MI, USA

* indicates equal contribution as first authors
** indicates equal contribution as senior authors

Word Count: 1711

Short title: Metabolomics of dietary intervention

Keywords: metabolism, nutrition, metabolomics

Corresponding authors:
Jonathan Krakoff
Obesity and Diabetes Clinical Research Section
Phoenix Epidemiology and Clinical Research Branch
National Institute of Diabetes and Digestive and Kidney Diseases
4212 N. 16th St.
Phoenix, AZ 85016
jkrakoff@mail.nih.gov

Ravi Shah
Vanderbilt Translational and Clinical Research Center
Vanderbilt University Medical Center
2525 West End Ave, Suite 300
Nashville, TN 37203
ravi.shah@vumc.org

Funding: This research was supported in part by the Intramural Research Program of the NIH, the National Institute of Diabetes, Digestive and Kidney Diseases (NIDDK), U01-DK123013 to R.S. and V.L.M., and the American Heart Association to A.S.P.

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Abstract

The emerging field of precision nutrition is based on the notion that inter-individual responses across diets of different calorie-macronutrient content may contribute to inter-individual differences in metabolism, adiposity, and weight gain. Free-living diet studies have been traditionally challenged by difficulties in controlling adherence to prescribed calories and macronutrient content and rarely allow a period of metabolic stability prior to metabolic measures (to minimize influences of weight changes). In this context, key physiologic measures central to precision nutrition responses may be most precisely quantified via whole room indirect calorimetry over 24-h, in which precise control of activity and nutrition can be achieved. In addition, these studies represent unique “N of 1” human crossover metabolic-physiologic experiments during which specific molecular pathways central to nutrient metabolism may be discerned. Here, we quantified 263 circulating metabolites during a ≈40-day inpatient admission in which up to 94 participants underwent seven monitored 24-h nutritional interventions of differing macronutrient composition in a whole-room indirect calorimeter to capture precision metabolic responses. Broadly, we observed heterogeneous responses in metabolites across dietary chambers, with the exception of carnitines which tracked with 24-h respiratory quotient. We identified excursions in shared metabolic species (e.g., carnitines, glycerophospholipids, amino acids) that mapped onto gold-standard calorimetric measures of substrate oxidation preference and lipid availability. These findings support a coordinated metabolic-physiologic response to nutrition, highlighting the relevance of these controlled settings to uncover biological pathways of energy utilization during precision nutrition studies.
Introduction

The emerging field of precision nutrition is based on the notion that inter-individual responses across diets of different calorie-macronutrient content may contribute to inter-individual differences in metabolism, adiposity, and weight gain. Studies from our group and others have focused on two major metabolic physiologies—variability in fuel selection (substrate oxidation) and diet-induced thermogenesis (energy expenditure, EE) during consumption—as susceptibility phenotypes in weight regulation\(^1\). Many human studies have employed prolonged fasting, caloric restriction\(^1,4\)\(^-\)\(^6\), or shorter versus longer term responses to macronutrient feeding\(^7\)\(^\)\(^-\)\(^{11}\) to start to discern potential contributors to these metabolic phenotypes (e.g., human genetics\(^12,13\), resting metabolic rate\(^1\), substrate oxidation, thermogenesis\(^14\)). Nevertheless, free-living diet studies have been traditionally challenged by difficulties in controlling adherence to prescribed calories and macronutrient content and rarely allow a period of metabolic stability prior to metabolic measures (to minimize influences of weight changes). In this context, key physiologic measures central to precision nutrition responses may be most precisely quantified via whole room indirect calorimetry over 24-h, in which precise control of activity and nutrition can be achieved. In addition, these studies represent unique “N of 1” human crossover metabolic-physiologic experiments during which specific molecular pathways central to nutrient metabolism may be discerned. Here, we quantified 263 circulating metabolites during a ≈40-day inpatient admission in which up to 94 participants underwent seven monitored 24-h nutritional interventions of differing macronutrient composition in a whole-room indirect calorimeter to capture precision metabolic responses. Broadly, we observed heterogenous responses in metabolites across dietary chambers, with the exception of carnitines which tracked with 24-h respiratory quotient. We identified excursions in shared metabolic species (e.g., carnitines, glycerophospholipids, amino acids) that mapped onto gold-standard calorimetric measures of substrate oxidation preference and lipid availability. These findings support a coordinated...
metabolic-physiologic response to nutrition, highlighting the relevance of these controlled
settings to uncover biological pathways of energy utilization during precision nutrition studies.

Results

Figure 1 shows our experimental design. Nutritional interventions (with macronutrient
composition in Figure 1 and Supplemental Table 1) included an "energy balance" chamber (to
determine an individual's caloric needs at balanced intake = expenditure), fasting, and serial
diets with differing macronutrient composition with 200% caloric excess relative to energy
balance. The 200% caloric excess was used as a physiologic probe to elicit phenotypes defined
by 24-h EE and 24-h substrate oxidation rate14. Dietary intervention chambers after energy
balance were performed in random order with an intervening 3 day wash-out period. We used
indirect calorimetry during chambers to quantify 24-h EE and substrate oxidation preferences
(24-h respiratory quotient [RQ], lipid, carbohydrate, and protein oxidation rate), as described14.
This design allowed efficient, precise control over confounding (e.g., activity level, sleep, diurnal
effects, weight) to quantify phenotypes that capture interindividual heterogeneity in metabolism.

The characteristics of our study group are shown in Supplemental Table 2. Overall, our
population was middle aged (median age 38, 20% female), with a mildly elevated body mass
index (median BMI 26 kg/m2). Of the 96 participants in our study, 49 participants completed all 7
dietary chambers, and 28 completed 6 chambers (Extended Data Figure 1). High carbohydrate
overfeeding induced greatest increase in 24-h EE. Substrate oxidation rate changes were
generally consistent with the availability of macronutrients (Figure 2): for example, we observed
a shift toward fat oxidation (in lieu of carbohydrate) as quantified by lipid oxidation rates and a
fall in 24-h RQ in fasting and high-fat diets (with the converse in diets with greater carbohydrate
content).

We identified substantial shifts in the assayed circulating metabolome across different
24-h chambers, broadly consistent with putative effects of macronutrient composition in each
dietary prescription (Figure 3A-B; full results in Extended Data Figure 3, Supplemental Table 4). The 24-h fasting condition elicited the most distinct metabolic pattern consistent with known physiology of early starvation, including increases in mitochondrial \(\beta\)-oxidation (increased acylcarnitines, pantothenic acid), increased ketogenesis (e.g., C4:0-OH carnitine, a ketone body\(^{10}\)), and increased fatty acid availability (e.g., catabolism of phospholipids [PC/PEs] to diacylglycerols and sphingomyelins\(^{15,16}\)). Unexpectedly, we observed a global decrease—not increase—in lysophosphatidylcholines (LPCs) and lysophosphatidylethanolamines (LPEs) during a 24-h fast (another byproduct of PC catabolism), suggesting a complex pathway of phospholipid metabolism during starvation. Indeed, increased LPCs have been linked to decreased fatty acid oxidation\(^{17}\) and broad pro-inflammatory phenotypes\(^{18}\). Finally, we observed a decrease in many glucogenic amino acids, consistent with increased liver gluconeogenesis\(^{19}\) or decreased intake, except for branched-chain amino acids (leucine, isoleucine, valine; BCAAs). These increases in circulating BCAA are consistent with inhibition of their catabolism via increased fatty acid oxidation (as noted above, via NADH availability) and decreased availability of reaction substrates for BCAA catabolism provided through glycolytic flux (not measured here)\(^{19}\).

Across all dietary chambers, we observed a generally diverse pattern of metabolite changes, most prominently in amino acids, glycerophospholipids, and fatty acids (Figure 3B). Of note, there was consistency in dietary metabolite responses between chambers that mapped onto 24-h respiratory quotient, a measure of substrate preferences during the chamber (Figure 3C): diets associated with a generally lower 24-h RQ (favoring more fat oxidation) exhibited increases in fatty acids (specifically acylcarnitine species) and decreases in glycerophospholipids (predominantly PCs and their precursor Pes\(^{20}\) or catabolic byproducts LPCs/LPEs). Patterns of metabolite excursions (not necessarily overall fold change magnitude) were similar across several diets with closer macronutrient composition, energy intake, or substrate oxidation preferences: metabolic patterns during fasting were correlated directly to
energy balance (a lower caloric intake than other chambers, \(\rho=0.67\)) and high fat (similar preference for lipid oxidation, \(\rho=0.34\)). On the other hand, the relation in metabolic patterns between fasting and diets with greater carbohydrate availability were inverse (high-carbohydrate, \(\rho=-0.29\); balanced overfeeding, \(\rho=-0.43\); Figure 3D-E; (full correlation plots in Extended Data Figure 3). Moreover, high protein and high fat diets exhibited concordance, likely owing to a similar fat macronutrient composition (20% vs. 30%, respectively). Given the random order, cross-over design of chambers after energy balance across the study, the consistent mapping of metabolic responses to physiologic adaptation phenotypes and consistent results in mixed modeling results (accounting for carry-over design, Extended Data Figure 4, Supplemental Table 5) increased our confidence in absence of a major bias by carry-forward effects of metabolites across chambers. Of note, the low protein chamber exhibited the least concordance in pattern across chambers (Figure 3C). Metabolic changes within the low protein chamber included a generalized decrease in most essential amino acids (see Extended Data Figure 5), except alanine, glutamine, and glycine, some of which was consistent with free-living studies of low protein diet\(^{21}\). In addition to metabolites that denote substrate utilization, we observed dynamicity in several metabolites of more general clinical interest, specifically microbial products (e.g., trimethylamine N-oxide, indole derivatives, hippuric acid), highlighting unique interconnections among macronutrient intake, host commensal processing and metabolic response\(^{22}\). Overall, the metabolite-physiologic adaptation concordance was observed across multiple macronutrient compositions, reinforcing links between individual substrate preferences and metabolic responses to diet.

Given these results suggesting metabolic changes at 24-h of overfeeding diets mirror physiologic substrate oxidation preferences (by 24-h RQ), we explored this directly across diets (full results in Supplemental Table 6). Using mixed models across all participants and chambers to maximize power, we identified metabolites associated with 24-h RQ, individual
measures of substrate oxidation rates and 24-h EE (Figure 4A). This analysis was predicated on evidence indicating that—although fuel preference is driven primarily by dietary macronutrient content—there remains an intrinsic intra-individual predisposition to fuel preference across diets14,23. Similar to metabolic excursions across diets, changes in carnitines (decreased 24-h RQ) and glycerophospholipids (e.g., PCs and LPCs; increased 24-hr RQ) were associated with substrate preferences, consistent with acylcarnitines as indicators of increased β-oxidation and with a role for PCs as a fatty acid source24. These results were robust to regression within each diet separately (Extended Data Figure 6, Supplemental Table 7). In addition, we observed a strong, concordant, synergistic relation between the pre-chamber metabolite level and metabolite change during a chamber with the 24-h RQ (\(\rho=0.86\); Extended Data Figure 7), driven by “pre-meal” metabolites reflecting fatty acid oxidation (carnitines, pantothenic acid) and lipid availability (PC, LPC/LPE). Pending larger study validation, these results suggest a potential for “resting” pre-meal metabolomics to inform substrate preference which may allow future phenotyping without such detailed interventions.

Moreover, in examining non-esterified free fatty acid (NEFA) levels pre- and post-chamber as an index of adipose tissue lipid mobilization, we observed a consistent correlation of increased NEFA levels during a chamber with an increase in circulating acylcarnitines, specifically in chambers of caloric excess (Figure 4B-C; Extended Data Figure 8; Supplemental Tables 8-9). While our study did not serially sample the metabolome during chambers, these findings do provide support for a balance between increased lipid availability (NEFAs) and its utilization (carnitine metabolism) and liberation (PE and PC metabolism). Additionally, we observed a positive association between increase in D-alpha-tocopherylquinone and increased NEFA, consistent with its role as a vitamin E catabolite that serves as a carnitine-dependent cofactor for mitochondrial fatty acid desaturases25. The relation of NEFA to changes in other species (including amino acids) was complicated and less uniform
across diets, likely owing to macronutrient context-specific interactions between intake and metabolism. Unlike 24-h RQ, 24-h EE did not map as consistently to the changes in the assayed metabolome with diet (Figure 4A). Figure 4D represents a full summary of our result, highlighting these shared relations in physiologic-metabolic phenotype across diets.

Discussion

To our knowledge, this study represents the first application of metabolite profiling to an exquisitely controlled experiment in human metabolism in which individuals were exposed to varied composition of macronutrient overfeeding and fasting in a respiratory chamber. Overall, the results suggest a coordinated structure of intra-individual substrate preferences across diets, which may even be captured in fasting measures. The metabolome is clearly responsive to nutritional interventions10,26-28, but most extant studies have been conducted in less strictly monitored settings than the current report, without phenotyping of individual physiologic responses. In a 4-week study with weight balance and 3 different diets (low fat, low glycemic index, very-low carbohydrate), Esko and colleagues observed a broad change in the metabolome across diets (≈50% of their assayed metabolome)26. While the precise dietary exposures were different in nature and duration from our study, some metabolites were shared, including carnitines, select amino acids, ketones, and microbially products. Moreover, while we did not have access to long-term outcomes in the present report, acute metabolic responses to select substrates (e.g., oral glucose11,29-31 or mixed meal tolerance testing32) may map to longer-term cardiometabolic outcomes33. Indeed, in the present report, we observed dynamic changes in metabolites (glycine34, glutamine35, DMGV36-38) linked to cardiometabolic states in select dietary interventions (e.g., high-fat, fasting, high-protein), opening the potential for individualizing metabolic risk mitigation strategies by precision metabolic response to nutrition.

We acknowledge several key limitations to the study, including modest sample size, limited number of metabolites measured, pre-specification of macronutrient content and off-
protocol changes to the specific provided foods (e.g., due to participant preference but without any changes to macronutrient content), carry-forward effects (from inadequate recovery of metabolome between chambers), and measuring post-chamber metabolites nearly approximately 11h after last overfeeding meal. Despite these limitations, this experimental protocol has been used to uncover known functional metabolic mediators of energy expenditure (FGF-21)39. While the consistency of signals with fat oxidation and 24-h RQ across diets and evidence of replication in other studies (fasting10 and non-fasting26) are encouraging, the acknowledged limitations highlight the inherent complexities in studying human nutrition at precision scale, where large studies of prolonged, controlled feeding are logistically, ethically, and financially impractical. In addition, with the advent of high-resolution transcriptomics and proteomics, concomitant tissue sampling during dietary challenge to assess underlying metabolic pathways may serve to further contextualize our findings within the circulating metabolome (e.g., via assessing insulin response, metabolic enzyme expression, mTOR signaling). Overall, these results underscore the importance of detailed physiologic experiments in human nutrition to guide understanding of metabolic mechanisms of dietary response. The upcoming results of large, targeted metabolomic validation efforts of nutrition at population scale (e.g., Nutrition for Precision Health initiative)—contextualized with our results from metabolic chambers—is likely to yield population-level estimates of dietary effects that may reveal how and why individuals respond differently to diet and its implication on metabolic risk.

Methods

Study cohort: This study involved a National Institutes of Health (NIH) approved protocol to study short-term metabolic adaptation under macronutrient stress (NIH Protocol #07-DK-N215, PI: Krakoff)14, 39-41. The study was approved by the NIH IRB, and all subjects provided written informed consent. Of note, 94 participants had valid data for energy balance respiratory chamber data used to calibrate the 200% caloric excess chambers. Subsequent 24-h
intervention diets were randomized. Due to technical issues or participant withdrawal, the number of participants in each dietary chamber varies (Table 1). Participants were required to have a stable weight for 6 months and be otherwise healthy based on medical history and physical examination upon admission to the inpatient NIH Clinical Research Unit. Upon admission, volunteers were placed on a weight maintaining diet (WMD), which was followed prior to and in between the 24-h intervention diets. Participants were weighed daily and calories were adjusted to maintain weight (coefficient of variation of weight over study 0.9±0.6%). After 3 days of the WMD, participants underwent a 75-gram oral glucose tolerance test to exclude individuals with type 2 diabetes (T2D) or impaired glucose regulation (fasting glucose ≥ 100 mg/dl or 2-h glucose ≥140 mg/dl; T2D, fasting glucose ≥126 mg/dl or 2-h glucose ≥200 mg/dl). The subjects then underwent a series of 24-h whole-room indirect calorimetry experiments (chambers) to quantify 24-h energy expenditure (24-h EE) and 24-h respiratory quotient (24-h RQ). A 24-h urine collection was performed to assess protein oxidation rates, and lipid and carbohydrate oxidation were calculated as described. Chambers were performed under several different conditions, including energy balance (calories ingested = calories expended), fasting, and 200% caloric overfeeding diets in random order and with intervening periods of at least 3 days on WMD: (1) standard overfeeding (SOF); (2) a low-protein overfeeding (LPF); (3) high-fat/normal-protein overfeeding (FNP); (4) high-fat/high-protein overfeeding (HPF); (5) high-carbohydrate/normal-protein overfeeding diet (CNP). Caloric excess (200% of individual-specific energy needs) was used to perturb energy balance and to best elicit inter-individual heterogeneity in phenotypes. The total inpatient stay lasted ≈37 days.

Dietary exposures: Macronutrient composition for each diet is shown in Supplemental Table 1. Carbohydrates were a mixture of simple (e.g., soda, candy) and complex (legumes, vegetables, and fruit). Protein source was predominantly of animal origin. Dietary exposures included 24-h fasting and different overfeeding conditions (200% of calories expended during
EB) and fasting diet macronutrient composition was quantified by “The Food Processor” software (ESHA Research, Salem, OR). Residual uneaten food was returned to the metabolic kitchen to calculate actual macronutrient intake during each session. These dietary compositions were chosen specifically to stress the metabolic system not only by providing modern obesogenic diets (e.g. high-carbohydrate or high-fat), but also based on previous data indicating that low-protein (3%) diets amplify inter-individual differences in thermogenesis. Metabolic chamber measures: The description of our indirect calorimetry apparatus and methods have been published. The first two chamber sessions were used to precisely establish the individual level of energy balance (EB), a condition where isocaloric intake matches energy expenditure. Measured 24-h EE during the first eucaloric chamber was used as the energy intake calories for the second chamber to precisely achieve energy balance. This second chamber was used as the EB chamber in this analysis. The order of subsequent chambers was randomized (to limit confounding effects of the order of dietary exposure on metabolism) and spaced by 3-day intervals of WMD and limited physical activity (walking, playing pool, watching TV) to limit “carry-forward” effects from prior a chamber’s diet. Those subjects who could not consume >95% of the food provided by the metabolic kitchen during the chamber sessions were withdrawn from the analysis.

Subjects entered the chamber immediately following breakfast at 7:00 AM (if not a fasting chamber day). Venous blood was drawn before entry into chamber and upon exit into EDTA tubes, with DPP-IV inhibitor and aprotinin, centrifuged for plasma generation and stored at −70°C. Meals in the chamber were provided via a two-way airlock at 11:00 AM, 4:00 PM, and 7:00 PM. Subjects were instructed not to be physically active in the calorimeter to limit the contribution of activity to adaptive thermogenesis. Radar was used to monitor physical activity (denoting % time with motion). The temperature of the chamber was controlled at 24°C, and monthly validation tests (involving propane combustion inside the chamber) verified O₂ and CO₂ recovery within 2% based on change in propane weight. Air output from the chamber was...
sampled every minute and compared to inflow (fresh) air to calculate a subject’s VCO₂ production and VO₂ consumption per minute. These measures were utilized to quantify a per-minute RQ (= VCO₂/VO₂) and the rate of energy expenditure [Lusk equation: VO₂ x 4.686 + (calculated RQ – 0.707) x 0.361/0.293], as described⁴⁴,⁴⁵. The per-minute values for energy expenditure and RQ were extrapolated to 24-h (multiplied by 1440). 24-h urinary nitrogen excretion rate was measured while in the chamber to estimate 24-h protein oxidation rate and used to derive the non-protein RQ, which was used to calculate 24-h carbohydrate (CARBOX) and lipid (LIPOX) oxidation rates⁴² as a secondary measure of substrate oxidation preference.

We have demonstrated excellent reproducibility of metabolic measures previously⁴¹.

Metabolite profiling: Measurement of 322 metabolites, including amino acids, acylcarnitines, and other cationic polar metabolites, were made using liquid chromatography–tandem mass spectroscopy (LC-MS) as described previously⁴⁵. We observed an excellent coefficient of variation in pooled QC samples across metabolites using raw, not log-transformed, data (median 4.7%, 25th-75th percentile, 3.4%-7.6%). We reviewed distributions of the pre-chamber metabolite levels for each dietary chamber and excluded measurements that were >5 standard deviations within a diet. We excluded metabolites with any degree of missingness from our analysis (including those missing due to outlier removal), leaving 263 metabolites for analysis. We log₂ transformed metabolite levels prior to use in models for model interpretation to be centered around log₂ fold changes in metabolite levels.

Statistical analysis

While our sample size is large for studies of this degree of precision phenotyping in 24-h metabolic chambers, we were sensitive to dimensionality and overfitting concerns given the number of metabolites and chambers. In this regard, we performed two approaches to test the effect of each dietary chamber on changes in metabolite levels: a serial pre- vs. post-chamber metabolite comparison (t-test) and a more complex mixed model approach including interaction
terms to model random chamber order and account for cross-over effects. For t-tests, a false
discovery of 5% (Benjamini-Hochberg) was imposed across all tested metabolites within a
dietary chamber. To estimate the effect of each dietary chamber on the log2 fold change in
metabolite (in relation to the energy balance chamber), we constructed linear mixed models of
the form: post-chamber metabolite log2 level ~ pre-chamber log2 metabolite level + diet +
chamber order + random effect per participant. Chamber order refers to the order the participant
entered the dietary chamber (e.g., energy balance is 1 for all participants as this was the first
chamber entered, the remaining chambers are in random orders across participants). The diet
variable was structured with energy balance diet as the referent.

To test the relations of changes in metabolites with physiologic measures including 24-h
energy expenditure, 24-h respiratory quotient, and oxidation sub-types, we used linear mixed
models. This approach combines data from all dietary chambers into one model with repeated
measures. As an example, the model for 24-h energy expenditure was of the following form: 24-
h energy expenditure ~ log2 fold change metabolite + pre-chamber metabolite log2 level + diet +
age + sex + race + BMI + random effect per participant. We compared these models to linear
models, stratified by diet of the following form: 24-h energy expenditure ~ log2 fold change
metabolite + pre-chamber log2 metabolite level + age + sex + race + BMI, where each model
was restricted to data from a single dietary chamber. To test the relations of changes in
metabolites with changes in non-esterified free fatty acids (NEFA), we created analogous sets
of mixed and linear models, for the outcome of post-chamber NEFA with adjustment for pre-
chamber NEFA, pre-chamber log2 metabolite level, age, sex, race, and BMI (the mixed model
again had a random effect per participant).

Data availability: The metabolic and phenotypic data from this study are available via
controlled access at NIH (contact: Dr. Jonathan Krakoff, email: jkrakoff@mail.nih.gov) due to
participant confidentiality and inclusion of protected groups. Requests for data should be made
to Dr. Jonathan Krakoff directly, with subsequent approval by NIH. Code utilized in these analyses are available at https://github.com/asperry125/MetFlex.

Disclosures: The authors have the following competing interests to disclose. R.S. and V.L.M. have received grant support from Siemens Healthineers, NIDDK, NIA, NHLBI and AHA. V.L.M. has received other research support from NIVA Medical Imaging Solutions. V.L.M. owns stock in Eli Lilly, Johnson & Johnson, Merck, Bristo-Myers Squibb, Pfizer and stock options in Ionetix. V.L.M. has received research grants and speaking honoraria from Quart Medical. M.N. received speaking honoraria from Cytokinetics and is supported by the NIH and by a Career Investment Award from the Department of Medicine, Boston University School of Medicine. R.S. has served as a consultant for Amgen, Cytokinetics, Myokardia, and Best Doctors. The remaining authors report no competing interests.
FIGURE LEGENDS AND EXTENDED DATA

Figure 1. Study scheme, detailing inpatient clinical research protocol and study aims.

Extended Data Figure 1: Number of dietary chambers completed by study participants.

Figure 2. Heterogeneity in metabolic responses to dietary perturbation. Here, we present changes in 5 metabolic parameters (rows) from all dietary chambers, with comparison to the energy balance chamber. Bars represent the mean change across all subjects, and points represent individual participants. While most participants followed the average trend, some individuals displayed opposing changes (e.g., in the high-fat chamber, the average change in respiratory quotient was a decrease, however, in some participants the respiratory quotient increased). Red indicates the average effect was an increase in the metabolic parameter during the dietary chamber compared to energy balance, blue indicates a decrease.

Figure 3. Metabolic responses to dietary intervention and their relation across dietary exposure. (A) Volcano plots of paired t-tests comparing post-chamber metabolite levels with pre-chamber metabolite levels for select chambers. Results for all chambers are presented in Extended Data Figure 2. (B) Results from paired t-tests are summarized for each dietary chamber, grouped by HMDB metabolite class demonstrating glycerophospholipids as the most common class of metabolite to change. (C) Heatmap of the mean log_2-fold change for all metabolites for all dietary chambers, demonstrating similarities between clusters of diets. (D) Spearman correlation heatmap of the paired t-test results across dietary chambers. As might be expected, we observed a moderate degree of correlation between the high-carbohydrate and balanced overfeeding diets. (E) Select examples from Panel C demonstrating correlation of log_2-fold changes between diets. (F) Comparison of the mean log_2 fold change of metabolites across all 7 dietary chambers. Colors represent the dietary chamber, size is proportional to...
mean log₂-fold change, and points are faded if the mean log₂-fold change for each diet-
metabolite combination did not reach at an FDR<5%.

Extended Data Figure 2: Full results from t-tests across all 7 dietary chambers.

Extended Data Figure 3: Correlation of mean log₂ fold changes across all dietary
chambers. Spearman correlation plots comparing all diets against each other. This presents
the full data which is summarized in Figure 3D.

Extended Data Figure 4. Comparison of estimated log₂ fold change in metabolite from t-
tests and a linear mixed model. Paired t-tests demonstrated numerous changes to circulating
metabolites for each dietary chamber (Figure 3A-B). In order to estimate the effect of each
dietary chamber on the log₂ fold change in metabolite, we constructed linear mixed models as
follows: post-chamber log₂ metabolite level ~ pre-chamber log₂ metabolite level + diet +
chamber order + random effect per participant. Chamber order refers to the order the participant
entered the dietary chamber (e.g., energy balance is 1 for all participants as this was the first
chamber entered, the remaining chambers are in random orders across participants). The diet
variable was structured with energy balance diet as the referent. The figure presents the
estimated effect of the dietary chamber on the log₂ fold change of each metabolite, compared to
the energy balance chamber (x-axis). These effects are compared against what was obtained
via paired t-tests (y-axis).

Extended Data Figure 5. Changes in essential v. non-essential amino acids. Comparison
of the mean log₂ fold change of essential and non-essential amino acids (which were quantified
in our study) across all 7 dietary chambers. Colors represent the dietary chamber, size is
proportional to mean log₂ fold change, and points are faded if the mean log₂ fold change for the
diet-metabolite combination did not reach an FDR<5%.

Figure 4. Coordinated metabolomic and physiologic responses to dietary perturbation.

Using a linear mixed model for the outcomes of metabolic parameters (e.g., 24-h energy
expenditure, 24-h respiratory quotient, etc.), we estimated the effect of log₂ fold changes in
individual metabolites aggregated across diets. Example mixed model: 24-h energy expenditure
~ log₂ fold change metabolite + pre-chamber log₂ metabolite level + diet + age + sex + race +
BMI + random intercept per participant. **(A)** Volcano plots of the beta coefficients from the log₂
fold change metabolite variables on respective metabolic parameters. **(B)** Waterfall plot of the
beta coefficients on metabolite log₂ fold change for the outcome of post-chamber non-esterified
fatty acids (NEFA). Model: post-chamber NEFA~ log₂ fold change metabolite + pre-chamber
log₂ metabolite level + pre-chamber NEFA + diet + age + sex + race + BMI + random intercept
per participant. **(C)** Correlation between the sum of log₂ fold changes in carnitines within
participants correlated against the change in NEFA. **(D)** Summary visualization of dietary
chamber related changes in metabolites and relations with changes in global measures of
metabolism (e.g., energy expenditure, respiratory quotient). For visualization, we present
metabolites that with an absolute (mean log₂ fold change)>0.5 in any diet with an FDR<5%. EE
= 24-h energy expenditure (kcal/day), RQ = 24-h respiratory quotient, FC = fold change,
CARBOX = 24-h carbohydrate oxidation (kcal/day), LIPOX = 24-h lipid oxidation (kcal/day),
PROTOX = 24-h protein oxidation (kcal/day).

**Extended Data Figure 6: Relationship between log₂ fold change metabolite and
physiologic measures by diet.** **(A)** Volcano plots reporting the beta coefficient on log₂ fold
change metabolite as a predictor of physiologic measures, such as 24-h energy expenditure
and 24-h respiratory quotient. Example model: 24-h energy expenditure ~ log₂ fold change
metabolite + pre-chamber log₂ metabolite level + age + sex + race + BMI. (B) Comparison of mixed model with diet stratified linear models. Beta coefficients on the x-axes come from linear mixed models of the structure: outcome (e.g., energy expenditure) ~ log₂ fold change metabolite + pre-chamber log₂ metabolite level + diet + age + sex + race + BMI + random effect per participant. Beta coefficients on the y-axes come from diet-stratified linear models of the structure: outcome ~ log₂ fold change metabolite + pre chamber log₂ metabolite level + age + sex + race + BMI.

Extended Data Figure 7: Comparison of effects of pre-chamber metabolite levels and log₂ fold change metabolite on physiologic measures. Scatterplots comparing beta coefficients from the pre-chamber metabolite variable and the log₂ fold change metabolite variable for linear mixed models. Points are faded if neither beta coefficient had an FDR<5%.

Extended Data Figure 8: Relations between log₂ fold change metabolite and change in non-esterified free fatty acids (NEFA) in diet-stratified models. (A) Diet stratified models for NEFA with beta coefficients on the log₂ fold change metabolite. (B) Spearman correlation heatmap of the beta coefficient on log₂ fold change metabolite on the outcome of post-chamber NEFA (adjusted for pre-chamber NEFA and pre chamber metabolite and age/sex/race/BMI) across dietary chambers.
REFERENCES

in Early and Mid-Pregnancy: Findings from the PEARLS Randomized, Controlled Lifestyle Trial. Metabolites. 2020;10.

Figure 1: Study scheme, detailing inpatient clinical research protocol and aims of the study.

How do metabolic responses to nutritional challenge map to physiologic responses quantifying substrate oxidation shifts and energy expenditure?

PROSPECTIVE, INPATIENT 24-h METABOLIC CHAMBER HUMAN STUDIES

Admission

DXA

OCTT

EB chamber

EB chamber

Random order of 6 additional chambers, with pre/post-metabolites and intervening WMD

EB = energy balance (50% CHO, 30% F, 20% P)

BOF = balanced diet OF (200% calories EB)

FST = fasting

LPF = low protein OF (51% CHO, 48% F, 3% P)

HFP = high protein OF (75% CHO, 5% F, 20% P)

WMD

Metabolic response to nutrition (circular metabolome pre/post challenge)

Examples of physiologic response to nutrition (24-h chambers with nutritional perturbation)

24-h Calorimetry Data

Respiratory quotient

Food

Sleep

Substrate oxidation

- Metabolic chamber allows precise measurements of RQ over 24 hours during different diets
- RQ (VCO₂ produced / VO₂ consumed) reflects fuel oxidation preferences (glucose RQ=1, lipids=0.7, protein=0.9)

24-h energy expenditure

- Energy expenditure during 24-h chamber
Extended Data Figure 1: Number of dietary chambers complete by study participants.

![Bar chart showing the number of dietary chambers completed by study participants.](chart.png)
Figure 2: Heterogeneity in metabolic responses to dietary perturbation. Here, we present changes in 5 metabolic parameters (rows) from all dietary chambers, with comparison to the energy balance chamber. Bars represent the mean change across all subjects, and points represent individual participants. While most participants follow the average trend, notably there are individuals who had opposing changes (e.g., in the high-fat chamber, the average change in respiratory quotient was a decrease, however, in some participants the respiratory quotient increased). Red indicates the average effect was an increase in the metabolic parameter during the dietary chamber compared to energy balance, blue indicates a decrease.
Figure 3. Metabolic responses to dietary intervention and their relation across dietary exposure. (A) Volcano plots of paired t-tests comparing post-chamber metabolite levels with pre-chamber metabolite levels for fasting, high fat and high carbohydrate overfeeding chambers. Results for all chambers are presented in Extended Data Figure 2. (B) Results from paired t-tests are summarized for each dietary chamber, grouped by HMDB metabolite class demonstrating glycerophospholipids as the most common class of metabolite to change. (C) Heatmap of the mean log2 fold change for all metabolites for all dietary chambers, demonstrating similarities between clusters of diets. (D) Spearman correlation heatmap of the paired t-test results across dietary chambers. As might be expected, we observed a moderate degree of correlation between the high-carbohydrate and balanced overfeeding diets. (E) Select examples from panel D demonstrating the correlation of log2 fold changes between diets. (F) Comparison of the mean log2 fold change of metabolites across all 7 dietary chambers. Colors represent the dietary chamber, size is proportional to mean log2 fold change, and points are faded if the mean log2 fold change for the diet-metabolite combination did not reach an FDR<5%.

All rights reserved. No reuse allowed without permission.
Figure 3A

The figure shows a scatter plot with the log_{10} p-value on the y-axis and the log2 fold change on the x-axis. The scatter plot is divided into three categories: 24-hr fasting, high-fat, and high-carbohydrate.

The x-axis represents the log2 fold change, while the y-axis represents the log_{10} p-value.

Figure 3B

This figure illustrates the number of metabolites that decreased or increased across different conditions, including energy balance, 24-hr fasting, balanced overfeeding, high-fat, high-carbohydrate, low-protein, and high-protein.

Figure 3C

The figure compares the number of metabolites that decreased or increased, with different colors representing different categories.

Metabolite class:
- Amino acids, peptides, and analogues
- Glycerophospholipids
- Other
- Organonitrogen compounds
- Sphingolipids

T-test on log2 metabolite levels pre- and post-chamber. FDR=0.05
The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. All rights reserved. No reuse allowed without permission.

Figure 3E

- **Metabolite class**
 - Amino acids, peptides, and analogues
 - Fatty Acyls
 - Glycerophospholipids
 - Organonitrogen compounds
 - Other
 - Sphingolipids

- **Legend**
 - Blue: Amino acids, peptides, and analogues
 - Green: Fatty Acyls
 - Orange: Glycerophospholipids
 - Yellow: Organonitrogen compounds
 - Black: Other
 - Purple: Sphingolipids

- **Statistical Notes**
 - $\rho = 0.67, p < 2.2e-16$
 - $\rho = 0.34, p = 1.7e-08$
 - $\rho = 0.35, p = 8.2e-09$
 - $\rho = 0.061, p = 0.33$

- **Axes**
 - Mean log$_2$ fold change 24-hr fasting chamber
 - Mean log$_2$ fold change energy balance chamber
 - Mean log$_2$ fold change high-fat chamber
 - Mean log$_2$ fold change high-carbohydrate chamber
Extended Data Figure 2: Full results from t-tests across all 7 dietary chambers.

Metabolite class
- Amino acids, peptides, and analogues
- Fatty Acids
- Glycerophospholipids
- Organonitrogen compounds
- Other
- Sphingolipids
Extended Data Figure 3: Correlation of mean log₂ fold changes across all dietary chambers. Correlation plots with Spearman rho reported comparing all diets against each other. This data is summarized in Figure 3D.
Paired *t*-tests demonstrated numerous changes to circulating metabolites for each dietary chamber (Figure 3A). In order to estimate the effect of each dietary chamber on the log2 fold change in metabolite, we constructed linear mixed models of the form: post-chamber \(\log_2 \) metabolite level \(\sim \) pre-chamber \(\log_2 \) metabolite level + diet + chamber order + random effect per participant. Chamber order refers to the order the participant entered the dietary chamber (e.g., energy balance is 1 for all participants as this was the first chamber entered, the remaining chambers are in random orders across participants). The diet variable was structured with energy balance diet as the referent. The figure presents the estimated effect of the dietary chamber on the log2 fold change of each metabolite, compared to the energy balance chamber (x-axis). These effects are compared against what was obtained via paired *t*-tests (y-axis).
FDR<5% from linear mixed model

- TRUE
- FALSE
Extended Data Figure 5: Changes in essential v. non-essential amino acids. Comparison of the mean log₂ fold change of essential and non-essential amino acids (which were quantified in our study) across all 7 dietary chambers. Colors represent the dietary chamber, size is proportional to mean log₂ fold change, and points are faded if the mean log₂ fold change for the diet-metabolite combination did not reach an FDR<5%.
Figure 4. Coordinated metabolomic and physiologic responses to dietary perturbation. Using a linear mixed model for the outcomes of metabolic parameters (e.g., energy expenditure, respiratory quotient, etc.), we estimated the effect of log₂ fold changes in individual metabolites aggregated across diets. Example mixed model: 24-h energy expenditure ~ log2 fold change metabolite + pre-chamber metabolite + diet + age + sex + race + BMI + random intercept per participant. (A) Volcano plots of the beta coefficients from the log2 fold change metabolite variables on respective metabolic parameters. (B) Waterfall plot of the beta coefficients on metabolite log2 fold change for the outcome of post-chamber non-esterified fatty acids (NEFA). Model: post-chamber NEFA~ log2 fold change metabolite + pre-chamber metabolite + pre-chamber NEFA + diet + age + sex + race + BMI + random intercept per participant. (C) Correlation between the sum of log2 fold changes in carnitines within participants correlated against the change in NEFA. (D) Summary visualization of dietary chamber related changes in metabolites and relations with changes in global measures of metabolism (e.g., energy expenditure, respiratory quotient). For visualization, we present metabolites that with an absolute (log2 fold change)>0.5 in any diet with an FDR<5%. EE = 24-h energy expenditure (kcal/day), RQ = 24-h respiratory quotient, FC = fold change, CARBOX = 24-h carbohydrate oxidation (kcal/day), LIPOX = 24-h lipid oxidation (kcal/day), PROTOX = 24-h protein oxidation (kcal/day).
Energy balance

24-hr fasting

Balanced overfeeding

High-carbohydrate

High-fat

High-protein

Low-protein
<table>
<thead>
<tr>
<th>Metabolite Class</th>
<th>Color</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sphingolipids</td>
<td>Red</td>
</tr>
<tr>
<td>Diazines</td>
<td>Orange</td>
</tr>
<tr>
<td>Quinolines and derivatives</td>
<td>Yellow</td>
</tr>
<tr>
<td>Tetrapyrroles and derivatives</td>
<td>Green</td>
</tr>
<tr>
<td>Prenol lipids</td>
<td>Blue</td>
</tr>
<tr>
<td>Organonitrogen compounds</td>
<td>Purple</td>
</tr>
<tr>
<td>Pyridines and derivatives</td>
<td>Magenta</td>
</tr>
<tr>
<td>Tetrapyrroles and derivatives</td>
<td>Green</td>
</tr>
<tr>
<td>Azoles</td>
<td>Brown</td>
</tr>
<tr>
<td>Carboxylic acids and derivatives</td>
<td>Pink</td>
</tr>
<tr>
<td>Fatty Acyls</td>
<td>Gray</td>
</tr>
<tr>
<td>Steroids and steroid derivatives</td>
<td>White</td>
</tr>
<tr>
<td>Benzene and substituted derivatives</td>
<td>Pink</td>
</tr>
<tr>
<td>Glucosylphospholipids</td>
<td>Cyan</td>
</tr>
<tr>
<td>Pyridines and derivatives</td>
<td>Yellow</td>
</tr>
<tr>
<td>Glucosylphospholipids</td>
<td>Green</td>
</tr>
</tbody>
</table>

Dist
- 24-hr fasting
- Energy balance
- High-carbohydrate
- Balanced overfeeding
- High-fat
- Low-protein
- High-protein

Mean Energy Expenditure
- 2500
- 2200
- 2100
- 2000
- 1900

Mean Respiratory Quotient
- 0.85
- 0.9
- 0.85
- 0.8
- 0.75

Log Fold Change (FC)
- 0
- 2
- 4

- β on metabolite log_{10} FC for EE
- β on metabolite log_{10} FC for RQ
- β on metabolite log_{10} FC for CARBOX
- β on metabolite log_{10} FC for LIPOX
Extended Data Figure 6A: Relationship between log2 fold change metabolite and physiologic measures by diet. Volcano plots reporting the beta coefficient on log2 fold change metabolite as a predictor of physiologic measures, such as energy expenditure and respiratory quotient. Example model: 24-h energy expenditure ~ log2 fold change metabolite + pre-chamber metabolite + age + sex + race + BMI.
Extended Data Figure 6B: Comparison of mixed model with diet stratified linear models.

Beta coefficients on the x-axes come from linear mixed models of the structure outcome (e.g., energy expenditure) $\sim \log_2$ fold change metabolite + pre-chamber metabolite + diet + age + sex + race + BMI + random effect per participant. Beta coefficients on the y-axes come from diet-stratified linear models of the structure outcome $\sim \log_2$ fold change metabolite + pre chamber metabolite + age + sex + race + BMI.
Extended Data Figure 7: Comparison of effects of pre-chamber metabolite levels and log2 fold change metabolite on physiologic measures. Scatterplots comparing beta coefficients from the pre-chamber metabolite variable and the log2 fold change metabolite variable for linear mixed models. Points are faded if neither beta coefficient had an FDR<5%.

\[\rho = 0.73, p < 2.2 \times 10^{-16} \]

\[\rho = 0.86, p < 2.2 \times 10^{-16} \]

Metabolite class
- Amino acids, peptides, and analogues
- Fatty Acyls
- Phospholipids
- Other
- Organonitrogen compounds
- Sphingolipids
Extended Data Figure 8: Relations between log₂ fold change metabolite and change in non-esterified fatty acids (NEFA) in diet-stratified models. (A) Diet stratified models for NEFA with beta coefficients on the log₂ fold change metabolite. (B) Spearman correlation heatmap of the beta coefficient on log₂ fold change metabolite on the outcome of post-chamber NEFA (adjusted for pre-chamber NEFA and pre chamber metabolite and age/sex/race/BMI) across dietary chambers.