Reward enhances motor adaptation learning in acute stroke patients

Theresa Paul¹, Valerie M. Wiemer¹², Jonas Günther¹, Finn M. Lehnberg¹, Scott T. Grafton³, Gereon R. Fink¹², Lukas J. Volz¹

¹ Medical Faculty, University of Cologne, and Department of Neurology, University Hospital Cologne, Cologne, Germany
² Institute of Neuroscience and Medicine, Cognitive Neuroscience (INM-3), Research Centre Juelich, Juelich, Germany
³ Department of Psychological & Brain Sciences, University of California, Santa Barbara, CA 93106, United States of America

Corresponding author:
Lukas J. Volz, M.D.
Department of Neurology, University of Cologne
Kerpener Str. 62, 50937 Cologne, Germany
Email: Lukas.Volz@uk-koeln.de

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Abstract

The majority of motor recovery occurs within the first weeks after stroke and has been hypothesized to rely on similar mechanisms as motor learning. However, it remains unknown whether acute stroke patients are capable of error-based motor adaptation learning and, if so, whether such learning may be enhanced by reinforcement feedback. Here, we show for the first time that acute stroke patients exhibit successful error-based motor adaptation with their paretic hand by replicating well-known phenomena such as savings and retention of adaptation learning. Notably, reward and punishment feedback exerted dissociative modulatory effects on motor adaptation. Contrary to findings in healthy subjects and chronic stroke patients, punishment did not enhance learning rates during early adaptation but led to poorer performance than reward. Most importantly, reward feedback enhanced both initial learning and retention, emphasizing the potential of reward and discouraging punishment feedback in early neurorehabilitation after stroke.
Introduction

Motor impairments after stroke are exceedingly common (Dobkin, 2005) and represent a leading cause of reduced quality of life and loss of independence (Feigin et al., 2021). While motor recovery is thought to arise from a re-learning of motor control akin to motor learning in the healthy brain (Krakauer, 2015), our understanding of motor learning in the post-stroke brain remains rudimentary. Closing this gap is of seminal relevance to advance motor rehabilitation after stroke.

Motor adaptation constitutes an error-based form of motor learning that describes how the motor system reacts to perturbations such as sudden changes in biomechanical properties or external conditions (Shadmehr et al., 2010; Wolpert et al., 2011). Adaptation paradigms seem particularly well-suited to investigate the re-learning of lost upper-limb motor function as they allow to assess how the motor system updates its control policies to overcome a sudden perturbation. Accordingly, deficient visuomotor adaptation (e.g., occurring due to an experimentally induced deviation between motor output and visual feedback) has been shown to be associated with motor impairment after stroke (Moore et al., 2022).

In the healthy brain, reinforcement feedback can selectively modulate error-based motor adaptation learning. In a seminal visuomotor adaptation study, Galea and colleagues showed that while punishment led to faster adaptation learning, reward enhanced the retention of the newly learned control policy (Galea et al., 2015). In chronic stroke patients, both punishment and reward increased learning rates, yet only reward facilitated retention (Quattrocchi et al., 2017). Of note, studies investigating motor adaptation learning and the modulatory influence of reinforcement feedback in acute patients are missing to date. Given that the vast majority of motor recovery occurs during a phase of elevated plasticity within the first weeks after stroke (Langhorne et al., 2011), it seems critical to further our understanding of how error- and reinforcement-based motor learning shape early motor recovery.

Therefore, the current study aimed to answer two major questions: (i) Can acute stroke patients perform motor adaptation with their paretic hand? (ii) If so, can reinforcement feedback enhance motor adaptation learning and retention in acute stroke patients? In line with previous studies in healthy participants (Galea et al., 2015) and chronic stroke patients (Quattrocchi et al., 2017), we expected a beneficial effect of reward, especially on the retention, i.e., on how well the newly learned motor control policy is internalized and recalled. In contrast, given the findings of previous studies, we hypothesized that punishment may speed up initial motor learning but anticipated no impact of punishment on retention (Galea et al., 2015; Yin et al.,
2023). Showing that acute stroke patients can successfully update motor control policies with their paretic hand would substantially enhance our understanding of how motor recovery is achieved in the early phase post-stroke. Moreover, systematically enhancing motor adaptation in this time of heightened plasticity via reward or punishment feedback holds seminal implications for advancing rehabilitation after stroke.

Methods

Participants

Twenty-four acute stroke patients were recruited from the Stroke Unit of the Department of Neurology at the University Hospital of Cologne (time since stroke: mean=5.3 days, std=5.0 days; Action Research Arm Test (ARAT) score: mean=42.7, std=13.1; age: mean=62 years, std=11 years; 12 male, 12 female). Inclusion criteria were (i) first-ever ischemic stroke and (ii) uni-lateral impairment of hand or arm motor function. Exclusion criteria were (i) bi-hemispheric infarcts, (ii) cerebral hemorrhage, (iii) prior infarcts, (iv) other neurological diseases, (v) severe aphasia or neglect, and (vi) a severe level of motor impairment (e.g., hemiplegia) that rendered study participation impossible. Subjects provided informed written consent prior to participation. The ethics committee of the Medical Faculty of the University of Cologne approved the study carried out under the Declaration of Helsinki.

Task design and data collection

A visuomotor rotation task of reaching movements was carried out with the patient’s paretic arm using a portable joystick that allowed for testing patients in a bedside manner. Patients participated in three task sessions. During task performance, patients were lying in bed with a computer screen positioned in front of them on a height-adjustable table. A curtain was used to obstruct the view of their paretic arm and hand. The experiment was divided into a learning period and a retention period (Figure 1). The learning period included a baseline of 15 trials (no rotation) after which a systematic visuomotor rotation was introduced (60 trials, adaptation block 1), followed by a de-adaptation block (no rotation, 15 trials) and a subsequent second adaptation block with cursor rotation (60 trials, adaptation block 2). After a 30-minute break,
retention was assessed via 50 rotation trials, followed by a washout block of 25 trials (no rotation). The deviation angle used to induce the need for adaptation varied between 30, 40, and 50 degrees, depending on the session, to minimize carry-over effects from one session to another. The order of deviation angles across sessions was counter-balanced across participants. Performance was operationalized as movement error, quantified as the deviation from the optimal trajectory, i.e., the direct line from the center to the target. The cumulative distance between the empirical reaching trajectory and the optimal trajectory was computed to reflect the movement error (i.e., optimal behavior resulting in 0 movement error). During the learning phase of sessions 1 and 3, patients received a performance-dependent monetary reward combined with a smiling emoji or punishment combined with a frowning emoji. Stimuli were taken from the Lisbon Emoji and Emoticon Database (LEED) to match arousal levels across conditions (Rodrigues et al., 2018). In the reward condition, patients started out with a value of 0 Euros and gained money if their performance in a given trial exceeded the median performance of the past five trials (Widmer et al., 2019). Conversely, participants started out with 30 Euros in the punishment condition and lost money if their performance in a given trial was worse than the median of the past five trials. We chose a relative rather than an absolute reward criterion to account for inter-individual variance in task performance across patients given varying levels of stroke-induced motor impairment. The order of the reward and punishment sessions was counter-balanced across patients. Session 2 served as a neutral control condition without reinforcement feedback. Notably, the retention period was always carried out as a neutral condition without any reinforcement as we aimed to probe retention effects in the absence of reinforcement feedback. This is particularly important as patients leaving a therapeutic setting have to retain a newly learned motor control policy without continuously ongoing performance feedback.
Figure 1: Visuomotor adaptation task. (A) Using a joystick, patients performed center-out reaching movements with their paretic hand. Once the joystick was centered, the outside target turned red as a signal to initiate the movement. During the movement, participants continuously saw the cursor on the screen. A trial ended as soon as the cursor reached the outside target. The light tug of the joystick’s spring then facilitated a smooth and effortless movement back to the center. (B) In the “no rotation” condition, veridical cursor feedback was provided. In other words, the hand movement matched the visual feedback on the screen. Conversely, in the “rotation” condition, the cursor feedback was rotated by a fixed rotation angle α, so that the visual cursor information deviated from the actual hand movement (depicted in black). Patients thus had to compensate for the rotation (shown in green) to achieve a straight line from center to target. (C) The experiment consisted of a learning and retention period. Each of these periods contained blocks with and without a visuomotor rotation. Notably, while reward, punishment, or neutral feedback were provided in the learning period, the retention period was free of reinforcement feedback.

Statistics

Prior to statistical analyses, datasets from two patients had to be excluded to ensure constant data quality. We calculated model-free and model-based analyses to quantify motor adaptation learning and retention. Model-free analyses compared motor adaptation performance operationalized as movement error averaged across trials. To ensure normal distribution of data, the decimal logarithm of movement error data was used for model-free analyses. For model-based analyses, we used a single-rate state-space model to derive learning rates for each block (Galea et al., 2015). This model predicts the future state x_{n+1} based on the equation...
by combining the estimation of the current state z_{n+1}^t weighted by a retention rate A (also called decay rate or memory rate) with the difference between predicted and actual movement ($r_n - z_n^t$) weighted by a learning rate B. We fitted the model separately for adaptation block 1, adaptation block 2, and the retention block. Data were filtered before model fitting to remove outliers and improve model fit. First, we created epochs based on the median of three consecutive trials. Next, we removed extreme outliers, i.e., trials exceeding the error observed in the first epoch of a block. We then applied a Hampel filter to each block leaving out the first two epochs per block. The derived learning rates were used for statistical comparisons.

Effects of motor adaptation

First, we tested whether patients were able to exhibit motor adaptation by comparing the mean of the first 15 trials to the mean of the last 15 trials of adaptation block 1 using a two-sided paired sample t-test. We then tested for savings, i.e., whether adaptation was achieved faster when being introduced to the same rotation angle for a second time (Wolpert et al., 2011) in a model-free and model-based way. For the model-free analysis, we compared the mean of the first 15 trials of adaptation blocks 1 and 2. We then additionally probed for savings in a model-based way by comparing the learning rates in adaptation blocks 1 and 2 using a two-sided paired sample t-test. Last, we probed for retention of the new motor control policy by comparing the average movement error before and after the 30-minute break, i.e., the movement error of adaptation block 2 and the retention block.

Reinforcement effects

For the model-free analysis, we tested for reinforcement effects on movement errors across blocks using a repeated measures ANOVA with the within subject factor reinforcement condition for adaptation 1, adaptation 2, retention, and washout blocks. Here, each subject's average movement errors per block were used as dependent variables. For the model-based approach, blockwise learning rates were compared between conditions. For all ANOVAs, a Greenhouse-Geisser correction was applied where appropriate. Post-hoc two-sided paired sample t-tests were FDR-corrected for multiple comparisons.
After testing for blockwise reinforcement effects, we next addressed whether the presence or absence of retention after the 30-minute break depended on the type of reinforcement received during the initial learning phase. To do so, we computed paired sample t-tests for each condition, comparing the average movement error of adaptation block 2 and the retention block for each reinforcement condition.

Data availability

Data are available from the corresponding author upon reasonable request.

Results

Motor adaptation

The model-free comparison of early and late trials in adaptation block 1 indicated that patients exhibited successful motor adaptation ($t(65)=7.97$, $p<0.001$; Figure 2). Moreover, comparing average performance across the first 15 trials of adaptation blocks 1 and 2 revealed savings, i.e., showed that adaptation was faster ($t(65)=2.73$, $p=0.008$) when patients were exposed to the same rotation for a second time. Savings were also observed when comparing learning rates across adaptation blocks 1 and 2 derived from the model-based approach ($t(65)=-4.15$, $p<0.001$).

When testing for retention of the new motor control policy by comparing the average movement error of adaptation block 2 and the retention block, three distinct outcomes were theoretically possible. (1) In case of forgetting the novel control policy, higher movement errors would be expected during the retention block than during adaptation block 2. (2) Retention of the control policy would result in no significant difference between adaptation block 2 and the retention block. (3) Successful retention may also result in gains in motor performance with lower movement errors during retention compared to adaptation block 2. Our results showed a statistical trend towards a decrease in average movement error during the retention compared to adaptation block 2 ($t(65)=1.93$, $p=0.058$; movement error adaptation 2: mean=1.53, std=0.78; movement error retention: mean=1.41, std=0.88). Thus, the present findings indicated successful retention with a statistical trend towards gains in motor performance after the break.
Figure 2: Initial motor adaptation learning. (A) Movement error is denoted over time across patients, with lower movement errors indicating better performance. (B) Comparing performance during the first and last 15 trials of the first adaptation block showed that patients’ performance improved significantly. This finding indicates that patients were able to adapt their movements to compensate for the rotation introduced at the beginning of this block. (C) When comparing patients’ performance during the first 15 trials of adaptation blocks 1 and 2, we observed significantly better performance in adaptation block 2 when the visuomotor rotation was introduced for a second time. Thus, patients were able to adapt faster when recalling the new motor control policy, hence showing savings. Faster adaptation upon reintroduction of the visuomotor rotation was accordingly reflected and confirmed by significantly higher (i.e., faster) learning rates in adaptation block 2 derived from model-based analyses.
Reinforcement effects

Model-free analyses revealed a trend towards a main effect of reinforcement condition during adaptation block 1 (F(2,42)=2.90, p=0.066, generalized eta-squared=0.036; Figure 3). FDR-corrected paired-sample post-hoc t-tests yielded a significant difference between reward and punishment (p=0.048). While there was no difference between conditions in adaptation block 2 (F(2,42)=1.11, p=0.339), movement errors differed significantly between conditions during the retention block (F(2,42)=6.71, p=0.003, generalized eta-squared=0.054). Specifically, participants performed significantly better in the reward condition than in the neutral (p=0.015) or punishment (p=0.015) conditions. Of note, the beneficial effect of reward on movement errors extended into the washout phase (F(2,42)=4.93, p=0.012, generalized eta-squared=0.048) with a significant difference between reward and punishment (p=0.018) and a trend towards significance for reward and neutral (p=0.064).

Comparing the learning rates derived from the model-based approach, we observed a main effect of reinforcement for adaptation block 1 (F(2,42)=3.35, p=0.045, generalized eta-squared=0.076). Aligning with the model-free results, patients learned faster in the reward compared to the punishment condition (p=0.041). While we again observed no difference in learning rates for adaptation block 2 (F(2,42)=2.32, p=0.111), learning rates significantly differed between conditions during retention (F(2,42)=4.63, p=0.015, generalized eta-squared=0.097). Of note, patients exhibited slower learning rates when punished during the preceding learning period with significant differences compared to neutral feedback (p=0.044) or reward (p=0.045).

When testing for retention effects, we observed a dissociation between reward and punishment or neutral feedback. While punishment or neutral feedback during initial learning led to successful retention, as indicated by a missing difference in movement errors between adaptation block 2 and the retention block (neutral: t(21)=0.08, p=0.949; punishment: t(21)=0.71, p=0.485), performance gains were observed after reward feedback, reflected by lower movement errors during the retention period than during adaptation block 2 (t(21)=4.09, p<0.001).
Figure 3: Reinforcement effects on motor adaptation. (A) Trial-wise movement errors per condition are depicted over time. Please note that lower movement errors indicate better performance. Trial-wise performance is depicted as \(\log(\text{movement error}) \). (B) In the first adaptation block, patients performed better in the reward than in the punishment condition, reflected in both the model-free analysis (lower movement errors) and model-based analysis (higher learning rates). Thus, patients not only showed poorer performance with punishment but also exhibited slower learning of the visuomotor rotation. (C) In the retention phase, patients performed best when the prior learning period was reinforced by reward. Of note, comparing the learning rates showed that they adapted significantly slower with prior punishment compared to the neutral or reward conditions. Reward feedback during the learning period hence improved retention of the novel motor control policy. In line with this finding, comparing movement errors of adaptation block 2 and the retention block indicated that patients retained a stable performance level after a 30-minute break with neutral or punishing feedback yet even showed significant improvements after the break in the reward condition.

Discussion

Motor adaptation probes the motor system’s ability to flexibly update its motor control policy to compensate for an external perturbation in an error-based way. After stroke, the ability to successfully exhibit motor adaptation may indicate the motor system’s potential to flexibly
compensate for the effect of the stroke lesion, which can hence be considered as a special case of motor adaptation. Here, we showed for the first time that acute stroke patients not only exhibit motor adaptation learning with their paretic hand but also show savings across consecutive blocks and even more importantly feature retention of adaptation learning. Reinforcement feedback modulated adaptation learning in a dissociable way. Contrary to previous studies performed in healthy subjects and chronic stroke patients, punishment did not accelerate initial motor learning but even had a detrimental effect on learning rates and increased movement errors during adaptation compared to reward. Notably, reward feedback resulted in higher initial learning rates than punishment and enhanced retention of motor learning. Hence, our findings highlight a detrimental effect of punishment feedback on initial motor learning, suggesting that the effect of punishment feedback on sensory prediction error-based learning is specifically altered in acute stroke patients. Importantly, our results emphasize that combining error-based motor adaptation learning with reward feedback enhances the retention of novel motor control policies in acute stroke patients, which holds seminal implications for future rehabilitative approaches.

Motor learning after stroke

While recovery of stroke-induced motor impairment has frequently been discussed to rely on similar mechanisms as motor learning in the healthy brain (Krakauer, 2015), our understanding of motor learning early after stroke remains highly limited (Baguma et al., 2020). Regarding reaching movements performed with the paretic arm, successful adaptation and retention thereof has been shown in chronic stroke patients (Quattrocchi et al., 2017). Moreover, inter-individual deficits in visuomotor adaptation have recently been discussed to be associated with the level of clinical impairment across patients (Moore et al. 2022). Here, we extend our current knowledge by showing for the first time that acute stroke patients are able to exhibit motor adaptation learning with their paretic hand. More specifically, we replicated three hallmarks of adaptation learning typically observed in healthy subjects, i.e., improvement over the course of one adaptation block (Haith et al., 2015), savings between blocks (Huberdeau et al., 2015; Yin & Wei, 2020), and motor retention (Joiner & Smith, 2008). These findings suggest that mechanisms underlying error-based learning seem largely intact and follow a similar pattern as in the healthy motor system.
Reinforcement and initial motor learning

Motor adaptation is driven by sensory prediction errors and therefore relies on a cerebellar forward model which integrates predicted and actual sensorimotor states (Galea et al., 2011; Izawa et al., 2012; Mazzoni & Krakauer, 2006; Tseng et al., 2007). In healthy subjects, punishment but not reward feedback has been shown to increase initial learning rates potentially via an increased sensitivity to sensory prediction errors (Galea et al., 2015; Yin et al., 2023). Notably, the impact of reinforcement feedback on motor learning seems to be of particular importance when the quality of the available sensory feedback is low (Cashaback et al., 2017; Izawa & Shadmehr, 2011). In this case, a decreased informational value of sensory prediction errors may be compensated via an increased reliance on reinforcement signals. In line with this notion, both punishment and reward have been shown to enhance initial adaptation in chronic stroke patients (Quattrocchi et al., 2017).

In contrast, we here observed that punishment negatively impacted patients’ motor performance in the initial learning phase compared to reward (Figure 3). A potential explanation for this surprising finding may arise from the particular state of the motor system early after a stroke. Acute stroke patients suffer from a sensorimotor deficit in concert with an internal forward model that still needs to be recalibrated to account for the lesion-induced impairment (Shadmehr et al., 2010). The acute sensorimotor deficit might introduce significant levels of motor noise, which in turn result in large and highly variable sensory prediction errors. While sensitivity to sensory prediction errors decreases with increasing error size (Marko et al., 2012), punishment feedback has been proposed to enhance sensitivity to sensory prediction errors in the healthy brain (Galea et al., 2015). Taken together, punishment feedback in the early phase post-stroke might thus render the motor system more susceptible to variable and inflated sensory prediction errors, thereby hampering motor adaptation.

An alternative explanation for the detrimental effect of punishment may arise from a decrease of its informational value. Previous findings in healthy subjects highlight that for punishment feedback to be effective, it has to be informative, i.e., coupled to motor performance in a meaningful way (Galea et al., 2015). Given that evaluation of task performance itself provides reinforcement feedback in the form of successful or unsuccessful task execution (Izawa & Shadmehr, 2011), the motor deficit may result in constant negative feedback early after stroke. Hence, the additional punishment feedback provided during the experiment may not be perceived as informative or meaningful, precluding a potential impact on motor adaptation learning.
Finally, the motivational effects of reinforcement feedback on motor learning have to be considered (Chiviacowsky, 2020; Lewthwaite & Wulf, 2017). A commonly held view in sport psychology is that feedback after good trials leads to better performance than feedback after bad trials (Lewthwaite & Wulf, 2017; Saemi et al., 2012). It is frequently argued that feedback increases perceived self-efficacy, which facilitates allocation of attentional resources (Themanson & Rosen, 2015), leads to better performance in sport tasks (Saemi et al., 2012) and is a predictor for successful motor learning (Chiviacowsky et al., 2012). Conversely, constant negative feedback arising from unsuccessful attempts to use the paretic arm in concert with punishment feedback provided during the task may have detrimental motivational effects in patients similar to those observed in athletes (Lewthwaite & Wulf, 2017). Hence, motivational effects may explain the dissociative effects of punishment and reward on motor adaptation learning observed here.

Retention of motor adaptation learning

When aiming at enhancing motor rehabilitation, positive effects on retention are more critical than increased learning rates as they amplify the lasting effects of rehabilitative training. Importantly, reward incentives during the learning period resulted in better retention performance even when reinforcement feedback was no longer present (Figure 3), providing the first evidence of a positive effect of reward on error-based motor learning in acute stroke patients. Our findings nicely align with previous evidence emphasizing enhanced levels of retention of motor skills due to reward feedback in healthy individuals (Abe et al., 2011; Galea et al., 2015; Vassiliadis et al., 2021; Widmer et al., 2016) or chronic stroke patients (Quattrocchi et al., 2017). Of note, the positive effect of reward feedback on retention has been shown to persist for as long as 30 days after motor learning in healthy subjects (Abe et al., 2011), underscoring its potential to lastingly boost recovery in rehabilitative approaches. Moreover, reward has recently been discussed to improve the generalization of adaptation learning in the healthy brain (Yin et al., 2023). Accordingly, while reward failed to enhance arm-reaching performance of subacute stroke patients compared to neutral feedback, patients who received reward during arm-reaching training showed greater improvements in secondary outcome measures such as the Fugl-Meyer Upper Extremity score which may similarly be interpreted as a generalization effect of the arm-reaching training (Widmer et al., 2022). While we did not test for generalization, the superior performance during the washout period observed after reward
may suggest that reward did not only improve retention of the novel control policy, but also led to an increased ability to flexibly adapt to changing environments.

From a mechanistic perspective, improved retention via reward has been linked to increased ventral striatal activity during the learning period (Widmer et al., 2016). Of note, the ventral striatum directly modulates the neural activity of the motor cortex in monkeys (Suzuki & Nishimura, 2022). The latter is particularly relevant as the primary motor cortex plays a pivotal role in retaining learned motor commands (Galea et al., 2011; Hadipour-Niktarash et al., 2007; Spampinato et al., 2019; Spampinato & Celnik, 2017). Of note, a recent study found reduced striatal responses to reward feedback in subacute stroke patients (Widmer et al., 2019), which may seem at odds with our current interpretation. However, while Widmer and colleagues used a motor control task, we here assessed motor adaptation learning, which prominently relies on a cerebellar forward model enabling sensory prediction errors. In other words, reward effects observed here may be specific to motor adaptation. On the neural level, this adaptation-specific effect might be driven by recently discovered monosynaptic efferent connections from the cerebellum to the basal ganglia (Washburn et al., 2024). Thus, the combination of reward and sensory prediction error-based learning might enhance dopaminergic signaling along cerebellar-basal ganglia-cortical loop to facilitate motor adaptation.

Limitations and future directions

We here combined monetary incentives as used in previous studies (Galea et al., 2015; Quattrocchi et al., 2017) with feedback in the form of smiling or frowning emojis (Rodrigues et al., 2018). Hence, it remains unclear which form of reinforcement (monetary vs. social) drove the observed effects, which should be disentangled by future studies. Moreover, the present study used a 30-minute break between learning and retention. While this relatively short period of time was sufficient to allow for probing retention, more extended periods seem better suited to gauge retention effects for a therapeutic setting. Lastly, neurophysiological underpinnings of the observed effects remain speculative given the lack of neural data. Future research should therefore focus on elucidating the neural substrates of adaptation learning and retention after stroke and shed light on the mechanisms driving the beneficial effects of reward.
Conclusion

The present study established for the first time that acute stroke patients can perform error-based motor adaptation learning with their paretic hand by replicating phenomena known from healthy participants, such as adaptation learning, savings, and motor retention. In contrast to previous findings obtained from healthy controls and chronic patients, punishment led to significantly slower learning during the initial adaptation period than reward feedback. Conversely, combining reward and error-based learning reduced initial movement errors and, more importantly, enhanced offline consolidation and retention. Hence, our current findings hold seminal clinical implications outlining a combination of motor adaptation training with reward incentives as a promising avenue for neurorehabilitative interventions, aiming to support the retention of novel motor control policies early after stroke.

Funding

GRF was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – Project-ID 431549029 – SFB 1451.

Competing interests

The authors report no competing interests.
References

Cortex Retains What the Cerebellum Learns. *Cerebral Cortex*, 21(8), 1761–1770. https://doi.org/10.1093/cercor/bhq246

