Work-related road traffic accidents: emergence of new modes of personal journey.

Analysis based on data from a register of road traffic accidents

Emmanuel Forta, Nicolas Connessona, Julien Brièreb, Amina Ndiayea, Blandine Gadegbekua,

Barbara Charbotela,c

a Univ Lyon, Univ Gustave Eiffel, Univ Claude Bernard Lyon 1, UMRESTTE UMR T 9405, F 69622 Lyon, France.

b Department of Environmental and Occupational Health, Santé Publique France, French National Public Health Agency, Saint Maurice, France. julien.briere@santepubliquefrance.fr

c CRPPE de Lyon (Regional Center for Occupational and Environmental Pathologies), Hospices Civils de Lyon, Centre Hospitalier Lyon Sud, Pierre-Bénite, France.

Corresponding author: Emmanuel Fort

Univ Lyon, Univ Gustave Eiffel, Univ Claude Bernard Lyon 1, UMRESTTE UMR T 9405, F 69622 Lyon, France emmanuel.fort@univ-lyon1.fr

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Acknowledgments

We would like to thank all those involved in data collection and computerization, through the Association pour le registre des victimes d'accidents de la circulation du Rhône (Arvac, chaired by Étienne Javouhey) and the Université Gustave-Eiffel-TS2-Umrestte (under the direction of Barbara Charbotel).

Funding

This work was supported by The French National Public Health Agency (Santé publique France), and Carsat Rhône Alpes.

Declaration of Interest(s)

None

Data Statement

Data is unavailable to access to post.

Author Contributions

Emmanuel Fort: Conceptualization, Methodology, Software, Formal analysis, Writing - Original Draft
Blandine Gadegbeku: Conceptualization, Methodology, Writing - Review & Editing, Validation.
Barbara Charbotel: Conceptualization, Funding acquisition, Writing- Reviewing and Editing.

Word count: 4,553
Abstract

Introduction: According to the 2018–2019 People Mobility Survey, work-related journeys (commuting and on-duty journeys) account for approximately 25% of all journeys. The use of non-motorized (nm) and motorized (m) personal mobility devices (PMDs) has steadily increased since their introduction into the French market in the last decade.

Objective: This study aimed to describe the characteristics of work-related road accidents and their evolution since the introduction of new PMDs in France.

Materials and methods: This was a retrospective, cross-sectional study using data from the Rhône Road Trauma Registry. Data were collected from 2015 to 2020. We included the data for the victims aged 18–70 years who were injured in work-related accidents.

Results: We identified 11,296 individuals aged 18–70 years who experienced work-related road accidents. An injury report was provided for a total of 11,277 patients. A total of 546 passengers and 78 drivers of other motorized vehicles (buses/trams, construction equipment, and tractors) were excluded from the analysis. Seven patients died at the time of the accident, and seven died after hospitalization. Of the 10,653 (94.4%) victims, there were pedestrians (5.1%), or drivers of bicycles (16.9%), scooters (3.8%), other PMDs (roller blades, skateboards, monowheels, gyropods, and hoverboards; 0.4%), motorized two-wheeler (21.4%), car (45.3%), and truck (1.5%). More than half of the scooter drivers and 80% of other PMD-drivers were men. More than 60% of other PMD-drivers and 53% of scooter drivers were under 34 years of age. Most scooter accidents occurred during commuting (95.6%). Sixty-five percent of the scooter- and 50% of other PMD-accidents did not have
Overall, one-quarter of the victims experienced accidents without antagonists.

Most scooter users had injuries to their upper limbs (59.2%), lower limbs (46.8%), face (21.2%) or head (17.9%).

Discussion: Most accidents were of low or moderate severity (97.5%; Maximum Abbreviated Injury Scale, MAIS score < 3). The frequency and severity of injuries among scooter- and other PMD users were similar. Scooter antagonists were rarely observed in pedestrian accidents (12/575). Most scooter- and other PMD-accidents did not have antagonists.

Conclusion: Many head injuries could be prevented with more widespread use of helmets, among scooter- and other PMD users and bicycle users.

Keywords: e-scooter; personal mobility device; mobility; road accident; work-related road accident; injuries; regulations
What is already known on this topic

- The use of personal mobility devices (PMDs) has steadily increased in France.
- Work-related journeys (commuting and on-duty journeys) account for approximately 25% of all journeys.

What this study adds

- We describe work-related road accidents’ characteristics since PMDs’ introduction.
- Accidents involving scooters or other PMDs are of low severity.

How this study might affect research, practice or policy

- Many head injuries could be prevented with more widespread helmet use.
- Companies can take preventive actions to ensure that employees are better informed.
1. Introduction

While a large proportion of travel in France involves private journeys (leisure or other), work-related journeys (home-work and on-duty) account for approximately 25% according to the 2018–2019 People Mobility Survey [1]. The main modes of transportation for commuting journeys were cars (72%), public transport (12%), walking (9%), cycling (3%), and motorized two-wheeler (2%); other modes accounted for less than 1%. According to the National Transport and Mobility Survey, work-related journeys accounted for approximately 27% of all journeys in 2008 [2]. The 2016 National Survey of Environmental Behavior [3] showed that 25% of journeys were mainly for commuting. According to the Sumer surveys in France, 25% of employees drive on public roads as part of their work (Fort et al., 2016, 2019). This proportion has remained constant since the surveys were conducted (2003, 2010, and 2017).

The mode of transport to reach work depends on several factors. The distance to work, availability of transportation, car ownership, household size, parking, and cost are determining factors in choosing the travel mode(s). In addition, there is a significant difference between the types of territory; walking, cycling, and other soft modes of transport are preferred in Paris and its suburbs, as well as in large cities and urban areas (those with 100,000–10,000,000 inhabitants).

The use of non-motorized and motorized personal mobility devices (nmPMDs and mPMDs, respectively) has been steadily increasing since their introduction into the market in France in the last decade, as well as in other cities globally [6]. These modes of transport can be referred to as micromobility that combines all easy modes of transport that allow their users to make hybrid use of the vehicle either as a pedestrian or as a vehicle occupant [7].
represents between 8–15% of daily journeys of less than 8 km, which today account for 50–60% of the distance traveled in China, the European Union, and the USA, and replaces 20% of public transport journeys (in addition to bridging the gap between the first and last kilometers) as well as bicycle, moped, scooter, or on-foot journeys [8].

The introduction of e-scooter sharing (in June 2018 in France) has accelerated this phenomenon. It has been observed in all industrialized countries, mainly in large metropolises [9]. The development of PMDs is growing, primarily in urban areas, for several reasons. First, their use could replace motorized vehicles, such as cars or motorized two-wheelers. Second, they reduce air pollution; therefore, their use is favored in cities with reserved lanes (soft mode). In fact, it appears that most walking and public transport journeys are replaced by trips using PMDs [10]. Electric scooters replace walking or biking for the last mile of a journey [11], potentially reducing the overall physical activity of the population [12]. The introduction of large low-emission zones (ZFE), where vehicle speeds are limited to 30 km/h, is a new incentive to use PMDs. The COVID-19 pandemic has increased the use of PMDs, particularly by encouraging social distancing [13]. Thus, public transport users have abandoned subways, tramways, or buses, where distances between people can be too small, for the use of PMDs. Finally, the increase in the cost of fossil energy favors the development of PMDs. However, some authors have highlighted problems caused by electric scooters, both regarding the safety of other vulnerable users and the impact on the environment during the production of scooters, especially batteries, which cause pollution [14].

In Vienna, Austria, Laa and Leth [15] showed that users were shifting to electric scooters, followed by buses and street cars, to replace walking. Electric scooters are used in
combination with other modes of transport. A study from the USA on users of the shared-bike service in Washington, D.C. found that 35% of occasional users reported using it as a substitute for public transport [16]. In Belgium, nearly 50% of customers reported replacing one or more modes of transport with electric scooters [17].

PMDs now represent a significant part of urban and peri-urban transport modes. In France, 22% of respondents have used them at least once, and 11% are regular users (at least once a month; [18]). The electric scooters is the most-used mPMD, followed to a lesser extent by the gyro-mot, electric skateboard, gyropod, and hoverboard. One of two daily users of mPMD uses a self-service electric scooter. In Greece, 40% of the users mentioned using electric scooters for work purposes [9]. These electric vehicles offer new opportunities to users in terms of travel speed and less effort than their non-electric counterparts; however, they cause problems with public space sharing and road safety [19].

Many regulations have been implemented and experiments have been conducted in cities and countries to better control the use of electric scooters [6] and reduce the injuries associated with them, such as restrictions on hiring and using electric scooters at night [20], wearing helmets, adhering to speed limits, and traffic zones [6].

Many studies in the USA [21], the United Kingdom [22,23], Spain [24], Finland, [25] and France [26] have found an increase in injuries associated with the use of electric-sharing scooters [27–31].

Thus, although this increase has not yet been quantified in mobility surveys, there has been an increase in road accidents for users. In a recent publication, the Rhône Registry reported
1,186 scooter accidents, resulting in 1,197 injured users and a 7.3-fold increase in the number of scooter accidents between 2018 and 2019 [32]. Therefore, this study aimed to describe the characteristics of victims injured during a work-related road accident and their evolution since the emergence of PMDs. A secondary objective was to characterize and compare accidents involving scooters and other PMDs with the usual user categories.
2. Materials and Methods

2.1. Design

This retrospective cross-sectional study used data from the Rhône Road Trauma Registry.

2.2. The Rhône Road Trauma Registry

The Rhône Road Trauma Registry has been recording data prospectively since its inception in 1995 and covers the Rhône region (1.85 million inhabitants), including one of France's largest cities (Lyon, 0.5 million inhabitants, 11,000 inhabitants/km²) within a metropolis (Lyon Metropolis, 1.4 million inhabitants). Individuals were included in the registry if they faced a road accident involving one or more road users of nmPMDs or mPMDs in the Rhône region and consulted one of the 245 public or private healthcare facilities (including 42 emergency departments and 20 intensive care units within levels I, II, and III trauma centers), including pre-hospital primary care services and forensic medicine institutes.

The Registry collects the data on demographics of each victim, their sustained injuries, and accidents. Patient information was prospectively collected from the time of the accident to hospital discharge from prehospital emergency care, emergency departments, intensive care units, and surgical units.

2.3. Study population

Data were collected from 2015 to 2020. The victims aged 18–70 years who were injured on the way to/from work or while working were included in the Rhône Registry database (Figure 1). Persons without an injury were excluded, as were passengers in a vehicle (n=546)
and drivers of buses/coaches/tractors (n=61) or other motorized vehicles (tractors, construction equipment, quad bikes; n=17).

2.4. Variables

The following variables were analyzed: sex, age, category of work accident (commuting or mission), category of road user, type of road network, antagonist, time of accident, month of accident, day of accident, use of adequate safety equipment, hospitalization, injuries and death at the scene or post-accident.

2.5. Gravity of the injuries

Each injury was coded according to the Abbreviated Injury Scale (AIS), 2005 version, which comprises 2000 codes divided into nine body areas [33,34]. Each code has an associated AIS severity score ranging from 1 (minor injury) to 6 (beyond treatment/death). As a patient may have multiple injuries in the same body part, the maximum AIS (MAIS) reports the greatest severity in each injury area. Similarly, the overall MAIS score is calculated to determine the victims’ overall severity of injuries. Finally, the New Injury Severity Score (NISS) was calculated from the three most severe injuries and was defined as the sum of the squares of the respective AIS [35,36]. It was then classified into 3 categories: minor trauma <9, moderate trauma (9–15), and severe trauma >=16.

2.6. Statistical analysis

A descriptive analysis was conducted for the overall data and by user category (for the main categories). Seven categories of users were identified: pedestrians, bicycle drivers, scooter drivers, drivers of other PMDs (roller blades, skateboards, hoverboards, and monowheels), car/light commercial vehicle drivers, truck drivers, and motorized two-wheeler drivers.
An analysis strategy was defined to compare the subgroups of soft mode transport users (pedestrians, bicyclists, scooters, and other PMDs), motor vehicle users not authorized to use bicycle paths and lanes (cars/light commercial vehicles, trucks, and motorized two-wheelers), and the seven user categories.

Categorical variables were compared by user category using the chi-square test, and quantitative variables, using analysis of variance (ANOVA). All analyses were performed using SAS software version 9.4.
3. Results

3.1. Description of the victims

Between 2015 and 2020, 53,487 victims were recorded in the Rhône registry, of whom approximately 82% (n=43,791) were between 18 and 70 years of age. Approximately 26% (n=11,296) of accidents were related to commutes or duty journeys.

Of the 11,296 victims aged 18–70 years involved in work-related road traffic accidents, 11,277 had an injury report. Seven people died at the time of the accident and seven died after hospitalization.

We excluded 546 passengers and 78 drivers of other motorized vehicles (buses, trams, construction equipment, and tractors) from the analysis according to the main categories of interest, resulting in 10,653 participants (94.4%). There were scooter drivers (3.8%), other PMD drivers (0.4%), pedestrians (5.1%), and drivers of bicycles (16.9%), cars or light commercial vehicles (45.3%), trucks (1.5%), and motorized two-wheelers (21.4%).

Nearly half of the scooter drivers (54.8%) and more than three-quarters of other PMD drivers were male (Table 1). Overall, most victims were male (61%), except for pedestrians (45.7%) and car occupants (47.1%).

Most PMD drivers were under 35 years of age (60% for other PMDs and 50% for scooters). Overall, the population was young, with more than 50% aged < 35 years, and 75% aged < 45 years. The average age differed significantly according to the user category.

Most work-related scooter accidents occurred during commuting (95.6%). The reason for the journey was related to the mode of travel; 79% of the truck driver victims were on duty and
234 20% of pedestrians were involved in the accident while on duty. Overall, 87% of the victims were commuters.

236 Nearly two-thirds of scooter users and half of other-PMD users had no antagonists. Overall, only 25% of the victims faced accidents without antagonists. By definition, all the pedestrians had antagonists.

239 Of the victims, 90% were involved in accidents during the week, with no difference based on the user category. Less than 25% of scooter and other pedal bike drivers were involved in nighttime accidents. The accidents occurred at night for 29% of the victims, with a higher proportion of pedestrians (35%).

243 The majority of scooter, other PMD, and bicycle drivers, and pedestrians were involved in accidents in street-type traffic lanes in the city. More than 45% of car and truck drivers were involved in accidents outside urban areas, whereas approximately 90% of accidents involving scooters, other PMDs, and bicycles occurred in urban areas (Lyon and its metropolitan area).

247 The use of personal protective equipment according to the user category was the highest for car drivers (97% wore a seatbelt), truck drivers (82% wore a seatbelt), and motorized two-wheeler drivers (95% wore a helmet). For soft-mode users, only one-third of injured bicycle riders wore helmets, and less than one-fifth of injured PMD and scooter users wore helmets.

3.2. Description of the injuries

252 Half of the drivers of other PMDs had a single injury, whereas scooter drivers, pedestrians, and motorized two-wheeler drivers more frequently had multiple injuries (Table 2). Of the victims, 42% had a single injury, 33% had two injuries, 18% had three injuries, and 7% had
more than four injuries. The average number of injuries differed significantly according to user category.

Of the victims, 7.7% were hospitalized. This proportion was higher for pedestrians, and drivers of trucks, motorized two-wheeler, and other PMDs. One scooter driver died in an accident. Twelve people died from their injuries (including three pedestrians and three motorcyclists).

The most frequently affected body parts were the spine (37.6%), lower limbs (36.4%), upper limbs (36.1%), head (14.8%), thorax (9.3%), neck (9.7%), face (8.1%), and abdomen (3.3%).

Most scooter users had injuries to their upper limbs (59.2%), lower limbs (46.8%), face (21.2%) or head (17.9%). Spinal injuries were more common among car and truck drivers, and pedestrians than among other users. Lower limb injuries were more common among users of bicycles, motorized bicycles, scooters, and other PMDs. Upper extremity injuries were more common among users of scooters, bicycles, motorized two-wheelers, and other PMDs, and pedestrians. Head injuries were more common in pedestrians, and scooter, car, and bicycle users. Chest injuries were more common among truck and car users, pedestrians, and two-wheeler users. Neck injuries were more common among truck and car users. Facial injuries were more common among scooter and bicycle users, pedestrians, and other PMD users. Finally, abdominal injuries were more common among pedestrians and motorized two-wheeler users.

Only 2.1% of scooter users were seriously injured (MAIS 3+). Overall, 97.5% of the victims were slightly injured (MAIS <3). The proportion of serious injuries (MAIS 3+) was higher among pedestrians (6.6%), other PMD users (8%), and motorized bicycle users (4.5%).
Facial injuries were minor for all accident victims, except for 4% of pedestrians who had injuries of MAIS 3+. Among scooter and other PMD users, all upper-extremity injuries were of low severity (MAIS <3). However, three users of other PMD had lower extremity injuries of MAIS ≥3.

3.3. Evolution of work-related road accidents during 2015–2020

Since 2015, an increase in the number of work-related traffic injuries has been observed, mainly due to an increase in the number of accidents while commuting (approximately 4%); 2020, the year of the COVID-19 pandemic, was characterized by a break in this increase (Figure 2).

During the study period, the proportion of scooter drivers increased by more than 660% (Figure 3). In contrast, the share of car drivers decreased by 21% between 2015 and 2020, that of motorized two-wheeler drivers, by 24%, and that of truck drivers, by 17.
4. Discussion

4.1. Main findings

This original study on work-related road accidents allowed us to characterize the increase in work-related road accidents associated with new modes of travel, particularly scooters. This new mode of travel has been constantly increasing for approximately 10 years and even more since the emergence of shared electric scooters. Companies in Lyon have offered this service since 2018. Its use accelerated following the COVID-19 pandemic. The results of this study showed that for work-related trips, scooter accidents increased by 660% between 2015 and 2020, and car accidents decreased by 21% in 2020. Bagou et al. [32] found a seven-times increase in scooter accident victims between 2018 and 2019 in the Rhône Department. In contrast, the proportion of car drivers decreased in 2020 due to COVID-19 pandemic-related restrictions [37].

Most work-related road accidents were commuting accidents. Among people working in a fixed and regular place outside the home (i.e., approximately 79% of employed people), approximately 29% make two or more home-to-work trips [2]. This proportion is inversely correlated with commuting journey time. Approximately 25% of employees are exposed to driving as part of their work activities (Fort et al., 2016, 2019).

However, only a small proportion of scooter users were involved in work-related accidents. Either their use is reserved for home-work trips or people using this mode of transport have less risky behavior when it comes to a trip within the framework of their professional activity.
4.2. Characterization of users of nmPMD/mPMD who had an accident

An early review of the literature on electric scooters provided insights into the circumstances and consequences of electric scooter accidents [38,39]. The majority of these accidents occur without an antagonist and as a result of a fall, collision with an object, excessive speed, or unfavorable road conditions. A prospective study in Spain also characterized electric scooter accidents [40]: women represented 40% of the injured, and approximately 13% of the injured were under 18 years of age. In Austria, two-thirds of the injuries involved men, and 60% of the accidents occurred at night [41]. In Denmark, the majority of injured electric scooter drivers were 18-25 years old. The proportion of pedestrians injured by an electric scooter was 17% in accidents involving scooters [42]. A recent German study observed a two-thirds were men, and nighttime accidents [43]. In another study, Graef et al. (2021) observed that among patients admitted to a level 1 trauma center with a mean age of 30 years, 44% were female. In Italy, patients involved in electric scooter accidents were predominantly male (79%) with an average age of 30 years [45]. In an annual incidence study of patients with injuries related to the use of electric scooters in the USA, 60% of the victims were men and 92% were drivers [46]. In Germany, following the implementation of the first registry to examine injury patterns and collect epidemiological data on people injured while riding electric scooters, Heuer et al. (2021) described injuries in 90 patients (65% male; mean age, 35 years).

Nikiforiadis et al. [9] found that electric scooter traffic on sidewalks affected pedestrian experiences the most, ahead of uncontrolled parking on sidewalks. The speed of scooters leads to feelings of insecurity among pedestrians. However, the results of this study showed that scooter antagonists were rarely observed among injured pedestrian users (12/575).
According to a study by Shichman et al. [31], which compared accidents involving electric scooters before and after the introduction of electric-sharing scooters, 80% of the injuries were due to falls. Sixty percent of the scooter drivers in our study did not have an antagonist and thus, were likely to have fallen in the accident; this proportion was 80% for drivers of other PMD.

According to a German study, PMD users perform secondary tasks while riding [48]. More than 13% of bicycle and electric scooter users in Germany performed secondary tasks, such as wearing headphones or earphones and chatting with another user. However, the use of cell phones was rare. Drivers with a delivery task using a PMD as part of their activities were at higher risk of performing secondary tasks in addition to driving [48]. This observational study found that delivery drivers were most likely to wear headphones or earphones; however, they did not show significantly more traffic violations, inappropriate use of roadway infrastructure, or at-fault crashes.

4.3. Injuries related to PMD

Most accidents were of low or moderate severity (97.5% MAIS < 3). In the context of work-related accidents, the frequency of injuries among scooter users and other PMDs was similar according to the different injury areas and severity. Work-related accidents are generally less severe than private accidents [49].

The upper limbs, lower limbs, face and head were the main areas injured by scooter drivers. This finding is consistent with those of other studies. In an Italian study, nearly 47% of the injuries were fractures, with the majority being radial fractures and 25% requiring surgical
intervention [40]. In a South Korean study [50], the main anatomical region affected in
electric scooter accident victims was the face, followed by the head and upper extremities.
In an annual incidence study on patients with injuries related to electric scooter use in the
USA [46], the most common injuries were fractures and head injuries. In Germany, among
90 people injured while riding electric scooters, 32 fractures and seven ligament injuries
were reported, and head injuries were found in 38 patients [47]. Moftakhar et al. (2021)
studied the severity of injuries caused by electric scooter accidents in Austria. These
accidents occurred at high kinetic energies and caused head and upper extremity injuries. In
Germany, following the introduction of shared electric scooters in 2019, the topic of safety
emerged as a public debate. A recent study [43] reported that electric scooter accidents
were the source of serious injuries, with 28% of accident victims requiring surgical
management. In another study, Graef et al. [44] observed that more than two-thirds of
patients had extremity injuries, and half had facial injuries. The chest region exhibited the
highest AIS scores. Overall, 70% of the injuries were minor. Finally, in Italy, among patients
involved in electric scooter accidents [45], 60% had a head injury, 30% were transported to
emergency departments for life-threatening injuries, and 15% were placed in intensive care
units.

The fact that not all scooter drivers used electric scooters in our study minimized the
severity of the crashes. Shichman et al. [31] studied crashes involving electric scooters
before and after the introduction of shared electric scooters and showed a significant
increase in electric scooter-related injuries during emergency department visits after the
introduction of sharing services (six times more admissions).
Compared to non-electric scooter drivers, electric scooter drivers suffered more bruises and lacerations on the face, required sutures, and were more often under the influence of alcohol or drugs [42].

4.4. Safety equipment

Although seatbelt use among car and truck drivers and helmet use among motorized two-wheeler drivers are very high in the context of work travel, the results indicate that helmet use among users of bicycles, scooters, and other PMD is low. This has also been found in other studies in the general population. Helmet use among electric scooter users was anecdotal in a German study [43], only one out of 43 patients wore a helmet in another German study [44], and 4% of victims wore a helmet in a study in Dallas, USA [51].

Helmet use for electric scooter users significantly reduces the risk of serious head and facial injuries [52], maxillofacial fractures, and soft tissue injuries [53]. Similar to the recommendations for helmet use for bicycle users 10 years ago, the scientific literature confirms and recommends helmet use for electric scooter users and, in a larger set, for users of PMDs (DiMaggio et al., 2019; Lin et al., 2020).

The non-use of helmets by electric scooter users and the high prevalence of head injuries found in numerous studies [38,39] suggest that these types of injuries may be preventable. Studies demonstrating the effectiveness of helmet use among cyclists can confirm this [56].

As highlighted in this literature review, several cities (Brisbane, Copenhagen, Dallas, Los Angeles, Malaga Paris, Stockolm, and Vienna) and countries (France and Italy) (La Torre, 2003; Peng et al., 2017) have legislated this area [6]. Results from an Australian study confirmed that helmet use among electric scooter users increased to over 60% after a mandatory helmet law was implemented in Australia [59].
4.5. Regulations

In France, a user of rollerblades, skateboards, or scooters (without a motor) is considered a pedestrian who must ride on the sidewalk. Electrical PMDs (scooters, hoverboards, gyropods, monoroue) must be used on the bicycle path, if available. Bicycles must be on a roadway or bike path, if there is one.

The Mobility Law 2019 [60] established that electric scooters are prohibited on sidewalks (unless authorized by the mayor and unless the engine is turned off). In built-up areas, traffic is only authorized on bicycle paths or, failing that, on roads with a maximum speed limit of 50 km/h. Outside built-up areas, traffic is authorized only on bicycle paths or greenways (except for exemptions). Electric scooters are prohibited for children under 12 years of age.

Wearing a helmet is mandatory for minors over 12 years of age and strongly recommended for adults. Civil insurance is mandatory. Riding an electric scooter at speeds exceeding 25 km/h is forbidden. Similar to other means of transportation, the use of headphones is prohibited. Front and rear lights are mandatory, as is wearing a retroreflective vest at night or during low visibility. A horn is mandatory. Finally, passenger transport is prohibited. The regulations mandate fines: 135 euros for driving on sidewalks, 35 euros for failure to comply with traffic laws, and 1,500 euros for exceeding the authorized speed limit [61].

The various regulations on PMDs established by European countries are recent and heterogeneous[62]. Regulations regarding helmet use, specific categories of electric scooters, authorized bike lanes, authorized pedestrian lanes, and age restrictions vary by country. However, the maximum speed limit is a common rule except in Hungary. France and Germany require liability insurance. In the USA, regulations differ by state [58,63].

Overall, many countries are yet to establish the legal requirements of this mode of travel in
detail, and more specific legislation is required. In January 2017, the Singaporean government passed the Active Mobility Act (AMA) to regulate the use of PDMs. However, an increase in injuries related to these new travel modes has been observed[64].

Road unsafety related to electric bikes/motorcycles is becoming increasingly problematic owing to their growing popularity compared with other two-wheeled vehicles [65].

The majority of studies on the subject have confirmed that men and users between the ages of 18 and 34 years are most concerned with the use of and accidents involving private or shared PMDs.

In France, one of the few studies on this subject compared the demographic characteristics of users sharing electric scooters with those of personal electric scooters [66]. The latter are more likely to be men, older, and have a higher income. Therefore, the use of electric scooters is motivated by saving time, rather than financial reasons. They also seem to have less risky behaviors, particularly with regard to alcohol consumption, than other electric scooter users [7]. A comparison of the frequency of use (occasional versus frequent users) shows that frequent users have riskier behaviors, perhaps because of their habit of use.

4.6. Limitations of the study

Difficulties in correctly identifying nmPMDs were noted. The Rhône Road Trauma Registry collection form evolved in November 2019 to better quantify electric vehicle-related accidents. A "No/Yes" checkbox was introduced for the retrieval of mPMD with certainty, but it does not distinguish nmPMD from missing data.

The analyzed period ended at the start of the COVID-19 pandemic. The year 2020 differed from previous years in that car accidents decreased and scooter accidents increased. It will
be relevant to conduct another study spanning a few more years to better measure the impact of nmPMD and mPMD on work-related traffic accidents.

5. Conclusion

This is the first study describing work-related traffic accidents that have occurred since the emergence of PMDs.

The results observed for users of scooters and other PMDs in this study were generally consistent with those found in the scientific literature. However, in most available studies, the type of travel was not restricted to work-related journeys: a young and predominantly male population, accidents mostly without antagonists, and injuries localized mainly to the upper limbs, lower limbs, and head/face.

Despite limited data, the results suggest that accidents involving scooters or other DPEs are of low severity. Many head injuries could be prevented with more widespread helmet use.

Similar to other modes of travel, the number of casualties can be reduced if effective actions are taken to reduce secondary tasks during scooter journeys [48].

Finally, companies can take preventive actions so that employees using these modes of transport for work-related journeys are better informed about the risks.
References

de Déplacement Personnel Motorisés (EDPM), avant et après le confinement.

doi:10.1177/1943387521998199

doi:10.4103/JETS.JETS_115_19

Table 1: Socio-demographic and accidental characteristics of victims injured in work-related accident, by user category (source the Rhône Road Trauma Registry, 2015-2020)

<table>
<thead>
<tr>
<th></th>
<th>Pedestrian (n=575)</th>
<th>Bicycle driver (n=1908)</th>
<th>Scooter driver (n=429)</th>
<th>Other PMD driver (n=50)</th>
<th>Car driver (n=1111)</th>
<th>Truck driver (n=166)</th>
<th>Motorized two-wheelers driver (n=2414)</th>
<th>All (n=10653)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n (%)</td>
<td>p-value</td>
</tr>
<tr>
<td>Sex</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><0.0001</td>
</tr>
<tr>
<td>Women</td>
<td>312 (54.3)</td>
<td>664 (34.8)</td>
<td>194 (45.2)</td>
<td>10 (20.0)</td>
<td>2703 (52.9)</td>
<td>3 (1.8)</td>
<td>277 (11.5)</td>
<td>4163 (39.1)</td>
</tr>
<tr>
<td>Men</td>
<td>263 (45.7)</td>
<td>1244 (65.2)</td>
<td>235 (54.8)</td>
<td>40 (80.0)</td>
<td>2408 (47.1)</td>
<td>163 (88.2)</td>
<td>2137 (88.5)</td>
<td>6400 (60.9)</td>
</tr>
<tr>
<td>Age categories</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><0.0001</td>
</tr>
<tr>
<td>18-24 years</td>
<td>139 (24.2)</td>
<td>355 (18.6)</td>
<td>94 (21.9)</td>
<td>15 (30.0)</td>
<td>1208 (23.6)</td>
<td>27 (16.3)</td>
<td>678 (28.1)</td>
<td>2516 (23.6)</td>
</tr>
<tr>
<td>25-34 years</td>
<td>140 (24.4)</td>
<td>636 (33.3)</td>
<td>132 (30.8)</td>
<td>15 (30.0)</td>
<td>1597 (31.2)</td>
<td>42 (25.3)</td>
<td>683 (28.3)</td>
<td>3345 (30.5)</td>
</tr>
<tr>
<td>35-44 years</td>
<td>113 (19.6)</td>
<td>426 (22.3)</td>
<td>108 (25.2)</td>
<td>12 (24.0)</td>
<td>1149 (22.5)</td>
<td>39 (23.5)</td>
<td>499 (20.7)</td>
<td>2346 (22)</td>
</tr>
<tr>
<td>45-54 years</td>
<td>108 (18.8)</td>
<td>331 (17.4)</td>
<td>77 (17.9)</td>
<td>4 (8.0)</td>
<td>832 (16.3)</td>
<td>34 (20.5)</td>
<td>388 (16.1)</td>
<td>1774 (16.7)</td>
</tr>
<tr>
<td>55-64 years</td>
<td>69 (12.0)</td>
<td>157 (8.2)</td>
<td>17 (4.0)</td>
<td>4 (8.0)</td>
<td>317 (6.2)</td>
<td>21 (12.6)</td>
<td>164 (6.8)</td>
<td>749 (7.0)</td>
</tr>
<tr>
<td>65-70 years</td>
<td>6 (1.0)</td>
<td>3 (0.2)</td>
<td>1 (0.2)</td>
<td>0 (0)</td>
<td>8 (0.2)</td>
<td>3 (1.8)</td>
<td>2 (0.1)</td>
<td>23 (0.2)</td>
</tr>
<tr>
<td>Type of work-related journey</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><0.0001</td>
</tr>
<tr>
<td>Commuting</td>
<td>456 (79.3)</td>
<td>1742 (91.3)</td>
<td>410 (95.6)</td>
<td>43 (86.0)</td>
<td>4565 (89.3)</td>
<td>35 (21.1)</td>
<td>2041 (84.5)</td>
<td>9292 (87.2)</td>
</tr>
<tr>
<td>On duty</td>
<td>119 (20.7)</td>
<td>166 (8.7)</td>
<td>19 (4.4)</td>
<td>7 (14.0)</td>
<td>546 (10.7)</td>
<td>131 (78.9)</td>
<td>373 (15.5)</td>
<td>1361 (12.8)</td>
</tr>
<tr>
<td>Antagonist</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>None</td>
<td>0 (0)</td>
<td>909 (47.6)</td>
<td>281 (65.5)</td>
<td>26 (52.0)</td>
<td>548 (10.7)</td>
<td>48 (28.9)</td>
<td>1015 (42.1)</td>
<td>2827 (26.5)</td>
</tr>
<tr>
<td>Pedestrian</td>
<td>0 (0)</td>
<td>29 (1.5)</td>
<td>3 (0.7)</td>
<td>1 (2.0)</td>
<td>7 (0.1)</td>
<td>0 (0)</td>
<td>11 (0.5)</td>
<td>51 (0.5)</td>
</tr>
<tr>
<td>Other or unknown</td>
<td>14 (2.4)</td>
<td>19 (1.0)</td>
<td>4 (0.9)</td>
<td>0 (0)</td>
<td>15 (0.3)</td>
<td>0 (0)</td>
<td>11 (0.5)</td>
<td>63 (0.6)</td>
</tr>
<tr>
<td>Car</td>
<td>391 (68.0)</td>
<td>646 (33.9)</td>
<td>87 (20.3)</td>
<td>16 (32.0)</td>
<td>3414 (66.8)</td>
<td>34 (20.5)</td>
<td>1139 (47.2)</td>
<td>5727 (53.8)</td>
</tr>
<tr>
<td></td>
<td>Pedestrian (n=575)</td>
<td>Bicycle driver (n=1908)</td>
<td>Scooter driver (n=429)</td>
<td>Other PMD driver (n=50)</td>
<td>Car driver (n=1111)</td>
<td>Truck driver (n=166)</td>
<td>Motorized two-wheelers driver (n=2144)</td>
<td>All (n=10653)</td>
</tr>
<tr>
<td>----------------------</td>
<td>--------------------</td>
<td>-------------------------</td>
<td>------------------------</td>
<td>-------------------------</td>
<td>---------------------</td>
<td>---------------------</td>
<td>--</td>
<td>----------------</td>
</tr>
<tr>
<td>Fixed obstacle</td>
<td>0 (0)</td>
<td>164 (8.6)</td>
<td>31 (7.2)</td>
<td>3 (6.0)</td>
<td>584 (11.4)</td>
<td>43 (25.9)</td>
<td>112 (4.6)</td>
<td>937 (8.8)</td>
</tr>
<tr>
<td>Light commercial vehicle, truck, bus, train/tram, tractor</td>
<td>66 (11.5)</td>
<td>63 (3.3)</td>
<td>10 (2.3)</td>
<td>1 (2.0)</td>
<td>517 (10.1)</td>
<td>40 (24.1)</td>
<td>85 (3.5)</td>
<td>782 (7.3)</td>
</tr>
<tr>
<td>Motorized two-wheelers</td>
<td>52 (9.0)</td>
<td>21 (1.1)</td>
<td>5 (1.2)</td>
<td>1 (2.0)</td>
<td>23 (0.5)</td>
<td>1 (0.6)</td>
<td>31 (1.3)</td>
<td>134 (1.3)</td>
</tr>
<tr>
<td>Bicycle</td>
<td>52 (9.0)</td>
<td>56 (2.9)</td>
<td>8 (1.9)</td>
<td>2 (4.0)</td>
<td>3 (0.1)</td>
<td>0 (0)</td>
<td>10 (0.4)</td>
<td>131 (1.2)</td>
</tr>
<tr>
<td>Rollerblade, skateboard</td>
<td>0 (0)</td>
<td>1 (0.05)</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>1 (0.0)</td>
</tr>
<tr>
<td>Lighting</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Day</td>
<td>320 (65.4)</td>
<td>1067 (74.1)</td>
<td>218 (76.5)</td>
<td>31 (75.6)</td>
<td>3072 (70.7)</td>
<td>105 (73.4)</td>
<td>1401 (69.7)</td>
<td>6294 (71.0)</td>
</tr>
<tr>
<td>Night</td>
<td>169 (34.6)</td>
<td>373 (25.9)</td>
<td>67 (23.5)</td>
<td>10 (24.4)</td>
<td>1274 (29.3)</td>
<td>38 (26.6)</td>
<td>610 (30.3)</td>
<td>2567 (29.0)</td>
</tr>
<tr>
<td>Month</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>January</td>
<td>60 (10.4)</td>
<td>141 (7.4)</td>
<td>32 (7.5)</td>
<td>4 (8)</td>
<td>494 (9.7)</td>
<td>27 (16.3)</td>
<td>170 (7)</td>
<td>928 (8.7)</td>
</tr>
<tr>
<td>February</td>
<td>56 (9.7)</td>
<td>115 (6)</td>
<td>22 (5.1)</td>
<td>3 (6)</td>
<td>385 (7.5)</td>
<td>10 (6)</td>
<td>172 (7.1)</td>
<td>763 (7.2)</td>
</tr>
<tr>
<td>March</td>
<td>49 (8.5)</td>
<td>122 (6.4)</td>
<td>27 (6.3)</td>
<td>4 (8)</td>
<td>421 (8.2)</td>
<td>10 (6)</td>
<td>189 (7.8)</td>
<td>822 (7.7)</td>
</tr>
<tr>
<td>April</td>
<td>32 (5.6)</td>
<td>128 (6.7)</td>
<td>29 (6.8)</td>
<td>3 (6)</td>
<td>359 (7)</td>
<td>6 (3.6)</td>
<td>169 (7)</td>
<td>726 (6.8)</td>
</tr>
<tr>
<td>May</td>
<td>30 (5.2)</td>
<td>149 (7.8)</td>
<td>34 (7.9)</td>
<td>3 (6)</td>
<td>367 (7.2)</td>
<td>12 (7.2)</td>
<td>168 (7)</td>
<td>763 (7.2)</td>
</tr>
<tr>
<td>June</td>
<td>52 (9)</td>
<td>180 (9.4)</td>
<td>45 (10.5)</td>
<td>5 (10)</td>
<td>479 (9.4)</td>
<td>15 (9)</td>
<td>239 (9.9)</td>
<td>1015 (9.5)</td>
</tr>
<tr>
<td>July</td>
<td>38 (6.6)</td>
<td>193 (10.1)</td>
<td>50 (11.7)</td>
<td>9 (18)</td>
<td>419 (8.2)</td>
<td>21 (12.6)</td>
<td>223 (9.2)</td>
<td>953 (8.9)</td>
</tr>
<tr>
<td>August</td>
<td>27 (4.7)</td>
<td>131 (6.9)</td>
<td>23 (5.4)</td>
<td>3 (6)</td>
<td>254 (5)</td>
<td>10 (6)</td>
<td>141 (5.8)</td>
<td>589 (5.5)</td>
</tr>
<tr>
<td>September</td>
<td>41 (7.1)</td>
<td>246 (12.9)</td>
<td>46 (10.7)</td>
<td>7 (14)</td>
<td>436 (8.5)</td>
<td>12 (7.2)</td>
<td>255 (10.6)</td>
<td>1043 (9.8)</td>
</tr>
<tr>
<td>October</td>
<td>64 (11.1)</td>
<td>199 (10.4)</td>
<td>37 (8.6)</td>
<td>4 (8)</td>
<td>518 (10.1)</td>
<td>12 (7.2)</td>
<td>258 (10.7)</td>
<td>1092 (10.3)</td>
</tr>
<tr>
<td>November</td>
<td>72 (12.5)</td>
<td>179 (9.4)</td>
<td>41 (8.6)</td>
<td>5 (10)</td>
<td>536 (10.5)</td>
<td>14 (8.4)</td>
<td>218 (9)</td>
<td>1065 (10.0)</td>
</tr>
<tr>
<td>December</td>
<td>54 (9.4)</td>
<td>125 (6.6)</td>
<td>43 (10)</td>
<td>0 (0)</td>
<td>443 (8.7)</td>
<td>17 (10.2)</td>
<td>212 (8.8)</td>
<td>894 (8.4)</td>
</tr>
<tr>
<td></td>
<td>Pedestrian (n=575)</td>
<td>Bicycle driver (n=1908)</td>
<td>Scooter driver (n=429)</td>
<td>Other PMD driver (n=50)</td>
<td>Car driver (n=111)</td>
<td>Truck driver (n=166)</td>
<td>Motorized two-wheelers driver (n=2414)</td>
<td>All (n=10653)</td>
</tr>
<tr>
<td>------------------</td>
<td>-------------------</td>
<td>-------------------------</td>
<td>------------------------</td>
<td>------------------------</td>
<td>-------------------</td>
<td>-------------------</td>
<td>--------------------------------------</td>
<td>-------------</td>
</tr>
<tr>
<td></td>
<td>n (%)</td>
<td>p-value</td>
</tr>
<tr>
<td>Season</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spring</td>
<td>111 (19,3)</td>
<td>399 (20,9)</td>
<td>90 (21)</td>
<td>10 (20)</td>
<td>1147 (22,4)</td>
<td>28 (16,8)</td>
<td>526 (21,8)</td>
<td>2311 (21,7)</td>
</tr>
<tr>
<td>Summer</td>
<td>117 (20,3)</td>
<td>504 (26,4)</td>
<td>118 (27,6)</td>
<td>17 (34)</td>
<td>1152 (22,6)</td>
<td>46 (27,6)</td>
<td>603 (24,9)</td>
<td>2557 (24,0)</td>
</tr>
<tr>
<td>Autumn</td>
<td>177 (30,7)</td>
<td>624 (32,7)</td>
<td>124 (28,9)</td>
<td>16 (32)</td>
<td>1490 (29,1)</td>
<td>38 (22,8)</td>
<td>731 (30,3)</td>
<td>3000 (30,0)</td>
</tr>
<tr>
<td>Winter</td>
<td>170 (29,5)</td>
<td>381 (20)</td>
<td>97 (22,6)</td>
<td>7 (14)</td>
<td>1322 (25,9)</td>
<td>54 (32,5)</td>
<td>554 (22,9)</td>
<td>2585 (24,3)</td>
</tr>
<tr>
<td>Urban area</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lyon</td>
<td>205 (35,6)</td>
<td>1257 (65,9)</td>
<td>325 (75,8)</td>
<td>26 (52,0)</td>
<td>730 (14,3)</td>
<td>15 (9,0)</td>
<td>700 (29,0)</td>
<td>3258 (30,6)</td>
</tr>
<tr>
<td>Grand Lyon</td>
<td>220 (38,3)</td>
<td>498 (26,1)</td>
<td>77 (17,9)</td>
<td>18 (36,0)</td>
<td>2068 (40,5)</td>
<td>72 (43,4)</td>
<td>886 (36,7)</td>
<td>3839 (36,0)</td>
</tr>
<tr>
<td>Hors Grand Lyon</td>
<td>66 (11,5)</td>
<td>88 (4,6)</td>
<td>10 (2,3)</td>
<td>2 (4,0)</td>
<td>1375 (26,9)</td>
<td>53 (31,9)</td>
<td>388 (16,1)</td>
<td>1982 (18,6)</td>
</tr>
<tr>
<td>Rhône SAP</td>
<td>84 (14,6)</td>
<td>65 (3,4)</td>
<td>17 (4,0)</td>
<td>4 (4,0)</td>
<td>938 (18,3)</td>
<td>26 (15,7)</td>
<td>440 (18,2)</td>
<td>1574 (14,8)</td>
</tr>
</tbody>
</table>

The table above shows the distribution of different modes of transportation across different seasons and urban areas in Lyon, France. The p-values indicate the statistical significance of the differences observed.
Table 2: Injury characteristics of victims injured in work-related accident, by user category (source the Rhône Road Trauma Registry, 2015-2020)

<table>
<thead>
<tr>
<th>Pedestrian (n=575)</th>
<th>Bicycle driver (n=1908)</th>
<th>Scooter driver (n=429)</th>
<th>Other PMD driver (n=50)</th>
<th>Car driver (n=5111)</th>
<th>Truck driver (n=166)</th>
<th>Motorized two-wheelers driver (n=2414)</th>
<th>All (n=10653)</th>
</tr>
</thead>
<tbody>
<tr>
<td>n (%)</td>
</tr>
<tr>
<td>Hospitalization</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>80 (13.9)</td>
<td>156 (8.2)</td>
<td>38 (8.9)</td>
<td>6 (12.0)</td>
<td>216 (4.2)</td>
<td>13 (7.9)</td>
<td>29 (17.5)</td>
<td>301 (12.5)</td>
</tr>
<tr>
<td>Death</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 (0.5)</td>
<td>2 (0.1)</td>
<td>0 (0)</td>
<td>2 (0.1)</td>
<td>2 (0.1)</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>826 (7.8)</td>
</tr>
<tr>
<td>Number of injuries</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>186 (32.3)</td>
<td>759 (39.8)</td>
<td>163 (38.0)</td>
<td>25 (50.0)</td>
<td>2414 (47.2)</td>
<td>66 (39.8)</td>
<td>854 (35.4)</td>
</tr>
<tr>
<td>2</td>
<td>183 (31.8)</td>
<td>601 (31.5)</td>
<td>146 (34.0)</td>
<td>13 (26.0)</td>
<td>1685 (33.0)</td>
<td>54 (32.5)</td>
<td>853 (35.3)</td>
</tr>
<tr>
<td>3</td>
<td>129 (22.4)</td>
<td>410 (21.5)</td>
<td>76 (17.7)</td>
<td>8 (16.0)</td>
<td>760 (14.9)</td>
<td>31 (18.7)</td>
<td>483 (20.0)</td>
</tr>
<tr>
<td>4+</td>
<td>77 (13.4)</td>
<td>138 (7.2)</td>
<td>44 (10.3)</td>
<td>4 (8.0)</td>
<td>252 (4.9)</td>
<td>15 (9.0)</td>
<td>224 (9.3)</td>
</tr>
<tr>
<td>MAIS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 Minor</td>
<td>451 (78.4)</td>
<td>1433 (75.1)</td>
<td>315 (73.4)</td>
<td>37 (74.0)</td>
<td>4830 (94.5)</td>
<td>138 (83.1)</td>
<td>1790 (74.1)</td>
</tr>
<tr>
<td>2 Moderate</td>
<td>86 (15.0)</td>
<td>428 (22.4)</td>
<td>105 (24.5)</td>
<td>9 (18.0)</td>
<td>223 (4.4)</td>
<td>22 (13.2)</td>
<td>516 (21.4)</td>
</tr>
<tr>
<td>3 Serious</td>
<td>21 (3.6)</td>
<td>37 (1.9)</td>
<td>6 (1.4)</td>
<td>3 (0.6)</td>
<td>44 (0.8)</td>
<td>4 (2.4)</td>
<td>86 (3.6)</td>
</tr>
<tr>
<td>4 Severe</td>
<td>13 (2.3)</td>
<td>8 (0.4)</td>
<td>2 (0.5)</td>
<td>0 (0)</td>
<td>10 (0.2)</td>
<td>2 (1.2)</td>
<td>14 (0.6)</td>
</tr>
<tr>
<td>5 Critical</td>
<td>3 (0.5)</td>
<td>2 (0.1)</td>
<td>0 (0)</td>
<td>1 (2.0)</td>
<td>4 (0.1)</td>
<td>0 (0)</td>
<td>8 (0.3)</td>
</tr>
<tr>
<td>6 Maximum</td>
<td>1 (0.2)</td>
<td>0 (0)</td>
<td>1 (0.2)</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>2 (0)</td>
</tr>
<tr>
<td>MAIS3+</td>
<td>38 (6.6)</td>
<td>47 (2.5)</td>
<td>9 (2.1)</td>
<td>4 (8.0)</td>
<td>58 (1.1)</td>
<td>6 (3.6)</td>
<td>108 (4.5)</td>
</tr>
<tr>
<td>Head injury</td>
<td>118 (20.5)</td>
<td>295 (15.5)</td>
<td>77 (17.9)</td>
<td>5 (10.0)</td>
<td>821 (16.1)</td>
<td>44 (26.5)</td>
<td>196 (8.2)</td>
</tr>
<tr>
<td>Global gravity of head injury MAIS3+</td>
<td>11 (9.3)</td>
<td>12 (4.1)</td>
<td>2 (2.6)</td>
<td>1 (20.0)</td>
<td>15 (18)</td>
<td>1 (2.3)</td>
<td>8 (4.0)</td>
</tr>
<tr>
<td>Face injury</td>
<td>73 (12.7)</td>
<td>315 (16.5)</td>
<td>91 (21.2)</td>
<td>7 (14.0)</td>
<td>279 (5.5)</td>
<td>17 (10.2)</td>
<td>94 (3.9)</td>
</tr>
<tr>
<td>Global gravity of face injury MAIS3+</td>
<td>3 (4.0)</td>
<td>1 (0.3)</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>4 (0.4)</td>
</tr>
<tr>
<td></td>
<td>Pedestrian (n=575)</td>
<td>Bicycle driver (n=1908)</td>
<td>Scooter driver (n=429)</td>
<td>Other PMD driver (n=50)</td>
<td>Car driver (n=5111)</td>
<td>Truck driver (n=166)</td>
<td>Motorized two-wheelers driver (n=2414)</td>
</tr>
<tr>
<td>---------------------------</td>
<td>--------------------</td>
<td>-------------------------</td>
<td>------------------------</td>
<td>-------------------------</td>
<td>---------------------</td>
<td>---------------------</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>n (%)</td>
</tr>
<tr>
<td>Neck injury</td>
<td>34 (5.9)</td>
<td>53 (2.8)</td>
<td>18 (4.2)</td>
<td>0 (0)</td>
<td>791 (15.5)</td>
<td>23 (23.9)</td>
<td>77 (3.2)</td>
</tr>
<tr>
<td>Global gravity of neck injury MAIS3+</td>
<td>1 (0.0)</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>1 (0.1)</td>
<td>0 (0)</td>
<td>1 (1.3)</td>
</tr>
<tr>
<td>Chest injury</td>
<td>67 (11.6)</td>
<td>169 (8.9)</td>
<td>35 (8.2)</td>
<td>1 (2.0)</td>
<td>740 (14.5)</td>
<td>26 (15.7)</td>
<td>270 (11.2)</td>
</tr>
<tr>
<td>Global gravity of chest injury MAIS3+</td>
<td>16 (23.9)</td>
<td>14 (8.3)</td>
<td>5 (14.3)</td>
<td>0 (0)</td>
<td>31 (4.2)</td>
<td>5 (19.2)</td>
<td>52 (19.3)</td>
</tr>
<tr>
<td>Abdomen injury</td>
<td>33 (5.7)</td>
<td>47 (2.5)</td>
<td>13 (3.0)</td>
<td>0 (0)</td>
<td>148 (2.9)</td>
<td>6 (3.6)</td>
<td>113 (4.7)</td>
</tr>
<tr>
<td>Global gravity of Abdomen injury MAIS3+</td>
<td>8 (24.2)</td>
<td>6 (12.8)</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>12 (8.1)</td>
<td>1 (16.7)</td>
<td>8 (7.1)</td>
</tr>
<tr>
<td>Spinal injury</td>
<td>119 (20.7)</td>
<td>198 (10.4)</td>
<td>39 (9.1)</td>
<td>4 (8.0)</td>
<td>3114 (60.9)</td>
<td>70 (42.2)</td>
<td>373 (15.4)</td>
</tr>
<tr>
<td>Global gravity of Spinal injury MAIS3+</td>
<td>0 (0)</td>
<td>2 (1.0)</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>6 (0.2)</td>
<td>1 (1.4)</td>
<td>5 (1.3)</td>
</tr>
<tr>
<td>Upper limb injury</td>
<td>230 (40.0)</td>
<td>1086 (56.9)</td>
<td>254 (59.2)</td>
<td>24 (48.0)</td>
<td>1121 (21.9)</td>
<td>55 (33.1)</td>
<td>1161 (48.1)</td>
</tr>
<tr>
<td>Global gravity of Upper limb injury MAIS3+</td>
<td>1 (0)</td>
<td>2 (0.2)</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>3 (0.3)</td>
<td>1 (1.8)</td>
<td>5 (0.4)</td>
</tr>
<tr>
<td>Injury of the lower limbs / pelvis</td>
<td>395 (68.7)</td>
<td>899 (47.1)</td>
<td>201 (46.8)</td>
<td>26 (52.0)</td>
<td>750 (14.7)</td>
<td>45 (27.1)</td>
<td>1653 (68.5)</td>
</tr>
<tr>
<td>Global gravity of Injury of the lower limbs / pelvis MAIS3+</td>
<td>18 (4.6)</td>
<td>23 (2.6)</td>
<td>4 (2.0)</td>
<td>3 (11.5)</td>
<td>17 (2.3)</td>
<td>1 (2.2)</td>
<td>49 (3.0)</td>
</tr>
<tr>
<td>NISS</td>
<td>Pedestrian (n=575)</td>
<td>Bicycle driver (n=1908)</td>
<td>Scooter driver (n=429)</td>
<td>Other PMD driver (n=50)</td>
<td>Car driver (n=5111)</td>
<td>Truck driver (n=166)</td>
<td>Motorized two-wheelers driver (n=2414)</td>
</tr>
<tr>
<td>------</td>
<td>------------------</td>
<td>-----------------------</td>
<td>-----------------------</td>
<td>------------------------</td>
<td>---------------------</td>
<td>---------------------</td>
<td>-------------------------------------</td>
</tr>
<tr>
<td><9</td>
<td>523 (91.0)</td>
<td>1824 (95.6)</td>
<td>413 (96.3)</td>
<td>45 (90.0)</td>
<td>5024 (98.3)</td>
<td>153 (92.2)</td>
<td>2241 (92.8)</td>
</tr>
<tr>
<td>[9–15]</td>
<td>21 (3.6)</td>
<td>62 (3.2)</td>
<td>10 (2.3)</td>
<td>4 (8.0)</td>
<td>49 (1.0)</td>
<td>8 (4.8)</td>
<td>112 (4.6)</td>
</tr>
<tr>
<td>≥16</td>
<td>31 (5.4)</td>
<td>22 (1.2)</td>
<td>6 (1.4)</td>
<td>1 (2.0)</td>
<td>38 (0.7)</td>
<td>5 (3.0)</td>
<td>61 (2.5)</td>
</tr>
</tbody>
</table>

New Injury Severity Score (NISS)
Figure 1: Flow chart

The Rhône Road Trauma Registry (2015-2020)
n=53,487

18-70 years
N=43,791

Work-related road accident
N=11,296

Victims without an injury report: n=19

Victims with an injury report:
N=11,277

Excluded victims:
- car/bus/tramway driver, construction equipment, tractor n=78
- Passenger n=546

Selected victims
N=10,653
Figure 2: Evolution of the number of drivers and pedestrians involved in work-related road accidents, by type of journey between 2015 and 2020 (source the Rhône Road Trauma Registry)
Figure 3: Frequencies of different user categories of drivers and pedestrians injured in work-related accidents, by year (source the Rhône Road Trauma Registry, 2015-2020)