Mutational alterations in the QRDR regions associated with fluoroquinolone resistance in

Pseudomonas aeruginosa of clinical origin from Savar, Dhaka

Md. Shamsul Arefin¹, Meftahul Jannat Mitu¹, Shomaia Yasmin Mitu¹, Azmeri Noorjahan², Mir Mobin¹, Shamsun Nahar¹, Hasnain Anjum¹-³*, M. Hasibur Rahman¹*

¹Department of Microbiology, Jahangirnagar University, Savar, Dhaka.

²Department of Biotechnology and Genetic Engineering, Jahangirnagar University, Savar, Dhaka

³Department of Microbiology, Primeasia University, Banani, Dhaka.

* Corresponding Authors

Email: anjumabir27@gmail.com (HA); hasiburku@juniv.edu (MHR)

*MSA and MJM contributed equally to this study.

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Mutational alterations in the QRDR regions associated with fluoroquinolone resistance in Pseudomonas aeruginosa of clinical origin from Savar, Dhaka

Abstract

Bacterial DNA gyrase and topoisomerase IV are the major targets of quinolone antibiotic, and mutational alterations in quinolone resistance determining regions (QRDR) serve as major mechanism of resistance in most bacterial species, including P. aeruginosa. The present investigation was aimed to study the molecular mechanism of fluoroquinolone resistance among clinical P. aeruginosa isolated from Dhaka, including alterations in target sites of the antimicrobial action.

Laboratory collection of 53 P. aeruginosa were subjected to conventional cultural and biochemical characterization, followed by molecular identification using 16S rDNA sequencing. Susceptibility to ciprofloxacin and levofloxacin was tested by disc diffusion method followed by MIC assay. Resistant isolates were analyzed for mutation in their QRDR regions of gyrA and parC, and subjected to PCR detection of plasmid mediated quinolone resistance (PMQR) genes qnrA, qnrS and qnrB.

Among the isolates, 28% were found to be resistant to both fluoroquinolones tested. All of the fluoroquinolone resistant isolates carried a single mutation in gyrA (Thr-83-Ile), while 20% carried a single parC mutation (Ser-87-Leu). Higher level of MIC was observed in isolates carrying alterations at both sites. None of the isolates harbored any PMQR genes investigated, suggesting that chromosomal mutations in QRDR regions to be the major contributing factor for quinolone resistance in P. aeruginosa under investigation.

Keywords: Pseudomonas aeruginosa, Fluoroquinolone resistance, QRDR, PMQR
Introduction:

Pseudomonas aeruginosa is a cosmopolitan member of the Pseudomonaceae family commonly associated with opportunistic and nosocomial infections [1]. The recent emergence of multidrug-resistant and extensively-drug resistant strains of *P. aeruginosa* is alarming, indicating diminished options of therapeutically effective antibiotics [2]. The nosocomial pathogen can naturally resist a wide range of antibiotics through lower outer membrane permeability, multidrug efflux pumps and chromosomally encoded enzymes [2-4]. Antibiotics like carbapenems, fluoroquinolones, piperacillin, ceftazidime and aminoglycosides are commonly used for treatment of infection caused by *P. aeruginosa* [5]. However, emerging resistance to these antibiotics has been creating outbreaks of multidrug resistant isolates, which is becoming a major infection-related treatment burden [6]. Resistance to drugs like quinolone in *P. aeruginosa* increases difficulties in treating severe infections like sepsis and catheter-associated urinary tract infection (CA-UTI) [7].

Fluoroquinolone antibiotics, including ciprofloxacin and levofloxacin, can inhibit DNA Gyrase and Topoisomerase of *P. aeruginosa*, leading to bacteriostatic activity [8]. Resistance to these antibiotics is primarily mediated through mutational alterations in the QRDR motif [9]. In *P. aeruginosa*, fluoroquinolone target includes DNA Gyrase (GyrA and GyrB) and DNA Topoisomerase IV (ParC and ParE) molecular subunits, which are responsible for ATP-dependent cleaving and rebinding double-stranded DNA during replication [10]. Fluoroquinolones can bind to GyrA and/or ParC subunits and inhibit the catalytic effect of the protein, resulting inhibition of bacterial DNA replication [11]. Amino acid substitution in the 67-106 motif of the GyrA subunit of *P. aeruginosa* has been reported as the major mechanism of resistance against the antibiotic, as it leads to a reduced binding affinity between fluoroquinolones and GyrA [12-13]. Evidence suggests that substitution of amino acid residues Thr83 of the QRDR motif in GyrA is essential for the development of quinolone-resistant *P. aeruginosa* [13-15].
Additional mutational alteration in the QRDR motif of ParC subunit of DNA topoisomerase IV has also been associated with increased level of quinolone resistance in *P. aeruginosa* [13].

Alongside mutational alteration in the QRDR motif of GyrA and ParC, other resistance mechanisms also significantly contribute to reduced quinolone sensitivity in *P. aeruginosa*. This includes overexpression of efflux molecular pumps like MexAB-OprM and MexCD-OprJ through mutational alterations in their regulatory genes *mexR* and *nfxB*, respectively [16], and acquisition of PMQR genes like *qnrA, qnrB, qnrC* and *qnrS* [17]. Therefore, the aim of the present study was to investigate the DNA sequences of *P. aeruginosa* QRDR motifs to understand the association of fluoroquinolone tolerance level and alteration in GyrA and ParC, as well as the prevalence of PMQR variants in clinical *P. aeruginosa* isolates from Bangladesh.

Materials and Methods:

Bacterial Isolates:

Laboratory collection of 53 clinical *P. aeruginosa* collected from two renowned hospitals in Savar was investigated in this study. Sample types included urine, pus, secondary wound infection swab, burn wounds, catheter swab blood and tracheal aspirate. Reconfirmation of the isolates’ identity was conducted using conventional cultural and biochemical characterization following Bargey’s Manual of Systemic Bacteriology [18-20]. For further verification of their identity, fourteen representative isolates from different antibiotic resistance pattern were subjected to 16SrDNA sequencing using fd1 and rp2 primers (Table 1) and identity of the isolates was confirmed by BLAST analysis of the sequences using an online database (https://blast.ncbi.nlm.nih.gov/Blast.cgi).

Screening of fluoroquinolone resistance in clinical *P. aeruginosa*:*
Fluoroquinolone susceptibility among the clinical *P. aeruginosa* isolates were determined by disc diffusion assay against Ciprofloxacin and Levofloxacin, followed by minimum inhibitory concentration analysis by agar dilution method. Results were interpreted according to Clinical Laboratory Standard Institute (CLSI) standards [21]. *P. aeruginosa* ATCC 27853 was used as control for this experiment.

Sequence analysis of the QRDRs in GyrA and ParC:

Fluoroquinolone resistant isolates were subjected to analysis of alterations in their GyrA and ParC subunits of DNA Gyrase and Topoisomerase IV, respectively. The amplification of putative QRDR region in *gyrA* and *parC* gene was carried out using primer sequence and conditions obtained from a previous study [22]. Purified PCR-amplified products were sequenced by the dideoxy chain-termination method [46]. Sequence alignment and amino acid alterations were analyzed by Bioedit Sequence Alignment Editor (version 7.0.5.3). The sequences were compared with associated *P. aeruginosa* PAO1 loci from NCBI GenBank as reference.

PCR Amplification of Plasmid Mediated Quinolone Resistance (PMQR) genes:

The presence of three different variants of *qnr* genes namely *qnrA*, *qnrB* and *qnrS* were investigated in all isolates exhibiting phenotypic resistance against fluoroquinolone antibiotics. The primers and annealing temperatures are enlisted in Table 1.
Table 1. Primers used in this study

<table>
<thead>
<tr>
<th>Gene</th>
<th>Primer Sequence (5’ to 3’)</th>
<th>Use</th>
<th>Annealing Temperature</th>
<th>Amplicon Size/Nucleotide Position</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>gyra</td>
<td>GAC GGC CTG AAG CCG GTG CAC</td>
<td>Amplification and sequencing of GyrA subunit of Topoisomerase II</td>
<td>65°C</td>
<td>115-135</td>
<td>[22]</td>
</tr>
<tr>
<td></td>
<td>GCC CAC GGC GAT ACC GCT GGA</td>
<td></td>
<td></td>
<td>531-511</td>
<td></td>
</tr>
<tr>
<td>parC</td>
<td>CGA GCA GGC CTA TCT GAA CTA T</td>
<td>Amplification and sequencing of parC subunit of Topoisomerase IV</td>
<td>55°C</td>
<td>63-84</td>
<td></td>
</tr>
<tr>
<td></td>
<td>GAA GGA CTT GGG ATC GTC CGG A</td>
<td></td>
<td></td>
<td>366-344</td>
<td></td>
</tr>
<tr>
<td>qnrA</td>
<td>AGA GGA TTT TCT ACG CCA GG</td>
<td>Amplification of QnrA</td>
<td>54°C</td>
<td>580bp</td>
<td>[23]</td>
</tr>
<tr>
<td></td>
<td>TGC CAG GCA CAG ATC TTG AC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>qnrB</td>
<td>CCT GAG CGG CAC TGA ATT TAT</td>
<td>Amplification of QnrB</td>
<td>60°C</td>
<td>390bp</td>
<td>[24]</td>
</tr>
<tr>
<td></td>
<td>GTT TGC TGC CCA GTC GA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>qnrS</td>
<td>GCA AGT TCA TTG AAC AGG GT</td>
<td>Amplification of QnrS</td>
<td>54°C</td>
<td>428bp</td>
<td>[23]</td>
</tr>
<tr>
<td></td>
<td>TCT AAA CCG TCG AGT TCG GCG</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>fd1</td>
<td>TCT AAA CCG TCG AGT TCG GCG</td>
<td>Amplification and sequencing of 16S rDNA</td>
<td>42°C</td>
<td>1500bp</td>
<td>[25]</td>
</tr>
<tr>
<td>rp2</td>
<td>ACG GCT ACC TTG TTA CGA CTT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Results:

Fluoroquinolone resistance in *P. aeruginosa*:

All 53 isolates of *P. aeruginosa* were subjected to fluoroquinolone susceptibility test against ciprofloxacin and levofloxacin by disk-diffusion method followed by minimum inhibitory concentration (MIC) assay.
Among them, 15 (28%) were found to be resistant to both ciprofloxacin and levofloxacin, and all resistant isolates exhibited a high tolerance level to the fluoroquinolones tested (≥16 to ≥128 µg/ml).

Sequence analysis of QRDR regions:

The amino acid alterations in GyrA and ParC QRDR regions of 15 fluoroquinolone resistant *P. aeruginosa* was analyzed by sequencing and comparing with the corresponding sequences of *P. aeruginosa* PAO1. According to the pattern of amino acid alteration, the isolates were categorized into two distinct groups. Group I consisted of isolates with a single mutation at Thr-83-Ile in *gyrA*, while Group II contained one mutation at Thr-83-Ile in *gyrA* and one mutation at Ser-87-Leu in *parC* (Table 2). Among the 15 isolates, all carried a single mutation (Thr-83-Ile) in *gyrA*. Single mutation in *parC* (Ser-87-Leu) was also found in 3 of 15 isolates (19%). No additional mutations were observed in the QRDR regions. Sequence data of *gyrA* and *parC* from a representative isolate carrying mutations at both sites (PWS10) have been submitted to the GenBank databases under accession numbers PP501828 (*gyrA*) and PP526740 (*parC*).

Table 2. Amino acid alterations in *gyrA* and *parC* in fluoroquinolone resistant *P. aeruginosa* isolates

<table>
<thead>
<tr>
<th>Groups</th>
<th>No. of Isolates</th>
<th>Alterations in QRDR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>gyrA at position</td>
</tr>
<tr>
<td>PAO1</td>
<td></td>
<td>83</td>
</tr>
<tr>
<td>I</td>
<td>12</td>
<td>Thr (ACC)</td>
</tr>
<tr>
<td>II</td>
<td>3</td>
<td>Ile (ATC)</td>
</tr>
</tbody>
</table>

It is made available under a CC-BY 4.0 International license.
QRDR mutations in both gyrA and parC subunit reveals high level of tolerance against both ciprofloxacin and levofloxacin (MIC value ≥128 µg/ml) (Table 3). Isolates with a single gyrA mutation had fluoroquinolone MIC ranges from 16 to 64 µg/ml.

Table 3. Association of mutations in QRDR region and tolerance level against fluoroquinolones

<table>
<thead>
<tr>
<th>Group</th>
<th>No. of Isolates</th>
<th>Fluoroquinolone Antibiotics</th>
<th>No. of isolates with corresponding MIC (µg/ml) value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Ciprofloxacin</td>
<td>0.5</td>
</tr>
<tr>
<td>I;</td>
<td>12</td>
<td>Ciprofloxacin</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Levofloxacin</td>
<td>1</td>
</tr>
<tr>
<td>II;</td>
<td>3</td>
<td>Ciprofloxacin</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Alterations in gyrA (83)</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(83) and parC (87)</td>
<td></td>
</tr>
</tbody>
</table>

Occurrence of PMQR genes:

PCR detection of three PMQR variants (qnrA, qnrB and qnrS) revealed that none of the 15 fluoroquinolone resistant isolates carried the PMQR genes (Fig 1).
Discussion:

Pseudomonas aeruginosa can employ multiple mechanisms to resist therapeutically important antibiotics like the fluoroquinolones. Beside decreased level of antibiotic accumulation using lower outer membrane permeability and active molecular efflux pumps, alteration of QRDR motifs within topoisomerase II (GyrA and GyrB subunits) and topoisomerase IV (ParC and ParE subunits) has been considered to be the principal mechanism of fluoroquinolone resistance [26-29]. Several important pathogens, including *E. coli*, *Staphylococcus aureus*, *Streptococcus pneumoniae* and *Neisseria gonorrhoeae* has been found to have *gyrA* as their primary target of mutation alone or in combination with *parC* gene [14, 30-32]. Additional mutation of *mexR, nfxC* or *nfxB* genes are also found to cause limited sensitivity to quinolones [13, 33-34].

In *Pseudomonas aeruginosa*, alteration at position 83 in *gyrA* is most commonly associated with high level of resistance [12, 35]. Mutation from Threonine to a hydrophobic amino acid at this position tends to generally confer more resistance than other similar alterations at position 87, as observed in several reports [12-14]. The present study observed that all fluoroquinolone resistant isolates carried a single mutation at position 83, where threonine (Thr) was replaced with isoleucine (Ile) (Table 2). The result is in accordance with previous studies, as it is reported as the most common site of mutation at the QRDR region [13-14, 37-38]. Additional novel mutations in *gyrA* have also been reported, including Asp-87-Asn, Asp-87-Gly and Gln-106-Leu, which often occurs along with alterations at position 83 and associated with high MIC level [15, 38-39]. However, none of the isolates in this study had such alterations at position 87 and 106. Although Thr-83-Ile mutation can result resistance to second-generation quinolones like ciprofloxacin and levofloxacin as observed in this study (Table 3), its effect has been seen to be limited on more recent generation of quinolones like sitafloxacin and clinafloxacin [34].

Substitution of Leu for Ser-87 in *parC* subunit was observed in three isolates. This substitution is closely associated with fluoroquinolone resistance, and has been reported as a second step mutation in isolates already having a single alteration of *gyrA* in *P. aeruginosa* [13, 15]. This supports the present data, as the
isolates with alteration Ser-87-Leu in parC also carried alteration Thr-83-Ile in gyrA. These isolates had an elevated level of both ciprofloxacin and levofloxacin MIC (≥128 µg/ml). Additional mechanism of resistance like overexpression of efflux pump MexAB-OprM by mutational alteration of mexR could also contribute to fluoroquinolone resistance in P. aeruginosa [34]. However, no phenotypic evidence of efflux pump overexpression was observed in efflux inhibitor induced MIC depression assay in this study (data not shown), so analysis of mutation in mexR has not been conducted.

Although variants of PMQR genes like qnrA, qnrB, qnrC, qnrD and qnrS are not frequently found in P. aeruginosa [40], several recent studies have reported the increasing number of occurrences of PMQR genes in clinical P. aeruginosa [41-42]. But none of the quinolone resistant isolates from this study were seen to be harboring any of the three variants of qnr genes tested. Quinolone resistance through acquisition of PMQR genes is a mechanism commonly observed among the members of the Enterobacteriaceae family [43], and was first discovered by Martinez et al. that it could be transmitted to P. aeruginosa in vitro as well [44]. This is a major concern as acquisition of such resistance elements can further diminish the antimicrobial activity of fluoroquinolones [45].

Conclusion:

Culmination of data from this study suggests mutational alteration at QRDR regions, especially GyrA is the most significant mechanism of resistance to fluoroquinolones. Although other mechanisms like acquisition of PMQR and overexpression of efflux pumps contribute to resistance, the results indicate that mutational alteration alone can lead to the development of resistance against second generation fluoroquinolones like ciprofloxacin and levofloxacin. Broad spectrum antibiotics like fluoroquinolones are one of the safest therapeutic options to treat infections caused by P. aeruginosa. However, the ever-increasing resistance to the antibiotics is a major concern. Due to the bacteria’s incredible capacity in acquiring and resisting various antibiotics, it is essential to raise awareness to implement antibiotic stewardship.
Data Availability

Sequence data of gyrA and parC from a representative isolate is available at the GenBank databases under Accession numbers PP501828 (gyrA) and PP526740 (parC).

Ethics statement

This study was approved by the Ethics and Research Review Committee of the Jahangirnagar University Faculty of Biological Sciences [Ref No: BBEC, JU/M 2020 (1)4]. Written informed consent was obtained from patients for sample collection, and their personal identities along with other information were anonymized.

Acknowledgments:

The authors would like to thank the laboratory personnel of Enam Medical College Hospital and Gonoshasthaya Medical College Hospital, Dhaka, Bangladesh, for their support in the collection of the clinical samples.

Conflicts of Interest:

The authors declare that they have no conflict of interest.

Reference:

