Adaptive trials in stroke: Current use & future directions

Authors

Kathryn S Hayward^{a,b,c,d} PhD, 0000-0001-5240-3264, kate.hayward@unimelb.edu.au

Emily J Dalton^a PhD, 0000-0003-3920-8530, emily.dalton@unimelb.edu.au

Bruce CV Campbell^{c,d,e} PhD, 0000-0003-3632-9433, bruce.campbell@mh.org.au

Pooja Khatri^f MD, 0000-0002-7344-8266, pooja.khatri@uc.edu

Sean P Dukelow^g PhD, 0000-0002-0609-981X, spdukelo@ucalgary.ca

Hannah Johns^b PhD, 0000-0003-2135-0504, hannah.johns@unimelb.edu.au

Silke Walter^b MD, 0000-0002-1176-2911, Silke.Walter@uks.eu

Vignan Yogendrakumar^{e,i} MD, 0000-0001-8814-6853, Vignan.yogendrakumar@mh.org.au

Jeyaraj Pandian^j MD, 0000-0003-0028-1968, jeyarajpandian@hotmail.com

Simona Sacco^k MD, 0000-0003-0651-1939, simona.sacco@univaq.it

Julie Bernhardt^c PhD, 0000-0002-2787-8484, julie.bernhardt@florey.edu.au

Mark Parsons^l PhD, 0000-0001-8874-2487, mark.parsons@unsw.edu.au

Jeffrey L Saver^m MD, 0000-0001-9141-2251, JSaver@mednet.ucla.edu

Leonid Churilov^{b,c,d,n} PhD, 0000-0002-9807-6606, leonide@unimelb.edu.au

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Melbourne Medical School, University of Melbourne, Parkville, Victoria, Australia, 3010.

Stroke Theme, The Florey Institute, University of Melbourne, Heidelberg, Victoria, Australia, 3084

National Health and Medical Research Council Centre of Research Excellence to Accelerate Stroke Trial Innovation and Translation, University of Sydney, Camperdown, New South Wales, Australia, 2006

Department of Medicine and Neurology, Royal Melbourne Hospital, University of Melbourne, Parkville, Victoria, Australia, 3010

Department of Neurology and Rehabilitation Medicine, University of Cincinnati, Cincinnati, OH, United States, 45219

Department of Clinical Neuroscience and Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada, T2N 1N4

Department of Neurology, Saarland University, Saarbrücken, Saarland, Germany, 66123, and Department of Neurology, Martin-Luther-University, Halle, Germany, 06108

Department of Neurology, University of Ottawa, Ottawa, Ontario, Canada, K1N 6N5

Department of Neurology, Christian Medical College, Ludhiana, Punjab, India, 141008

Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila, AQ, Italy, 67100

UNSW South Western Sydney Clinical School, Department of Neurology, Liverpool Hospital, Warwick Farm, NSW, Australia, 2170

Comprehensive Stroke Center and Department of Neurology, University of California Los Angeles, Los Angeles, CA, United States.

Australian Stroke Alliance, University of Melbourne, Parkville, Victoria, Australia, 3010

Corresponding author:

Dr Kathryn Hayward
Level 7 Alan Gilbert Building
University of Melbourne
161 Barry Street
Carlton Victoria Australia 3050

| Keywords | Clinical trial, adaptive design, flexible design, platform, stroke, acute, rehabilitation, prevention |
Abstract

Inclusion of adaptive design features in a clinical trial provides pre-planned flexibility to
dynamically modify a trial during its conduct, while preserving validity and integrity. Adaptive
trials are needed to accelerate the conduct of more efficient, informative, and ethical clinical
research in the field of neurology as compared to traditional fixed designs. Stroke is a natural
candidate for adoption of these innovative approaches to trial design. This Research Methods in
Neurology paper is informed by scoping review that identified 45 completed and ongoing adaptive
clinical trials in stroke that were appraised: 14 trials had published results with or without a
published protocol, 15 trials had a published protocol, and 16 trials were registered only.
Treatments spanned acute (n=28), rehabilitation (n=8), prevention (n=8), and rehabilitation and
prevention (n=1) domains. A subsample of these trials were selected to illustrate the utility of
adaptive design features and discuss why each adaptive feature(s) were incorporated in the design to
best achieve the aim, whether each individual feature was used and if it resulted in expected
efficiencies, and any learnings during preparation, conduct or reporting. We then discuss the
operational, ethical, and regulatory considerations that warrant careful consideration during
adaptive trial planning and reflect on the workforce readiness to deliver adaptive trials in practice.
We conclude that adaptive trials can be designed, funded, conducted, and published for a wide
range of research questions and offer future directions to support adoption of adaptive trial designs
in stroke and neurological research more broadly.
Introduction

Methodologists have long signalled that inclusion of adaptive design features in clinical trials can drive more efficient and ethical research across clinical trial phases as compared to traditional fixed designs. An adaptive clinical trial offers pre-planned opportunities to use accumulating data to modify design aspects during trial conduct while preserving validity and integrity\(^1\). Adaptations are implemented for the purpose of both maximising statistical (and at times operational) efficiency and achieving better outcomes for participants and future patients\(^2\). Such goals can be achieved through a variety of adaptive features used individually or in combination (Table 1), with the most complex option being an adaptive platform trial. Common features include adapting the sample size to gain sufficient power based on observed outcomes, removing treatments that are less effective, adapting randomisation ratios in response to treatment outcomes, and enriching recruitment to specific subgroups that appear most likely to benefit. Enacting pre-planned adaptive features due to futility may translate to fewer patients allocated to ineffective treatments, which presents a possible cost-saving.

Inclusion of adaptive features in clinical trials has been growing since the early 2000s\(^3,4\). Several regulatory agencies have published guidance statements\(^5,6\). In 2020 the Adaptive designs CONSORT Extension (ACE) statement was published\(^1\). Such works have motivated funding bodies, researchers, and networks to consider the value of clinical trial designs that include adaptive features to deliver their research agenda\(^7,8\). While historically the leading area of adaptive trial application was oncology\(^3,4\), accelerated implementation was observed in the context of the COVID-19 pandemic\(^9\). Despite adaptive trials being proposed as a possible solution to improve clinical trial conduct\(^10\), adoption in many conditions\(^3,4\) including stroke is not well documented.

Clinical trials of treatments for people with stroke are well suited to adaptive designs\(^11\). There are many treatments across acute, rehabilitation, and prevention domains of the heterogeneous disease
of stroke11-14 that need to be efficiently screened and tested for clinical efficacy. This highlights the urgency to advance the use of adaptive trial designs to identify early futility and eliminate ineffective treatments during trial conduct. Such impacts can prevent delays in testing alternative treatments, whilst improving resource efficiency and minimising how many patients are exposed to ineffective (and potentially harmful) treatments11. As accumulated data inform adaptations, the very nature of an adaptive trial depends on the outcome of interest being observed precisely over a period that is substantially shorter than the overall trial duration in order to inform pre-planned adaptations. Primary outcomes for stroke trials can be measured as early as within the first 24 hours (e.g., early neurological recovery or imaging outcomes15,16) to 90 days post-stroke (e.g., modified Rankin Scale in acute ischaemic stroke17, and rehabilitation18) and may even extend out to 1 year and beyond (e.g., intracerebral haemorrhage19, or composite outcomes in long-term prevention20-22 trials). Some early outcomes (e.g., reperfusion within 24 hour after ischaemic stroke) are also highly prognostic of longer-term functional outcome (e.g., modified Rankin Scale at 90 days)23. Collectively, this positions stroke as a natural candidate for embracing adaptive clinical trial designs.

This paper uses a scoping review methodology to identify completed and ongoing adaptive clinical stroke trials (acute, rehabilitation, prevention) to inform real-world case examples that illustrate the utility of adaptive design features in practice. We subsequently consider the strengths and limitations of adaptive designs and workforce readiness to deliver adaptive trials (including the role of stroke organisations and trial networks to support their uptake). We conclude with future directions, for stroke and neurology broadly, to support adoption of adaptive trial designs to address important clinical research questions.
Scoping review of adaptive clinical trials in stroke

Forty-five trials were identified from a scoping review of clinical trial registries and Pubmed (See Supplementals A-B). Fourteen adaptive trials had published results with or without a published protocol, 15 had a published protocol and 16 had registration only. Details of included trial characteristics, design, and adaptive features used and enacted is provided in Supplementals B-E. Treatments spanned acute (n=28), rehabilitation (n=8), prevention (n=8), and rehabilitation and prevention (n=1). The most common adaptive features were group sequential (n=29), and sample size reestimation (n=17). High use of group sequential is consistent with other observations\(^24\) and may relate to its broad definition (Table 1). Twenty-six trials included one adaptive feature, 12 included two and six included three or more. Most trials were investigator initiated (n=26 investigator-initiated only, n=12 investigator-initiated, industry-supported) with a high-income country-specific national agency being the primary funding source e.g., National Institutes of Health. Only three trials included sites in upper middle-income countries and four included sites in lower-middle-income country.

Utility of adaptive features in stroke trials

Each adaptive feature (Table 1) was linked to a real-world stroke trial (selected from Supplemental B-E) to illustrate utility in written and visual format (Figures 1-5). Trials presented span clinical domains (acute/rehabilitation/prevention), trials phases and stroke aetiologies. One adaptive platform trial in the planning stage is also presented. Each trial discussion focuses on why the adaptive feature(s) were incorporated in the design to best achieve the aim, reflection on whether each individual feature was used and whether it resulted in expected efficiencies, and any learnings during preparation, conduct or reporting.

Adaptations to the timing for stopping a trial: The SELECT-2\(^25\) and TENSION\(^26\) acute trials tested the efficacy of endovascular thrombectomy in patients with extensive ischaemic injury. As there
were potential safety and futility concerns in the most severely affected patients, their chosen designs included group sequential testing with strict z-score boundaries to reduce the risk of stopping early for false positive results. Due to early evidence of efficacy, the SELECT-2 stopped after the second interim analysis results, and the TENSION trial stopped after the first interim analysis results were available. Due to ongoing recruitment while the interim analysis outcomes were accrued, the final sample size was larger, and this was tested at the conventional significance level in the final analysis. On completion, both trials demonstrated that among patients with large ischaemic strokes, endovascular thrombectomy resulted in better functional outcomes than medical care. These early and positive findings resulted in cost, resource and time savings for the trial and future participants and led to rapid inclusion into clinical practice guidelines e.g., SELECT-2 included in the living Australian Stroke Clinical Practice Guidelines within 5-months of publication. It must be noted though that in SELECT-2 only, endovascular thrombectomy was associated with early neurologic worsening and procedural complications.

The UPLIFT trial (integrated UPper limb and Language Impairment and Functional Training, ACTRN12622000373774) is an ongoing rehabilitation trial that includes group sequential testing. This trial aims to efficiently develop evidence for a new model of stroke rehabilitation, during community living. An umbrella design with four simultaneous Bayesian Optimal Phase IIa (BOP) strata was adopted. In this design, the outcomes from the four BOP strata are not compared to each other but rather to a pre-specified objective criterion. The overall goal is to select the dose(s) of the UPLIFT intervention presenting with sufficient promise, probed through group sequential testing (three interim analyses, one final decision analysis per strata). This offers a flexible approach to identify promising individual interventions by screening multiple doses under a single trial infrastructure. The adopted compositive binary primary good outcome (inclusive of signal of efficacy, safety, and feasibility) is used to determine if a specific individual UPLIFT intervention is stopped or continued at each interim analysis point. The field of stroke recovery is yet to deliver
practice changing interventions like thrombolysis or thrombectomy. There is a time imperative to identify futility early for novel interventions, which was afforded by a group sequential testing. During trial set-up, ethical approval was efficient (<30 days from submission to approval), which was afforded by clear reporting of the adaptive design due to statistical input and oversight, and use of a design overview figure (Figure 1). However, there were challenges associated with trial registration as the process at the time was not customised to cover for umbrella designs with adaptive features.

Adaptations to sample size: The EXTEND-IA TNK trial29 compared two different clot-dissolving medicines (alteplase and tenecteplase) prior to EVT in a phase II non-inferiority design using reperfusion at the initial angiogram as the primary outcome. Given the uncertainty around the expected effect size, an adaptive sample size reestimation was employed using the Mehta and Pocock promising zone method30 (Figure 2). This has the advantage of being fully prespecified and reestimates the sample size within a specified range, based on the conditional power observed at the time of sample size reestimation. The choice of when to perform the interim sample size reestimation is a balance between greater precision with larger participant numbers and sufficient time to accumulate evidence regarding the primary outcome, accounting for recruitment rate, prior to reaching the minimum sample size. In EXTEND-IA TNK, the primary outcome was collected within hours of enrolment. This short period over which to observe the outcome allowed the reestimation to occur closer to the originally planned full sample size than it would have been had an outcome been collected at 3 months. The prespecified mechanism of the Mehta and Pocock method does not impose alpha-spending penalties for multiplicity of testing and uses the threshold of p=0.05 for the final analysis. It is important to note that the intent here is quite different to that used by group sequential testing which imposes a stringent (e.g., p<0.001) early stopping boundary to demonstrate early efficacy. In this trial, the estimated sample size was set at a minimum of 120 with a potential increase up to the maximum of 276 patients. The prespecified sample size reestimation occurred at 100 patients and established a final sample size of 202 patients. On
completion, it was demonstrated that tenecteplase before thrombectomy was associated with a
higher incidence of reperfusion and better functional outcome than alteplase among patients with
ischaemic stroke treated within 4.5h after symptom onset.

Adaptations to patient population: ENRICH is a randomised trial\(^{31}\) of minimally invasive surgery
for intracerebral haemorrhage (ICH) that has been presented in abstract form\(^{32}\). The trial used a
Bayesian design with adaptive enrichment. Scheduled interim analyses, beginning after 150 patients
(and then at 175, 200, 225, 250 and 275, with the trial maximum sample of 300 patients) had been
enrolled were used to guide study enrichment based on haemorrhage location. A visual
representation of how adaptive enrichment works is provided in Figure 3. At interim analysis
(adaptive feature of group sequential testing), the anterior basal ganglia stratum was closed early
due to futility according to prespecified thresholds for enrichment. The final trial results were
positive, driven by the benefit in enriched lobar ICH, with neutral effect in the anterior basal ganglia
group. ENRICH is the first trial to enact adaptive enrichment. The SELECT-2\(^{25}\), DEFUSE 3\(^{33}\) and
DAWN\(^{34}\) trials all pre-specified the potential for adaptive enrichment to allow for sequential
exclusion of subpopulations that were likely to have the worst prognosis and enrich the remaining
trial population, should the overall interim result cross a safety or futility boundary. However, none
of these three trials needed to enact adaptive enrichment.

Adaptations to patient allocation based on comparative baseline characteristic data: The
TELEREHAB-2 trial\(^{35}\) was designed to determine whether treatment targeting arm movement
delivered via a home-based telerehabilitation system had comparable efficacy with dose-matched,
intensity-matched therapy delivered in a traditional in-clinic setting, and to examine whether this
system has comparable efficacy for providing stroke education. Baseline characteristics were
selected as covariates, based on established evidence on potential confounding, in an attempt to
prevent serious imbalances across the two treatment groups. The covariates used in this trial were
time post-stroke, severity of impairment, age, enrolment site, and stroke subtype were balanced
across the two treatment groups. **Figure 4** provides a visual representation of this adaptative feature in the context of the AVERT-Dose trial.

Aadaptations to patient allocation based on comparative outcome data: MOST31 is an ongoing multi-arm trial of stroke thrombolysis to determine the safety and efficacy of intravenous therapy with argatroban or eptifibatide as compared with placebo in acute ischemic stroke patients treated with intravenous recombinant tissue plasminogen activator within 3 hours of symptom onset. Interim analyses were planned to occur after 500, 700, and 900 subjects were randomised. Using a Bayesian approach, the predictive probability of a successful final analysis was calculated based on different assumptions about the remaining subjects to be enrolled. When n=500, one (or both) experimental arm(s) may be stopped for futility if there is less than 20% probability of demonstrating benefit compared to the control arm in either experimental intervention and the trial were to continue to n=700. Next, one (or both) experimental arm(s) may be stopped for futility when n=700 or n=900 if there is less than 5% probability of demonstrating benefit in either experimental arm if the trial were to continue. One (or both) arm(s) may be stopped early for efficacy after 700 or 900 subjects if an arm has an expected successful predictive probability of demonstrating superiority to control of at least 99%. This trial, reported at International Stroke Conference 2024, was stopped for early futility. **Figure 4** visually represents adaptations to patient allocation in the context of the AVERT-Dose trial.

Aadaptations to treatment arm selection: The AVERT-DOSE trial (ACTRN12619000557134)36 is an ongoing rehabilitation trial that includes five adaptive features, including adaptation to treatment arm selection. This trial aims to define optimal early (commenced within 48 hour) mobility intervention regimens for ischaemic stroke patients of mild and moderate severity across seven countries (Australia, Malaysia, United Kingdom, Ireland, India, Brazil, Singapore). Ongoing uncertainty around the world about the safest and most effective early training approaches after
stroke prompted this clinical trial. The developed adaptive design is one of the most complex designs ongoing in stroke as it includes multi-arm, multi-stage with treatment selection, covariate-adjusted and response-adaptive randomisation, and sample size reestimation (Figure 4). Unlike the MOST trial, AVERT-Dose is performing response-adaptive randomisation within frequentist rather than Bayesian framework. Focusing on the adaptive feature of treatment selection, in Stage 1 (mild or moderate severity strata), 25% of patients will be randomised into the reference arm, while randomisation into three intervention arms is guided by the adaptive algorithm. At Stage 2, randomisation into the reference arm and the single selected intervention arm will be guided by the adaptive algorithm. Implementing this adaptive trial design enabled a wider variety of mobility regimes (three regimens per strata) to be tested than a traditional two-arm design, enabling more efficient testing than otherwise possible.

Adaptations to endpoint selection: The EVACUATE trial (NCT04434807) is an ongoing trial testing ultra-early minimally invasive evacuation of intracerebral haemorrhage (ICH). This has been proposed as a means to reduce ICH growth, secondary injury from mass effect, thrombin, and iron toxicity. The MISTIE-III trial provided proof of principle that effective ICH evacuation may reduce disability with a strong association between the proportion of ICH evacuation or the residual volume with functional outcome. This study also justified the use of the proportion of haematoma evacuated as an intermediate outcome (endpoint) in the EVACUATE seamless phase IIb/III two-arm, two-stage randomised trial (NCT04434807) with the primary outcome (endpoint) of mRS at 90 days (Figure 5). A two-arm, two-stage design is a specific case of a multi-arm, multi-stage adaptive design that capitalises on the principles of group sequential testing and complements it with additional useful adaptive features. A seamless IIb/III design is particularly advantageous in a relatively rare condition such as ICH, in that the phase IIb patients can also contribute to the phase III analysis of functional outcome. There are also logistical efficiencies in being able to proceed directly from phase IIb to III without stopping to re-submit ethics, obtain governance, and reinitiate
sites. However, the use of an intermediate outcome to determine progression of the trial to the second stage (Phase III) is fully predicated on demonstrated prognostic properties of this outcome in relation to the primary outcome. In this trial, the two-arm, two-stage design was complemented by an adaptive sample size reestimation within the second stage using the Mehta and Pocock method described above\(^3\). The randomisation for this trial uses the covariate adaptive common scale minimum sufficient balance algorithm\(^3\) that improves the balance of key prognostic variables while maximizing the randomness of allocation.

Planned adaptive platform trial.

Recent pivotal trials have shown endovascular thrombectomy to have large treatment effects in highly selected subsets of patients with acute ischaemic stroke due to large vessel occlusions. These have raised questions about whether more broadly selected patients would benefit from endovascular therapy. Furthermore, despite large treatment effects, most endovascularly treated patients remain functionally disabled, raising many new treatment and management questions in urgent need of answers. Each of these questions would need large and expensive clinical trials if performed in a traditional manner, and major therapeutic advancements would be prohibitively expensive. Therefore, the StrokeNet Thrombectomy Endovascular Platform (STEP) has been designed within NIH StrokeNet to address these questions using statistical and operational efficiencies. STEP is designed to determine the optimal treatment strategies for patients with acute ischaemic stroke due to large or medium vessel arterial occlusions potentially amenable to endovascular therapy. The planning grant is nearing completion (NIH/NINDS OT2NS129366) and initial enrolment in the platform trial is anticipated in 2024.

STEP is a randomised, multi-factorial adaptive platform trial (NCT06289985) that aims to study which ischaemic stroke patients should be treated with endovascular therapy and how to optimise that care further, in terms of newer devices or techniques, adjunctive therapies, newer diagnostic
strategies, and systems of care delivery39. The primary outcome is global functional outcome measured by the utility-weighted modified Rankin Scale assessed at 90 days. The platform will include 50 comprehensive stroke centres across the US and Canada. The sites will work under a master protocol that integrates appendices that address distinct interventions, or domains. Domain-specific modelling are integrated into one inferential statistical model, and the model allows for frequent adaptive analyses to assess the effects of distinct interventions.

The first domain, STEP Endovascular Thrombectomy Indication Expansion (STEP-EVT Indication Expansion, NCT06289985), will assess endovascular thrombectomy versus medical management in acute ischaemic stroke patient subgroups with low NIHSS and/or medium and distal vessel arterial occlusions. Patients will be concurrently randomised to other domains, as they become funded by the NIH and initiated within the platform, and the model will estimate the effects of other domains using that domain’s specific modelling. Adaptive conclusions for each domain will be triggered by the primary Bayesian model run at a prespecified frequency. Adaptive decisions for each domain may include response adaptive randomisation.

An adaptive platform trial, such as STEP, demonstrates how access to initial planning funds is critical to support the development of the platform and supporting infrastructure. Appropriate planning is important given adaptive platform trials can run for a long period of time. National funding agencies in USA, Australia, and UK have recently had targeted funding calls for adaptive platform trials. An important feature of a platform trial is a shared control group, which allows new treatments to be compared to a common control, direct comparison of effect sizes between treatments and reduces the likelihood that a patient will end up in the control group9,40. However, use of a shared control does rely on the assumption that it remains equally acceptable to patients with time9. There are other considerations related to chronological bias including trends in outcome measures that may be caused by changes in standard of care, adding or dropping of participating
centres, shifts in the patient population, systematic variations in participant responses to the control or changes in expectancy effects when a new treatment that is perceived as particularly promising enters or leaves the trials.\(^9\)\(^{,40}\)

Strengths and limitations of adaptive trials

Adaptive trial designs are heralded as a suite of tools to deliver more efficient trials. There are many aspects to consider whether this goal is achievable. Depending on the specific clinical research question, adaptive features (Table 1) may or may not be appropriate. The very nature of an adaptive trial depends on the outcome of interest being observed over a period that is substantially shorter than the overall trial duration in order to inform pre-planned adaptations. As such, adaptive trials may not be suitable when the outcome of interest is collected years later e.g. long follow-up in secondary prevention trials for stroke or myocardial infarction. Alternatively, there may be limited or no access to appropriate statistical design and analysis support. Adaptive trials may increase the practical complexity and in doing so, eliminate the theoretical efficiency gains.\(^41\) Table 2 provides a narrative synthesis of existing operational, ethical, scientific, and regulatory considerations. As this review is primarily for a clinical readership, discussion of the statistical considerations of adaptive designs\(^1\)\(^{,24}\) is beyond its scope.

Clinical, research and technical workforce readiness

Adaptive clinical trials may impact research and clinical workforce readiness. Adaptive trials require access to statistical, data and trial management staff who are fluent in their design\(^42\) to manage the potential impact on trial costs. A mock-costing exercise completed with seven UK Clinical Trial Units estimated non-platform adaptive trials with pharmacologic interventions were 2-4\% more expensive than a non-adaptive trial equivalent\(^43\). The highest increase was for statistical staff, with lower increases for data and trial management staff\(^43\). Costings for appropriate statistical staff are highly dependent on the nature of the adaptive feature(s) included\(^42\). During trial conduct,
adaptations that occur at prespecified interim analyses (e.g., sample size reestimation, multi-arm, multi-stage) may require more intensive ongoing input than adaptations that are managed on a day-to-day basis by software that implement methods to adaptively randomise individual participants (e.g., covariate-adjusted, response-adaptive). However, such randomisation methods often require bespoke software36, 39, 44 to be developed prior to trial start for which the code is generally not publicly available45. It is important to note such development skills are different to those required to perform trial design and analysis work reflecting a unique workforce requirement for some adaptive designs.

Adaptive designs can impact site clinical and trial management staff. There can be additional costs associated with supplementary training in adaptive trial processes and procedures, and time to gain consent may be longer due to the complexity of transparently discussing adaptive features with potential participants42. Countering potential increased costs, trials that can be stopped for futility can create efficiencies that traditional trials cannot offer. For example, an adaptive platform trial allows the same participant to be enrolled in multiple distinct intervention trials, thereby answering many questions through participation in only one trial46. This may mitigate challenges for patients in choosing between trials and clinicians maintaining recruitment across competing trials. Some adaptive features (e.g., adaptive sample size reestimation, changes in intervention arms open to randomisation47) can lead to uncertainty in the amount of site staff required and result in short-term contracts to ensure adaptive features (whether enacted or not) can be accommodated. Other features that are more enduring (e.g., adaptive platform) may offer greater stability for trial staff due to their perpetual nature46. As such, the impact on the site workforce varies depending on the adaptive features included in a trial, but may also be impacted by the volume of trials operating at a site, whether the site is part of a network (e.g., NIH StrokeNet) or has an accessible Clinical Trial Unit (e.g., UK centres), and experience of the site24, 42. These issues have been largely acknowledged in
reports from high-income countries and may be more pronounced in low-middle income countries and rural/regional centres.

With growing uptake of adaptive features (Table 1), it is important to consider the role of professional organisations (e.g., World Stroke Organisation, European Stroke Organisation) and networks (e.g., CanStroke Recovery Trials, Canadian Stroke Consortium, Australasian Stroke Trials Network, NIH StrokeNet48, Global Alliance of Independent Networks focused on Stroke trials (GAINS), Indian Stroke Clinical Trial Network (INSTRuCT49), European Stroke Organsiation Trial Alliance (ESOTA50)) to prepare current and future generations of clinical trialists to embrace, where appropriate, adaptive trial designs. Clinical trial stakeholders have identified that broadening the acceptance and uptake of adaptive trials will depend on access to training, guidelines, and toolkits to ensure proper use of adaptive trial designs in practice51. Currently, most educational opportunities (e.g., webinars, scientific meetings) do not provide the depth of training required. This highlights a critical training gap that needs to be addressed in the immediate future.

Conclusions

Our scoping review underpins consolidated knowledge about the use of adaptive trials by examining stroke as the exemplar neurological condition. There is considerable use of adaptive design features across efficacy and effectiveness trials of acute stroke treatments, and emerging use for trials of rehabilitation or prevention. The trial examples highlighted how meaningful decisions concerning the use of adaptive features can be applied in stroke to deliver more efficient and ethical trials, which may in turn deliver cost-savings. From a public health perspective, adaptive trial designs can no longer be overlooked and present an efficient and ethical trial design approach for national funding agencies to support. When adaptive features are incorporated, it is imperative that they are used correctly to preserve trial validity and integrity. Inclusion of any adaptive feature(s) in a clinical trial is no panacea. Researchers, funders, and sponsors will always need to carefully
consider if an adaptive design provides the most appropriate approach to answer the research question, just as with any suite of design tools. Time and resources must be allocated to conduct the preparation work required to design an adaptive trial. Once doing an adaptive trial, comprehensive and transparent reporting of all adaptive features across all trial sources (i.e., trial publications and registration) is essential. There is scope to improve reporting across sources based on the number of trials identified through authorship knowledge of the field rather than through explicit reporting in publications and registries. Adherence to available guidelines (i.e., CONSORT ACE\(^1\)) will enhance quality of reporting and ability for others to find and learn from prior adaptive trials. In line with this, greater knowledge across the research workforce will support peer-review of grants and publications that include adaptive design features. Overall, we have demonstrated that adaptive trials can be designed, funded, conducted, and published for a wide range of stroke research questions. We advocate for the broader, responsible adoption of adaptive designs to address many amenable clinical research questions in a more efficient and flexible manner.
Acknowledgements: Nil.

Sources of funding: Nil.

Disclosures: KSH is supported by a NHMRC Emerging Leadership (#2016420) Fellowship, Heart Foundation Future Leader (#106607) Fellowship, and Award from the Victorian Health and Medical Research Workforce Project, The Victorian Government, The Victorian Department of Jobs, Precincts and Regions, AAMRI and Veski; has received a research grant from the Medical Research Future Fund (2007425); has received support to attend meetings of the World Stroke Congress and World Congress of NeuroRehabilitation; and is co-Chair of the third Stroke Recovery and Rehabilitation Roundtable. ED has received a PhD scholarship from Australian Government Research Training Program; and received support from University of Melbourne and Smart Strokes to attend conferences. BCVC holds a NHMRC Leadership (#1174514) Fellowship.
KSH/BCCV/ JB/ LC are investigators of the NHMRC Centre of Research Excellence to Accelerate Stroke Trial Innovation and Translation (#2015705). LC has received grants from the Medical Research Future Fund (#2007425, Frontiers Australian Stroke Alliance), and NHMRC (#2010766). PK has grants or contracts with NIH, Cerenovus/Johnson & Johnston (ENDOLOW trial PI), Bayer (PACIFIC-Stroke trial national leader contract), NIH; royalties from UpToDate, Inc (online publication); consulting fees from Basking Biosciences, Lumosa, Shionogi; NIH-appointed DSMB Chair of Nourish Trial; and has received drug and drug assays from Translational Sciences for NIH funded SISTER trial. VY holds a CIHR Fellowship Award (430288) and is supported by a Scholarship from the University of Melbourne. SW is a member of European Stroke Organisation executive committee. SS has held contracts with Novartis and Uriach; received consulting fees, payment or honoraria or support to attend meetings from Novartis, Allergan-Abbvie, Teva, Lilly, Lundbeck, Pfizer, NovoNordisk, Abbott, AstraZeneca, or Lundbeck; is President Elect of the European Stroke Organisation and Second Vice-President for the European Headache Federation;
and has received materials from Allergan-Abbvie and NovoNordisk. JB is supported by a NHMRC fellowship (#1154904); an investigator on MRFF, NHMRC, Alfred Felton Bequest and University of Melbourne projects; DSMB Chair of iWHO, SCI-MT and ESTRELL trials; DSMB member of RESTORE trial; Steering Committee member of PISCES, PESTO, UPLIFT and ENABLE trials; member of scientific advisory board for academic institutions in Norway and India; Executive Chair of the International Stroke Recovery and Rehabilitation Alliance; received support to attend World Stroke Organisation, World Stroke Congress, Global Stroke Alliance, Lausanne University Hospital Switzerland, Dutch Society of NeuroRehabilitation meetings; received payment or honoraria from Japanese Association of Rehabilitation Medicine, Chinese Association of Rehabilitation Medicine, American Congress of Rehabilitation Medicine, Belgian Stroke Council, Department of Rehabilitation Medicine Asan Medical Centre Korea, University of Otago New Zealand, Kaiser Permanente USA, Moleac Pty Ltd, and University Hospital Bern. JLS reports consulting fees (for advising on rigorous and safe clinical trial design and conduct) from Abbott, Acticor, Aeromics, Amgen, Argenica, Astrocyte, Bayer, Biogen, Boehringer Ingelheim, BrainsGate, BrainQ, CSL Behring, Filterlex, Genentech, Johnson&Johnson, MindRhythm, Medtronic, NeuroMerit, Neuronics, Novo Nordisk, Occlutech, Phenox, Phillips, QuantalX, Rapid Medical, Roche, and Stream Biomedical. HJ, JP have no declarations of interest.
References

42. Wason JMS, Dimairo M, Biggs K, et al. Practical guidance for planning resources required
clinical trials: quantitative and qualitative results from the Costing Adaptive Trials project. BMC
44. Tidwell RSS, Thall PF, Yuan Y. Lessons Learned From Implementing a Novel Bayesian
Adaptive Dose-Finding Design in Advanced Pancreatic Cancer. JCO Precis Oncol 2021;5.
46. Angus DC, Berry S, Lewis RJ, et al. The REMAP-CAP (Randomized Embedded
Multifactorial Adaptive Platform for Community-acquired Pneumonia) Study. Rationale and
47. The Academy of Medical Sciences. Adaptive trials: acceptability, versatility and utility
Summary of a FORUM workshop held on 23 January 2019. [online]. Available at:
49. Pandian JD, Verma SJ, Arora D, et al. INSTRuCT: Protocol, Infrastructure, and
stroke clinical research - The European Stroke Organisation Trials Alliance (ESOTA). Eur Stroke J
scoping review. Trials 2020;20:539.
52. National Institute of Health Grants. Notice of Special Interest (NOSI): Platform Trials of
Thrombectomy in Acute Stroke Treatment [online]. Available at:
53. Hague D, Townsend S, Masters L, et al. Changing platforms without stopping the train:
experiences of data management and data management systems when adapting platform protocols
54. Wason JM, Mander AP. Minimizing the maximum expected sample size in two-stage Phase
55. Wason JM, Mander AP, Thompson SG. Optimal multistage designs for randomised clinical
clinical trials focused on neurological emergencies developed for the Advancing Regulatory
Science initiative of the National Institutes of Health and US Food and Drug Administration: Case
studies from the Adaptive Designs Accelerating Promising Treatments Into Trials Project. SAGE
Open Med 2017;5:2050312117736228.
Accelerating Promising Trials Into Treatments (ADAPT-IT) Process-Findings from a Qualitative
59. Branch-Elliman W, Elwy AR, Monach P. Bringing New Meaning to the Term "Adaptive
Trial": Challenges of Conducting Clinical Research During the Coronavirus Disease 2019
<table>
<thead>
<tr>
<th>Table 1: Glossary of common adaptive design features synthesised from guidance documents(^1,2,5).</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adaptations to the timing for stopping a trial (also referred to as group sequential): Allows for one or more prospectively planned interim analyses of data with prespecified criteria for stopping the trial. Criteria for stopping may be for early efficacy, safety, or insufficient evidence of efficacy, which is often called stopping for futility.</td>
</tr>
<tr>
<td>Adaptations to sample size: Allows adaptive modification to the sample size based on interim estimates that uses treatment assignment information or comparative interim results.</td>
</tr>
<tr>
<td>Adaptations to patient population: Allows adaptive modifications to the patient population and often involves both (a) modification of design features, such as the enrolled population and the population evaluated in the primary analysis, based on comparative interim results; and (b) hypothesis tests in multiple populations, such as a targeted subpopulation and the overall population.</td>
</tr>
<tr>
<td>Adaptations to patient allocation based on comparative baseline characteristic data: Covariate-adaptive randomisation (CAR) is adaptive modification to treatment assignment depending on subject’s baseline characteristics, and the treatment assignments of previously enrolled subjects to reduce the covariate imbalance in treatment arms.</td>
</tr>
<tr>
<td>Adaptations to patient allocation based on comparative outcome data: Response-adaptive randomisation (RAR) is adaptive modification to treatment assignment based on accumulating outcome data of subjects previously enrolled.</td>
</tr>
<tr>
<td>Adaptations to treatment arm selection: Allows adaptive modification to the treatment arms based on comparative interim result which may see arms added or terminated.</td>
</tr>
<tr>
<td>Adaptations to endpoint selection: Allows adaptive modification of the primary endpoint based on comparative interim results.</td>
</tr>
<tr>
<td>Adaptive platform trial: Allows for the study of multiple interventions in a single disease (or condition) in a perpetual manner, with interventions allowed to enter or leave the platform based on a decision algorithm. This design is based on multiple arms studied over multiple stages (MAMS) with a common control group(s). Such designs are often driven by within trial adaptations (e.g., adaptations to patient allocation based on comparative outcome data).</td>
</tr>
</tbody>
</table>
Table 2: Narrative synthesis of operational, ethical, scientific, and regulatory considerations.

<table>
<thead>
<tr>
<th>Operational</th>
<th>Possible strengths provided</th>
<th>Possible limitations introduced</th>
</tr>
</thead>
<tbody>
<tr>
<td>Timely delivery</td>
<td>Design, statistical and recruitment efficiencies can lead to shorter trial duration which may be seen as increased feasibility to deliver on time. Preplanning adaptive design modifications can require more effort at the design stage, leading to longer lead times between planning and starting the trial.</td>
<td></td>
</tr>
<tr>
<td>of trial</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Funding agencies</td>
<td>Adaptive trials can be viewed as novel and innovative, which can see them embraced. Examples of this include recent funding agency statements and calls from the Medical Research Future Fund in Australia, National Institutes of Health in USA, and National Institute of Health and Care Research in UK. Conservative decisions by funding agencies may limit development of an understanding of when adaptive trials are applicable, what they can (and cannot accomplish), what their practice implications are, and potential results expected. Can be challenging to secure funding for some adaptive features e.g., for a seamless Phase IIb-III, some funding agencies may want to see Phase IIb results before providing Phase III funding.</td>
<td></td>
</tr>
<tr>
<td>Infrastructure</td>
<td>(electronic) Case Record Forms built may be used for more than one study e.g., master protocol studies of adaptive platform, basket, or umbrella. Shared trial infrastructure must be hosted and maintained by some entity, which may change or evolve with time. Infrastructure must be built to be flexible and scalable from the outset, which required considerable planning and cost investment.</td>
<td></td>
</tr>
<tr>
<td>Costs</td>
<td>Median increase in cost compares favourably against the increase in efficiency that some adaptive designs can introduce e.g., group sequential. Increased costs have been identified across all aspects of an adaptive trial, with the greatest increase in statistical and design related costs.</td>
<td>Logistical challenges can include limited access to resources for planning and technical requirements prior to funding submissions, communicating protocol changes to all parties, costing and forecasting budgets, planning for product supply, access to high-quality interim data in a timely manner so that adaptive decision-making can be based on up-to-date and reliable results and the potential need for real-time Data and Safety Monitoring Board decisions.</td>
</tr>
<tr>
<td>Logistics</td>
<td>Introducing adaptive designs from early conceptualization of the trial is more effective than fitting an adaptive design at later stages of design. Allowing sufficient time for the design process to evolve and garner input from clinicians, biostatisticians, adaptive design and lived experience experts is necessary.</td>
<td></td>
</tr>
<tr>
<td>Recruitment</td>
<td>Enhanced targeting of recruitment to the ‘right’ participants can arise during trial conduct due to inclusion of some adaptive features. Features of adaptive randomisation or population enrichment have been viewed positively by enrolling participants. Cumbersome recruitment, identification, and consenting processes can be major barriers, especially at more novice trial centres. This can limit adaptive trials to primarily occur at large, academic medical centres with existing research infrastructure.</td>
<td>Increased demands on staff do exist, especially master protocol adaptive trials where</td>
</tr>
<tr>
<td>Staffing</td>
<td>Staff working on adaptive trials have acknowledged that they were</td>
<td></td>
</tr>
<tr>
<td>Scientific</td>
<td>Ethical</td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>Increasing sample size
May increase the chance to detect a true effect (greater statistical power) than non-adaptive trials, or may provide the same statistical power with a smaller expected sample size or shorter expected trial duration for certain clinical settings. When a minimum sample size is expected for reliable evaluation of other outcomes (safety or secondary endpoints) or when the primary outcome is an interim analysis of accumulating data. Additional statistical staff may be required for trial simulation for different scenarios prior to starting a trial.</td>
<td>Adaptive clinical trial designs have been viewed to pose few ethical disadvantages from a societal perspective.
Communicating design aspects that may change down the track via study documents such as the Participant Information Sheet can pose challenges. Concerns have also been raised about whether ethical review boards are ready to accept adaptive designs, although the many completed and ongoing adaptive trials may counterbalance this concern. Manifold governance questions remain, including how regulatory authorities should respond to trial amendments that can lead to issues with ensuring adequate and timely access to intervention supplies. Technical staff considerations include the considerable skills needed to complete trial simulations for different scenarios prior to starting a trial, as was required for trials such as AVERT-DOSE and STEP. Additional statistical staff may be required for interim analysis, protocol development, and statistical analysis planning and execution.</td>
<td></td>
</tr>
<tr>
<td>Changing trial design
Changes mid-trial, including stopping early or increasing the number of patients exposed to an arm that is higher performing. Reduces the number of patients exposed to unnecessary risk of an ineffective treatment and allow the opportunity to explore more promising alternatives.</td>
<td>Approval
Disadvantages from a societal perspective.
Technical staff considerations include the considerable skills needed to complete trial simulations for different scenarios prior to starting a trial, as was required for trials such as AVERT-DOSE and STEP. Additional statistical staff may be required for interim analysis, protocol development, and statistical analysis planning and execution.</td>
<td></td>
</tr>
<tr>
<td>Informative and more ethical decisions to be made in a timely manner during the trial.
Allows informative and more ethical decisions to be made in a timely manner during the trial e.g., increasing a participant's probability of being randomized into an arm that is higher performing. Reduces the number of patients exposed to unnecessary risk of an ineffective treatment and allow the opportunity to explore more promising alternatives.</td>
<td>Disadvantages from a societal perspective.
Technical staff considerations include the considerable skills needed to complete trial simulations for different scenarios prior to starting a trial, as was required for trials such as AVERT-DOSE and STEP. Additional statistical staff may be required for interim analysis, protocol development, and statistical analysis planning and execution.</td>
<td></td>
</tr>
<tr>
<td>Efficiency gains
May increase the chance to detect a true effect (greater statistical power) than non-adaptive trials, or may provide the same statistical power with a smaller expected sample size or shorter expected trial duration for certain clinical settings. When a minimum sample size is expected for reliable evaluation of other outcomes (safety or secondary endpoints) or when the primary outcome is an interim analysis of accumulating data. Additional statistical staff may be required for trial simulation for different scenarios prior to starting a trial.</td>
<td>Efficiency gains
May increase the chance to detect a true effect (greater statistical power) than non-adaptive trials, or may provide the same statistical power with a smaller expected sample size or shorter expected trial duration for certain clinical settings. When a minimum sample size is expected for reliable evaluation of other outcomes (safety or secondary endpoints) or when the primary outcome is an interim analysis of accumulating data. Additional statistical staff may be required for trial simulation for different scenarios prior to starting a trial.</td>
<td></td>
</tr>
<tr>
<td>Scientific
Statistical efficiency
May increase the chance to detect a true effect (greater statistical power) than non-adaptive trials, or may provide the same statistical power with a smaller expected sample size or shorter expected trial duration for certain clinical settings. When a minimum sample size is expected for reliable evaluation of other outcomes (safety or secondary endpoints) or when the primary outcome is an interim analysis of accumulating data. Additional statistical staff may be required for trial simulation for different scenarios prior to starting a trial.</td>
<td>Ethical
Adaptive clinical trial designs have been viewed to pose few ethical disadvantages from a societal perspective.
Communicating design aspects that may change down the track via study documents such as the Participant Information Sheet can pose challenges. Concerns have also been raised about whether ethical review boards are ready to accept adaptive designs, although the many completed and ongoing adaptive trials may counterbalance this concern. Manifold governance questions remain, including how regulatory authorities should respond to trial amendments that can lead to issues with ensuring adequate and timely access to intervention supplies. Technical staff considerations include the considerable skills needed to complete trial simulations for different scenarios prior to starting a trial, as was required for trials such as AVERT-DOSE and STEP. Additional statistical staff may be required for interim analysis, protocol development, and statistical analysis planning and execution.</td>
<td></td>
</tr>
<tr>
<td>Design complexity</td>
<td>Access to statistical support ensures appropriate analytical methods are used to preserve trial validity and integrity.</td>
<td></td>
</tr>
<tr>
<td>----------------------</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Outcome of interest</td>
<td>The outcome of interest is ascertained over a longer window than it takes to enroll most or all patients in the trial (prevention or delayed outcome).</td>
<td></td>
</tr>
<tr>
<td>Widely recognized as more complex than traditional fixed designs, which can increase trial costs.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Understanding of treatment effects</td>
<td>Can answer broader questions generally not feasible with non-adaptive designs e.g., adaptive enrichment enables efficacy/effectiveness in targeted subgroups of a population to be demonstrated where non-adaptive designs would require infeasibly large sample sizes.</td>
<td></td>
</tr>
<tr>
<td>Inadequate access to statistical design support can increase the chance of erroneous conclusions and introduce bias in estimates.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Regulatory discussions</td>
<td>Not the intent of regulatory bodies e.g., US Food and Drug Administration (FDA) or European Medicines Agency (EMA) to require or restrict the use of adaptive designs in general or specific settings.</td>
<td></td>
</tr>
<tr>
<td>The increased complexity of some adaptive trials and uncertainties regarding their operating characteristics may warrant earlier and more extensive interactions with regulatory agencies than usual.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Regulatory evaluations</td>
<td>Additional opportunities for review may help to maintain (or even enhance) trial integrity and validity.</td>
<td></td>
</tr>
<tr>
<td>Review of complex adaptive designs often involves challenging evaluations of design operating characteristics, usually requiring extensive computer simulations as well as increased discussion across disciplines and regulatory offices about the evaluations. Regulatory agencies tend to review proposals for adaptive designs with greater scrutiny than they give to conventional designs. This arises from serious concern poorly conceived designs may not control the type I error and may actually be less efficient than conventional designs.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
FIGURES

Figure 1: Visual representation of the adaptive feature of group sequential testing achieved via a Bayesian Optimal Phase II (BOP) design in the UPLIFT trial.

Figure 2: Visual representation of the adaptive feature of sample size reestimation achieved using the Mehta and Pocock promising zone method in the EXTEND-IA TNK trial.
Figure 3: Visual representation of adaptations to the patient population, in this example, based on stratum of haemorrhage location.

Figure 4: Visual representation of the five adaptive features (numerically numbered) of (1) multi-arm, multi-stage, (2) treatment arm selection, (3) covariate-adaptive randomisation, (4) response-adaptive randomisation and (5) sample size reestimation included in the AVERT-Dose trial.
Figure 5: Visual representation of adaptations to the endpoint outcome selected at Phase IIb (haematoma evacuation) and Phase III (mRS at 90 days).