Inapparent primary infections reveal hidden serotype-specific epidemiological patterns and spectrum of infection outcome: a cohort study in Nicaragua

Sandra Bos1*, Jose Victor Zambrana2,3*, Elias Duarte1, Aaron L. Graber1, Julia Huffaker1, Carlos Montenegro2, Lakshmanane Premkumar4, Aubree Gordon3, Angel Balmaseda2,5, Eva Harris1

1Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA
2Sustainable Sciences Institute, Managua, Nicaragua
3Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI
4Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC
5Laboratorio Nacional de Virología, Centro Nacional de Diagnóstico y Referencia, Ministerio de Salud, Managua, Nicaragua
Research in context

Evidence before this study
We conducted a search in PubMed for studies published up to February 2024. Keywords included "dengue virus" and "DENV" in combination with "inapparent infections", "asymptomatic infections", "primary infections by serotype", “Fol by serotype”, “force of infection”, “force of infection by serotype”, and identified a significant gap in the current understanding of dengue epidemiology. Despite acknowledging the high prevalence of inapparent DENV infections in endemic regions, previous research has focused primarily on symptomatic infections, potentially biasing our understanding of the DENV epidemiological landscape and hindering our capacity to determine the complete disease spectrum of the different DENV serotypes. While cross-sectional studies have provided preliminary insights into this gap, there is a need for more comprehensive and detailed serotype-specific insights to evaluate the epidemiological impact of inapparent infections. The lack of comprehensive characterization of inapparent infections reflects methodological challenges, particularly the need for prospective cohort studies designed to capture and accurately serotype these infections. Moreover, the reliance on labor-intensive and low-throughput antibody neutralization assays for serotyping, despite their accuracy, has constrained high-throughput analysis required for large-scale epidemiological studies.

Added value of this study
Our study, spanning 17 years of prospective cohort data in Nicaragua, addresses this bottleneck in dengue research by providing a detailed examination of primary inapparent infections. The introduction of a novel envelope domain III (EDIII) multiplex microsphere-based assay for DENV serotyping represents a significant methodological advance, offering an efficient, scalable alternative for large epidemiological studies. A key contribution of our study is the intricate pattern of serotype distribution among inapparent infections. In contrast to the serotype predominance observed in symptomatic infections, inapparent infections exhibit a complex landscape with co-circulation of multiple DENV serotypes, including serotypes undetected in symptomatic surveillance in multiple years. Our systematic documentation of the entire disease spectrum provides unprecedented insights into the serotype-specific disease burden in primary infection, including the proportion of symptomatic versus inapparent infection and its temporal variations, thus providing a more complete picture of DENV epidemiology than has been available to date. Notably, we demonstrate striking...
differences in disease severity by serotype, with DENV3 infections being significantly more symptomatic and more severe compared to DENV1 and DENV2, the latter displaying the highest rate of inapparent infection.

Implications of all the available evidence

Our research challenges prior assumptions by demonstrating that inapparent and symptomatic primary DENV infections present distinct epidemiological profiles, revealing that the epidemiological footprint of DENV is broader and more nuanced than previously recognized through symptomatic cases alone. These findings underscore the utility for continuous and comprehensive surveillance systems that capture both symptomatic and inapparent infections to accurately assess the epidemiological burden of DENV and inform public health interventions. Additionally, they provide critical insight for enhancing the accuracy of predictive DENV transmission modeling. Furthermore, the marked differences in infection outcomes by serotype emphasize the need for serotype-informed public health strategies. This nuanced understanding is pivotal for the crafting of targeted interventions, vaccine development and vaccination strategies, and efficient resource allocation, ultimately contributing to the global effort to mitigate the impact of dengue.
Abstract

Background
Dengue is the most prevalent mosquito-borne viral disease and a major public health problem worldwide. Most primary infections with the four dengue virus serotypes (DENV1-4) are inapparent; nevertheless, prior research has primarily focused on symptomatic infections, which has limited our understanding of the epidemiological burden and spectrum of disease of each DENV serotype. Our study addresses this bottleneck in dengue research by providing a new method and a detailed examination of primary inapparent infections.

Methods
Here we present (1) the evaluation of a multiplex DENV1-4 envelope domain III multiplex microsphere-based assay (EDIII-MMBA) to serotype inapparent primary infections and (2) its application leveraging 17 years of prospective sample collection from the Nicaraguan Pediatric Dengue Cohort Study. After evaluation, we analyzed 46% (N=574) of total inapparent primary DENV infections with the EDIII-MMBA. Remaining infections were inferred using stochastic imputation, taking year and neighborhood of infection into account.

Findings
The EDIII-MMBA demonstrated excellent diagnostic accuracy of symptomatic and inapparent primary DENV infections when evaluated against gold-standard serotyping methods. Significant within- and between-year variation in serotype distribution between symptomatic and inapparent infections and circulation of serotypes undetected in symptomatic cases were observed in multiple years. Our findings reveal that a significant majority of primary infections remained inapparent: 76.8% for DENV1, 79.9% for DENV2, and 63.9% for DENV3. DENV3 exhibited the highest likelihood of symptomatic and severe primary infections (Pooled OR compared to DENV1 = 2.13, 95% CI 1.28-3.56, and 6.75, 2.01-22.62, respectively), whereas DENV2 had similar likelihood to DENV1 in both analyses.

Interpretation
Our study indicates that case surveillance skews the perceived epidemiological footprint of DENV and reveals a more complex and intricate pattern of serotype distribution in inapparent infections. Further, the significant differences in infection outcomes by serotype emphasizes the need for serotype-informed public health strategies.

Funding
NIH/NIAID P01AI106695, U01AI153416
Introduction

Dengue, caused by the four dengue virus serotypes (DENV1-4), is the most prevalent mosquito-borne viral disease in humans and a significant global health threat. Infection outcomes range from inapparent/subclinical infection to severe, potentially fatal disease. The global dissemination of DENV, alongside the co-circulation of its serotypes, has increased both the incidence and severity of the disease in recent decades. This epidemiological shift emphasizes the need for a comprehensive understanding of the circulation and interactions among the different serotypes and their implications for disease outcomes.

Infection with one of the four antigenically related DENV serotypes leads to the production of type-specific antibodies as well as cross-reactive (XR) antibodies that can bind to other DENV serotypes. These XR antibodies can either protect or increase the risk of subsequent symptomatic or severe DENV infection in both natural infections and vaccines.\(^1\)-\(^4\) In this context, one factor that can influence clinical outcome is the infecting serotype.\(^3\),\(^5\) For instance, we found that prior DENV infection increased the risk of symptomatic or severe DENV2, DENV3, or DENV4 but not DENV1 infection.\(^3\),\(^5\) Secondary infections with DENV2 and DENV3 have been linked to more severe outcomes compared to DENV4 and DENV1.\(^6\)-\(^8\) Further, an association between the order of DENV serotype infection and clinical outcome has been reported\(^5\), suggesting that the initial infecting serotype may modulate infection outcomes.\(^3\),\(^9\),\(^10\)

While the majority of primary DENV infections are inapparent, they significantly contribute to the force of infection, transmission, and overall epidemiological burden.\(^11\)-\(^13\) However, accurately assessing this burden, understanding the complete disease spectrum associated with each serotype, and predicting the risk of severe disease outcomes upon subsequent infection have been challenging due to the lack of characterization of inapparent infections. This knowledge gap stems from methodological limitations, particularly the need for prospective cohort studies designed to capture and accurately serotype inapparent infection, compounded by the low-throughput nature of neutralization assays that are used to identify serotype in inapparent infections. Consequently, prior research has predominantly focused on symptomatic infections, potentially skewing our understanding of the DENV epidemiological landscape.

To address this bottleneck in dengue research, we leveraged 17 years of prospective sample collection from participants enrolled in our pediatric cohort in Nicaragua and demonstrated the hidden contribution of
inapparent DENV infection to both the overall and serotype-specific DENV burden in Nicaragua between 2004 and 2021. To achieve this, we evaluated and implemented an envelope domain III (EDIII)-multiplex microsphere-based assay (EDIII-MMBA) to serotype inapparent infection.14 We then examined the distribution of DENV serotypes in inapparent versus symptomatic primary infections, the proportion of inapparent infections per serotype, and their temporal dynamics, together revealing the full disease spectrum associated with primary DENV infection by serotype.
Methods

Study design and participants

This study consists of two phases: (1) evaluation of a multiplex DENV1-4 envelope domain III (EDIII) Luminex-based assay to serotype inapparent primary infections and (2) its application to retrospectively characterize inapparent primary infections. To do so, we leveraged serum samples collected from 2004 to 2021 from our ongoing Pediatric Dengue Cohort Study (PDCS),\(^{15}\) which has followed ~4,000 active participants aged 2-17 years old since 2004. The PDCS is conducted at the Sócrates Flores Vivas Health Center located in District 2 of Managua, Nicaragua. Dengue cases are detected by enhanced passive surveillance, and healthy samples are collected annually in March-April, which allows the detection of inapparent infections. Ethics statements, description of the PDCS and participants, case definitions, and severity classifications are described in supplementary methods and elsewhere.\(^{15}\) In this study, we included DENV-naive participants at enrollment (N=5931) and followed them until they experienced a primary DENV infection (N=1591). Participants with DENV or ZIKV immunity at enrollment were excluded (N = 5824).

Procedures

Symptomatic primary dengue cases were confirmed by detection of DENV RNA by RT-PCR and/or virus isolation in the acute-phase sample and/or seroconversion detected by DENV IgM ELISA or DENV iELISA in paired acute- and convalescent-phase samples. Inapparent primary DENV infections were detected by seroconversion between 2 consecutive annual samples in the absence of any documented dengue case in the intervening year. Disease severity of symptomatic DENV infections was classified according to the 2009 WHO Dengue Guidelines\(^ {16}\). Procedures and assays are explained in detail in the supplementary methods.

To type inapparent infections, we applied a new EDIII multiplex microsphere-based assay (EDIII-MMBA), wherein the EDIII of DENV1-4 and ZIKV containing an Avi-Tag are conjugated to avidin-coated microspheres. The EDIII-MMBA was evaluated against RT-PCR and focus reduction neutralization test (FRNT) using 150 samples constituting the evaluation set (86 inapparent infections and 64 symptomatic infections selected by convenience sampling). See supplementary methods for details. Of the 1244 inapparent primary DENV infections that occurred from 2004 to 2021 as captured by the DENV iELISA, 574 (46%) were processed by the EDIII-MMBA assay. Selection of this subset was predominantly performed by
a yearly unweighted random selection of primary infections (N=488, 85%), together with the 86 (15%) from the validation subset.

Definitions

DENV serotype was determined by RT-PCR in symptomatic primary DENV infections and by FRNT and EDIII-MMBA in inapparent primary DENV infections. Epidemic year starts between February-April (in July before 2011) each year, at the beginning of the annual sampling, and ends before the beginning of the next annual sampling. Participants’ neighborhoods were defined per the Nicaraguan Census.

Statistical methods

The accuracy of the EDIII-MMBA assay to serotype primary DENV infections was evaluated by comparing it to gold standards: RT-PCR and FRNT. Sensitivity, specificity, and diagnostic accuracy, calculated as the sum of the true positives and true negatives divided by the total number of samples evaluated, were calculated for each serotype (DENV1-3) and Zika virus (ZIKV) across all test combinations. We calculated 95% confidence intervals (95% CI) using the exact binomial method for all the diagnostic performance measures. Outcomes included the serotype-specific inapparent, symptomatic, severe and overall primary DENV infections as described above. Covariates include DENV serotype, epidemic year, neighborhood, and household location and were analyzed as categorical variables.

To determine population-level infection parameters over time by DENV serotype, including percent infected among the naive population and percent of severe, symptomatic and inapparent primary infections, we addressed missingness of serotype in both inapparent and symptomatic primary DENV infections by employing multiple imputation with stochastic Multivariate Imputation by Chained Equations (MICE). A polytomous logistic regression model, incorporating epidemic year and neighborhood as predictors, was used to impute missing serotypes. We ran independent imputation models for inapparent and symptomatic primary DENV infections, running 1000 simulations with 10 iterations for both models. The resulting imputed datasets were merged for analysis, pooling all results across simulations. To understand the temporal trends of infected individuals by outcome (symptomatic vs. inapparent) for each serotype, we plotted the pooled counts and percentages across imputations over time. Additionally, we calculated the relative distribution of serotypes by outcomes over time.
For our primary endpoints, we analyzed the ratio of symptomatic and severe infections out of the total infections specific to each serotype using separate logistic regression models by symptomatic and severe infections, adjusting by DENV serotype and controlling by epidemic year. As secondary endpoints, we analyzed the within-year relative distribution of serotypes by symptomatic and severe infections by employing Fisher's exact test to both typed and imputed data. Additionally, we analyzed changes in the percent symptomatic infections by DENV serotype over time by applying logistic regression models measuring the likelihood of symptomatic infection by epidemic year and stratifying by DENV serotype. Finally, we analyzed the infection incidence proportion by serotype by applying intercept-only logistic regression models measuring the likelihood of infection stratifying by each serotype. Various sensitivity analyses were performed on our primary endpoint analysis. We added age and sex into our main endpoint models to address potential confounders. We added the no EDIII-Abs detected category into the polytomous regression imputation to address the potential limitation of the EDIII-MMBA to serotype primary infections detected by iELISA. Finally, we applied predicted mean matching, regression trees, and random forest instead of polytomous logistic regression to address missingness. To account for the imputed data, we pooled the analyses across simulations using Rubin's rule to obtain estimates and 95% CI for the model coefficients. All statistical analyses and data imputation were executed in R (version 4.3.2), utilizing the 'mice' package (version 3.16.0).
Results

In this study, we analyzed primary DENV infection data from the PDCS from 2004 to 2021, involving a median of 1537 (IQR = 1423-1865) DENV-naïve participants followed annually (Table S1). Notably, this period includes the ZIKV epidemic in 2016, which significantly dampened DENV circulation in Nicaragua in 2016-2018. We first evaluated the count and incidence proportion of primary infections (Fig 1A-B). Over the 17-year period, we observed significant year-to-year fluctuations in the number of primary infections, ranging from 6 in 2018 to 289 in 2019, with a median annual incidence proportion of 4.4% (IQR = 1.3-8.7%) within the study population (Table S1). Prior to the emergence of ZIKV, a median of 109 primary infections was recorded annually, which dropped to 12 from 2016 to 2018, before a significant resurgence of DENV primary infection in 2019 (N=289). Out of the 1626 total primary infections we studied, 382 were symptomatic while 1244 were inapparent. We found that a median of 76% of primary infections were inapparent, although this percentage varied significantly across epidemic years, ranging from 42% (N = 12) in 2016 to 100% in 2021 (N = 21) (Fig 1C).

Considering the predominance of inapparent primary infections, serotyping these infections is critical to evaluate the epidemiological burden and virulence associated with each serotype. However, the "gold standard" serotyping method, DENV1-4 neutralization assay, is both time- and sample-intensive. To address these limitations, we developed an EDIII-multiplex microsphere-based assay (EDIII-MMBA) capable of detecting DENV type-specific antibodies to serotype primary infections. The EDIII-MMBA demonstrated exceptional diagnostic performance, achieving 100% sensitivity, specificity, and diagnostic accuracy when evaluated against both RT-PCR and FRNT for DENV1-3 and ZIKV (Table 1). Concordance of EDIII-MMBA values with RT-PCR and FRNT is shown in Fig 2.

The EDIII-MMBA was conducted on 574 out of 1244 (46%) primary inapparent infections recorded between 2004 and 2021, of which 425 (74%) were successfully serotyped. Twenty-five infections (4%) were excluded due to either invalid typing (N=11) or ZIKV infection (N=14). EDIII-antibody levels below the detection limit were observed in 114 (19%) samples. This discrepancy might be due to the difference in the type of antibody measured (anti-EDIII IgG), compared to the iELISA used initially to detect infection (total Ig primarily directed towards anti-pr and anti-E fusion loop antibodies).¹ The breakdown of typed and untyped infections, along with a flowchart illustrating the screening and serotyping process, are provided in Table S2
and Fig S1. Missing serotype data on the remaining inapparent and symptomatic infections were imputed using the results of EDIII-MMBA and RT-PCR, respectively (Fig S3).

Throughout the study period, DENV serotypes 1, 2, and 3 were the dominant serotypes, representing 98% of total primary infections, reflecting the serotypes circulating in the country. In contrast, DENV4 circulation was very low and was exclusively detected in inapparent infections. The analysis of primary infections revealed distinct serotype distributions, with significant differences observed between the proportions of symptomatic versus inapparent infections caused by each serotype every year (Fig 3A). For instance, in 2004, DENV1 was the only serotype detected in symptomatic cases, whereas all four serotypes circulated within the inapparent infection fraction. During the 2008-2010 period, DENV3 was dominant in symptomatic cases but exhibited lower relative prevalence within the inapparent fraction. Significant within-year variations in serotype distribution were observed between the symptomatic and inapparent infection fractions, particularly in 2004 (p 0.011), 2007 (p 0.021), 2008 (p 0.0025), and 2009 (p 0.005) (Fig 3A). These variations and temporal dynamics were consistent across experimentally serotyped and imputed datasets (Fig 3A and Fig S3C).

Subsequent stratification of the cumulative incidence proportions of inapparent and symptomatic infections by serotype (Fig 3B) further accentuates the pattern observed initially: whereas symptomatic infections tend to be dominated by a single serotype, the DENV landscape unveiled by inapparent infections is more complex, with co-circulation of multiple DENV serotypes, including serotypes undetected in symptomatic surveillance, in multiple years.

DENV2 demonstrated the most extended circulation period and the highest overall incidence in our study compared to DENV1 and DENV3 (Table 2). Nevertheless, analyzing the cumulative annual incidence proportion of primary symptomatic and inapparent infections per serotype highlighted dynamic shifts in the dominance of DENV serotypes. While DENV2 dominated the initial years of the study, this dominance transitioned to DENV3 in 2009-2010 and subsequently shifted to DENV1 during the 2012-2013 period, before DENV2 resurgence in 2019 (Fig 4A). A marked change in DENV2 incidence proportion was particularly notable in 2019, with 17% (95% CI 15–19%) of the naïve population experiencing primary DENV2 infections compared to only 4% (95% CI 3–5%) in 2006 (Fig 4A, Fig S4). The incidence proportion
of primary DENV3 infections was particularly high between 2008 and 2011, reaching up to 7% (95% CI 6–9%) of the naïve population at its peak whereas for DENV1 incidence peaked in 2012 (6%, 95% CI 5–7%).

Analyzing the proportion of symptomatic infections among total infections per serotype over time revealed considerable yearly fluctuations. Excluding years when no symptomatic infections were found and years with <10 primary infections per serotype, the proportion of DENV1 symptomatic infections among DENV1 total infections ranged from 7% (95% CI 1–36%) in 2006 to a peak of 40% (95% CI 31%–49%) in 2012; DENV2 ranged from 6% (95% CI 2–16%) in 2006 to 29% (95% CI 24–35%) in 2019; and DENV3 ranged from 26% (95% CI 15–40%) in 2011 to 44% (95% CI 22–69%) in 2014 (Fig 4B). Notably, years with the highest proportion of symptomatic infections match the years of the most intense outbreaks for DENV1 and DENV2, but not for DENV3 (2009, 43%, 95% CI 34–52%). Over the 17-year period, the crude mean proportion of symptomatic primary infections among total infection was 23% (95 CI 19–28%) for DENV1, 20% (95% CI 17–23%) for DENV2, and 36% for DENV3 (95% CI 31–41%).

Further investigation into the disease spectrum of primary infections underscored stark differences by serotype. Analyzing symptomatic versus inapparent and severe versus non-severe outcomes, DENV3 demonstrated significantly higher likelihood of symptomatic (Pooled Odds Ratio [POR] = 2.13, 95% CI 1.28–3.56) and severe infections (POR = 6.75, 95% CI 2.01–22.62), as evidenced by POR compared to DENV1 adjusting by epidemic year, whereas DENV2 did not show significant differences in either analysis compared to DENV1 (Fig 5A-B). Such results were consistent across all the sensitivity analyses performed (Table S4).

Lastly, we summarized the spectrum of disease observed in primary infections caused by the three major DENV serotypes that circulated in Nicaragua between 2004 and 2021 by analyzing the frequency of inapparent, symptomatic, and severe DENV infections classified according to the WHO guidelines from 2009 (Fig 5C-D). Although we found that a significant majority of primary infections remained inapparent, symptomatic infection was observed in 23.4%, 20.0% and 36.0% of DENV1, DENV2, and DENV3 infection respectively. Among total primary infection, severe disease was observed in 2.5% of DENV1, 1.4% of
DENV2, and 7.4% of DENV3 infections further highlighting the variability in infection outcomes associated with each serotype. (Table S5)

Discussion

Our study provides novel insights into serotype-specific epidemiological patterns and disease outcomes of primary DENV infections in Nicaragua by revealing the hidden contribution of inapparent infections. We introduce a novel EDIII multiplex microsphere-based assay for serotyping primary DENV infections, which demonstrated high diagnostic performance when evaluated against the gold standard FRNT and RT-PCR assays. This significant methodological advancement offers a scalable and efficient alternative to the labor-intensive neutralization assays traditionally used to serotype infection.

The majority of primary infections within our cohort were inapparent (76%), aligning with existing literature that suggests a high prevalence of inapparent and subclinical infection across dengue-endemic regions. However, the proportion of inapparent infections greatly fluctuates across years. The characterization of these infections allowed us to examine the serotype-specific proportion of primary inapparent infections and their temporal variability for the first time. Importantly, our study shows that while a single serotype often dominates symptomatic primary infections in any given period, the landscape of inapparent infections in Nicaragua is far more complex, revealing the co-circulation of multiple serotypes and serotype circulation undetected in symptomatic cases across multiple years. This observation suggests that the epidemiological footprint of DENV is broader and more nuanced than what is captured by monitoring symptomatic cases alone. This finding underscores the utility for continuous and comprehensive surveillance systems that capture both symptomatic and inapparent infections to accurately assess the epidemiological burden of DENV and inform public health interventions.

Temporal variations in the incidence and proportion of symptomatic primary infections further highlighted the evolving landscape of dengue in Nicaragua. Notably, we observed an increase in virulence of DENV1 over time, with more symptomatic primary infection in 2012 compared to 2004-2006. Furthermore, DENV2 infectivity surged in 2019, with 17% of the DENV-naïve population experiencing primary infections versus 5% in 2006. These changes could potentially be due to strain differences over time. Although our study does not directly link these observations to specific viral genetic variation, this hypothesis is supported by prior
studies showing lineage shifts in DENV1 and DENV2 within our cohort (Fig S5). Further, the level of population-level susceptibility to different serotypes, as well as changes in host or environmental factors may also influence infection dynamics and outcomes. For instance, the extensive circulation of ZIKV in 2016 may have enhanced the DENV2 epidemic to in 2019. Additionally, increases in comorbidities (e.g., the rise in prevalence of obesity) in our cohort might also influence dengue disease burden. Finally, dengue cohort studies have reported large fluctuations in the yearly proportion of symptomatic infections and have determined that the predominant circulating serotype is one of the main factors driving this fluctuation.

By dissecting the full disease spectrum associated with primary DENV infection, our study revealed stark serotype-specific differences in infection outcome. Specifically, our finding supports and extends existing literature by demonstrating that DENV3 primary infections were not only significantly more severe, but also significantly more symptomatic compared to DENV1 and DENV2. For instance, a study of schoolchildren in Thailand found that schools with high DENV3 circulation were associated with lower detection of inapparent infections. Another study in Nicaragua found that among symptomatic infections, more severe primary infections are caused by DENV3 than by DENV1 or DENV2. Here, we expand on these results by taking the full spectrum of primary infections into consideration, including inapparent infections. Furthermore, our study shows that the low rate of symptomatic primary DENV2 infections in Nicaragua is not due to a scarcity of primary infections but rather due to a high rate of asymptomatic/inapparent infections. Also, it is important to note that while severe dengue is more prevalent during secondary infections, it also occurs in primary infections, particular with DENV3 and DENV1. Substantial morbidity and mortality can be attributed to primary infections, for example, ≥50% of severe cases and fatalities in a study in India and 23% of hospitalized dengue patients in a study in Mexico. Here, we also found a sizable amount of severe infections among primary cases, being the highest for DENV3. All together these studies show that primary infections contribute significantly to disease burden. Thus, safe and effective vaccines for DENV-naïve individuals are warranted.

This study has several strengths. First, we introduce a new simpler, high-throughput method for typing inapparent primary infections. Second, we analyzed 17 years of data based on a robust cohort study design that enables investigation of temporal dynamics of multiple DENV serotypes in a consistent, single setting with a large sample size. The study design captures inapparent, mild, and severe DENV infections, offering a comprehensive view of the disease burden that refines our understanding of DENV epidemiology. Further,
while typing inapparent primary infections is not unique to our study, most studies are cross-sectional reporting “crude” seroprevalence of a given serotype. Here we report the evolution of the incidence proportion of primary infection by serotype over time.

However, our study has some limitations, including minimal DENV4 circulation during the study timeframe. Although our findings reflect the serotype distribution in Nicaragua, the generalizability of our findings may be limited by the regional focus and the genotype of local DENV strains (Table S6) which may have distinct virulence and infectivity. The random selection of inapparent samples for EDIII typing likely mitigated selection bias, providing an unbiased estimate of serotype distribution among inapparent infections, but our imputation model assumes such data to be missing at random, dependent on time and space; deviations from this assumption could bias our findings.

In summary, using a novel serotyping method to analyze inapparent DENV infections in a cohort over 17 years, our study enriches the epidemiological data landscape with unprecedented detail. Our findings reveal significant differences in the epidemiological profile of symptomatic and inapparent DENV infections and show serotype-specific patterns and disease spectra. These insights are important in refining existing models of DENV transmission and mark an advancement in our understanding of the serotype-specific risks of infection outcome. By informing public health strategies and research directions, our work contributes to the global effort to mitigate the impact of dengue, emphasizing the need for a comprehensive approach to dengue surveillance and the importance of considering serotype in outbreak management and prevention strategies.
Acknowledgements

We thank the study personnel at Centro de Salud Sócrates Flores Vivas, the Nicaraguan National Virology Laboratory, the Hospital Infantil Manuel de Jesús Rivera, and the Sustainable Sciences Institute. We are particularly grateful to the study participants and their families.

Authors contributions

Conceptualization: SB, JVZ, EH
Methodology: SB, JVZ, PL
Investigation: SB, JVZ, EMD, JH, ALG, CM
Visualization: SB, JVZ
Funding acquisition: AB, EH
Project administration: GK, AG, AB, EH
Writing: SB, JVZ, EH

Competing interests

None.

Data availability

All relevant data supporting the findings of this study are included within the manuscript or the supplementary materials. Normalized EDIII-MMBA values from our evaluation set are accessible in the supplementary material. We kindly request that researchers who utilize the data provided for their own studies acknowledge this by citing this paper.

Additional datasets generated and/or analyzed during the current study are available upon reasonable request, following the protocol approved by the Institutional Review Board (IRB) for the Pediatric Dengue Cohort Study. Researchers who wish to access the additional data are encouraged to submit a formal request to Dr. Eva Harris or the Committee for the Protection of Human Subjects at the University of California, Berkeley. In accordance with ethical guidelines and to ensure the proper use of the data, all requests will be reviewed and approved on a case-by-case basis.
References

5 Zambrana JV, Hasund CM, Aogo RA, et al. Primary exposure to Zika virus increases risk of symptomatic dengue virus infection with serotypes 2, 3, and 4 but not serotype 1. *medRxiv* 2023; published online Nov 30. DOI:10.1101/2023.11.29.23299187.

14 Dahora L, Castillo IN, Medina FA, et al. Flavivirus Serologic Surveillance: Multiplex Sample-Sparing Assay for Detecting Type-Specific Antibodies to Zika and Dengue Viruses. 2023; published online April 7. DOI:10.2139/ssrn.4411430.

16 World Health Organization. Dengue guidelines for diagnosis, treatment, prevention and control: new

22 De Santis O, Bouscaren N, Flahault A. Asymptomatic dengue infection rate: A systematic literature review. *Heliyon* 2023; **9**: e020069.

28 Mercado-Hernandez R, Myers R, Carillo FB, *et al.* Obesity is associated with increased pediatric dengue virus infection and disease: A 9-year cohort study in Managua, Nicaragua. medRxiv. 2024; posted online Apr 7, 2024. DOI:10.1101/2024.04.05.24305281.

Table 1. EDIII-MMBA diagnostic performance

<table>
<thead>
<tr>
<th></th>
<th>DENV1</th>
<th>DENV2</th>
<th>DENV3</th>
<th>ZIKV</th>
</tr>
</thead>
<tbody>
<tr>
<td>RT-PCR vs EDIII-MMBA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>64</td>
<td>64</td>
<td>64</td>
<td>64</td>
</tr>
<tr>
<td>N by characteristic</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TP(^1) = 16</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FP(^2) = 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FN(^3) = 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TN(^4) = 48</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gold standard positive</td>
<td>16</td>
<td>13</td>
<td>20</td>
<td>15</td>
</tr>
<tr>
<td>Gold standard negative</td>
<td>48</td>
<td>51</td>
<td>44</td>
<td>49</td>
</tr>
<tr>
<td>Sensitivity</td>
<td>100 (79.4 - 100)</td>
<td>100 (75.3 - 100)</td>
<td>100 (83.2 - 100)</td>
<td>100 (78.2 - 100)</td>
</tr>
<tr>
<td>Specificity</td>
<td>100 (92.6 - 100)</td>
<td>100 (93 - 100)</td>
<td>100 (92 - 100)</td>
<td>100 (92.7 - 100)</td>
</tr>
<tr>
<td>Diagnostic accuracy</td>
<td>100 (94.4 - 100)</td>
<td>100 (94.4 - 100)</td>
<td>100 (94.4 - 100)</td>
<td>100 (94.4 - 100)</td>
</tr>
<tr>
<td>FRNT vs EDIII-MMBA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>86</td>
<td>86</td>
<td>86</td>
<td>86</td>
</tr>
<tr>
<td>N by characteristic</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TP(^1) = 38</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FP(^2) = 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FN(^3) = 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TN(^4) = 48</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gold standard positive</td>
<td>38</td>
<td>19</td>
<td>19</td>
<td>10</td>
</tr>
<tr>
<td>Gold standard negative</td>
<td>48</td>
<td>67</td>
<td>67</td>
<td>76</td>
</tr>
<tr>
<td>Sensitivity</td>
<td>100 (90.7 - 100)</td>
<td>100 (82.4 - 100)</td>
<td>100 (82.4 - 100)</td>
<td>100 (69.2 - 100)</td>
</tr>
<tr>
<td>Specificity</td>
<td>100 (92.6 - 100)</td>
<td>100 (94.6 - 100)</td>
<td>100 (94.6 - 100)</td>
<td>100 (95.3 - 100)</td>
</tr>
<tr>
<td>Diagnostic accuracy</td>
<td>100 (95.8 - 100)</td>
<td>100 (95.8 - 100)</td>
<td>100 (95.8 - 100)</td>
<td>100 (95.8 - 100)</td>
</tr>
</tbody>
</table>

\(^1\)TP: True positive; \(^2\)FP: False positive; \(^3\)FN: False Negative; \(^4\)TN: True Negative.
Table 2. Overall incidence of primary DENV infections by serotype.

<table>
<thead>
<tr>
<th>Serotype</th>
<th>Incidence*</th>
<th>Upper 95% CI</th>
<th>Lower 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>DENV1</td>
<td>2.70</td>
<td>3.03</td>
<td>2.40</td>
</tr>
<tr>
<td>DENV2</td>
<td>3.71</td>
<td>4.01</td>
<td>3.42</td>
</tr>
<tr>
<td>DENV3</td>
<td>2.66</td>
<td>2.98</td>
<td>2.37</td>
</tr>
</tbody>
</table>

*This analysis excludes years when no symptomatic infections were reported. This is the result of intercept-only models. Incidence was calculated as the number of cases per serotype over the total population at risk (DENV-naïve individuals) times 100.
Figure 1. Overall symptomatic and inapparent DENV infections in the PDCS study from 2004 to 2021. (A) Yearly counts of DENV primary infections by symptomatic or inapparent status, as indicated. (B) Yearly cumulative incidence proportion of primary inapparent and symptomatic DENV infections. (C) Yearly percent of inapparent primary DENV infections. The pink shaded area in 2016 is the period when ZIKV circulated in the PDCS. The gray area in panel B covers the pooled incidence proportions of overall primary DENV infections by serotype. Dashed line in panel C is the yearly average of inapparent primary DENV infections across years, and gray area represents the confidence interval.
Figure 2. Concordance of EDIII-MMBA values from participants with primary DENV infection with values from RT-PCR and neutralization assay. (A) Symptomatic primary DENV infections confirmed by RT-PCR, and (B) inapparent primary DENV infections were confirmed by FRNT. Within the heatmaps, each cell indicates the Mean Fluorescence Intensity (MFI), normalized by dividing the MFI of each EDIII antigen by the highest MFI of the EDIII set observed for the same individual. Adjacent to each heatmap, dendrograms display the hierarchical clustering of individuals based on Euclidean distances calculated for the normalized MFI values. On the right of the dendrograms, a color-coded column classifies individuals according to the "gold standard" assay results, providing a reference for true infection status.
Figure 3. Serotype distribution in primary symptomatic and inapparent infections by serotype from 2004 to 2021 in the PDCS. (A) Pooled relative distribution of DENV serotypes circulating yearly in inapparent and symptomatic primary DENV infections across multiple imputations. Transparency was added in years with infection count <30. The gray panel shows the total incidence of primary DENV infections. (B) Temporal dynamics of the percent of primary DENV infections by infection outcome (shown in upper and lower panels) and serotype across imputations. The gray area covers the pooled incidence proportions of overall primary DENV infections by infection outcome. p-values: *, p<0.05; **, p<0.01; ***, p<0.001.
Figure 4. Temporal dynamics of symptomatic, inapparent, and overall primary DENV infections by serotype from 2004 to 2021 in the PDCS. (A) Pooled percent of primary DENV infections by infection outcome and serotype, as indicated in left, middle, and right panels across imputations. The gray area covers the pooled incidence proportions of overall primary DENV infections by serotype. (B) Proportion of symptomatic primary DENV infection by serotype (indicated in left, middle, and right panels). This analysis excludes years when no symptomatic infections or <10 primary infections were reported. This is the result of the pooled predicted marginal probabilities of disease given infection from logistic regressions adjusting for year, compared to reference years of the most intense outbreak (DENV1: 2012, DENV2: 2019, DENV3: 2009).
Figure 5. Spectrum of disease of primary DENV infections. (A) Pooled counts of symptomatic, overall, and crude percent of symptomatic primary DENV infections by DENV serotype, and pooled odds ratios (OR) adjusting by year showing the association between dengue case and serotype among primary DENV infections. (B) Pooled counts of severe, overall, and crude percent of severe primary DENV infections by DENV serotype, and pooled odds ratios (OR) adjusting by year showing the association between dengue case and serotype among primary DENV infections. (C) Spectrum of infection outcome and disease according to the 2009 classification as the crude pooled percentages of primary DENV infections.