Intron retention can be an excellent marker for evaluating the depressed state and useful for discovering new pathways in the recovery of depression by a drug.

Norihiro Okada¹#, Kenshiro Oshima¹, Akiko Maruko¹, Mariko Sekine³, Naoki Ito¹, Akino Wakasugi¹, Eiko Mori², Hiroshi Odaguchi² and Yoshinori Kobayashi¹

¹ School of Pharmacy, Kitasato University, 5-9-1 Shirokanedai, Minato-ku, Tokyo 108-8642, Japan
² Oriental Medicine Research Center, School of Pharmacy, Kitasato University, 5-9-1 Shirokanedai, Minato-ku, Tokyo 108-8642, Japan
³ Kitasato University Kitasato Institute Hospital, 5-9-1 Shirokanedai, Minato-ku, Tokyo 108-8642, Japan

#Corresponding author

Abstract

BACKGROUND: Peripheral inflammation is often associated with depressive disorders, and immunological biomarkers of depression remain a focus of investigation.

METHODS: We performed RNA-seq analysis of human peripheral blood mononuclear cell (PBMC) RNA transcripts from a case-control study including subjects with self-reported depression in the pre-symptomatic state of major depressive disorder (MDD), and analysed differential expression of genes (DEGs) and intron retention (IR) using rMats.

RESULTS: Among the DEGs with a statistically significant value, both 651 up-regulated and 820 down-regulated genes were enriched in GO (gene ontology) terms of innate and adaptive immunity. The former was particularly enriched in bacterial infection and phagocytosis, while the latter was enriched in genes related to antigen presentation and T cell proliferation and maturation. Genes with the 158 increased and 211 decreased IRs (termed IncIR and DecIR genes, respectively) in the depressed subjects were analysed. Their GO terms were very similar to those of the up- and down-regulated genes, with an emphasis on ciliary assembly and function in the DecIR. The results also showed that a Japanese herbal medicine partially reversed the depression in these subjects after recovering the DecIR and IncIR genes. By imposing the recovered genes on the network of depressed subjects, several new pathways for recovery from depression were successfully discovered.

CONCLUSION: Depression was associated with activation of the innate immune response and relative inactivation of T cell signalling. DEGs reflect physiological demands at the transcriptional level, whereas IRs are a mechanism for fine-tuning cytoplasmic homeostasis. Accordingly, IR is a stress response and IR genes are sensors of the physiological state in the
cytoplasm. In particular, where ciliary genes were detected by IR analysis, it is expected that there is a defect in ciliary function or immune synaptogenesis in depression. We demonstrate the potential of IR biomarkers in the immunological stratification of depressed patients and their utility in the discovery of novel pathways involved in recovery from depression.

Introduction

In 2017, it was estimated that more than 320 million people worldwide were affected by clinical depression (1). It is likely that this number - along with the number of people affected by other mental disorders - is increasing as the stresses of everyday life continue to rise, particularly since the outbreak of COVID-19. In fact, depression has become the leading cause of disability worldwide. Major depressive disorder (MDD) is often accompanied by anxiety disorder, which is also the leading cause of death by suicide (1). Currently, there is no reliable laboratory test or effective treatment strategy to diagnose or cure MDD. Another important issue in depression is the low remission rate, with only about half of patients achieving complete remission and the remission rate decreasing with each subsequent treatment. Therefore, to better understand the pathogenesis of depression and its aetiology, there is an urgent need to identify biomarkers for monitoring treatment outcome and genes that can be targeted for drug therapy (2, 3, 4, 5, 6).

There is increasing evidence that depression and inflammation are often associated (7, 8, 9, 10, 11, 12, 13, 14). Several case-control studies of major depressive disorder (MDD) have reported elevated peripheral blood levels of inflammatory cytokines such as CRP, interleukin 6 and tumour necrosis factor in MDD (15, 16, 17). In these cases, where inflammation occurs first and depressive symptoms appear later, the view that inflammation is the cause of depression is gaining ground. Furthermore, the prevalence of comorbid depression is increased in many non-psychotic inflammatory diseases, such as rheumatoid arthritis (18), suggesting a possible causal role of inflammation in depression. Ed. Bullmore (in his excellent book "THE INFLAMED MIND"(19)) has proposed that stress causes inflammation and that inflammation causes depression. Much of the current data seems to be consistent with his proposal (20).

Alternative pre-mRNA splicing is a mechanism by which multiple protein isoforms can be produced from a single gene transcript. One type of alternative splicing is termed 'intron retention' (IR), which was previously thought to simply reflect one or more errors during pre-mRNA splicing. More recently, however, IR has been considered to be a biologically meaningful phenomenon rather than an alternative splicing error, because an increase or decrease in the number of introns has been associated with certain biological phenomena, such as cell differentiation (21, 22, 23, 24), ageing (25) and oncogenesis (26). Using mouse models
of ageing such as Klotho mice (27) and SAMP8 mice (28), we have previously shown that IR occurs as a stress response in the pre-symptomatic state and that when the state is restored by administration of the Japanese herbal medicine, the incidence of IR is restored to that of the healthy state (27, 28). In addition, we have proposed that genes affected by IR (termed IR genes) play a sensor role in detecting perturbations in cellular homeostasis (29).

We hypothesised that by analysing the IR genes, it would be possible to identify the stresses experienced by patients and the gene dysfunctions that are hidden as causes of their depression. In other words, we wanted to explore the possibility of using IR as a means of investigating aetiology.

Materials and Methods

Ethics declarations, ethics approval and consent to participate.

This research has been reviewed by the Kitasato Institute Hospital, Research Ethics Committee and assigned research number 21037. Please note that the Kitasato Institute Hospital, Research Ethics Committee deliberates in accordance with the Ethical Guidelines for Medical and Health Research Involving Human Subjects. Other documents were prepared in accordance with the guidelines, and the study was initiated. All subjects who participated in the study gave their written consent to the research procedures, including genetic analysis. The research procedures were conducted in accordance with the research protocol.

Subjects

We recruited subjects with depressive symptoms who had consented to participate in the "Study of Hangekobokuto (30) and the Intestinal Environment" conducted by the Kitasato University Oriental Medicine Research Center, and who scored between 6 and 20 on the Brief Depressive Symptom Scale (QIDS-J). After the benefits and risks of the study were explained to the subjects, written informed consent was obtained, and the following exclusion criteria were applied to those who consented. 1) Subjects already receiving treatment for depression, 2) Subjects who had taken herbal medicinal preparations within the previous 4 weeks, 3) Subjects who had taken antibiotics within the previous 4 weeks, 4) Subjects who were clearly in need of Western medical treatment, 5) Subjects who had been diagnosed with ulcerative colitis or Crohn's disease, 6) subjects with clinically significant hepatic or renal impairment, 7) subjects who have participated in other clinical studies within the past 12 weeks, and 8) subjects who are deemed by the investigator to be unsuitable for the study.

Subjects took a daily dose of a Japanese herbal medicine, Hangekobokuto (HKT), at home. The BDI™-II Beck Depression Questionnaire (BDI-II) was administered at the time of the
screening test and at hospital visits 2 months after taking HKT, and blood was collected using BD Vacutainer CPTTM Blood Collection Tubes (Nippon Becton Dickinson, Japan). Subjects were classified according to their BDI-II scores, with 6 control subjects (CON) scoring less than 16 and 8 subjects with depression symptoms (before medical treatment (BMT) and after medical treatment (AMT)) scoring 17 or higher.

Japanese herbal medicine

Japanese herbal medicines originated in ancient China and are widely used in Japan for a variety of conditions (31, 32). HKT (30) is one of the formulations and is taken for symptoms of mental anxiety, stagnant gas in the stomach and usually poor digestive function. In this study, HKT was used as a decoction in the following proportions, based on the formula of the Kitasato University Oriental Medicine Research Centre: Hange (Pinelliae Tuber) 6.0 g; Bukuryo (Hoelen) 5.0 g; Koboku (Magnoliae Cortex) 3.0 g, Shisoyo (Perillae Herba) 2.0 g; Syokyo (Zingiberis Rhizoma) 0.5 g.

PBMCs preparation, RNA extraction, RNA library preparation and RNA-sequencing

Blood samples collected in BD Vacutainer CPTTM Blood Collection Tubes are centrifuged within 2 hours to separate the PBMC layer. After centrifugation, PBMC samples can be stored and transported at -80 °C. RNA extraction was performed on individual PBMC samples. Library construction and paired-end sequencing (150 base pairs × 2) using the NovaSeq 6000 platform (Illumina) were outsourced to Azenta Life Sciences, Tokyo, Japan. RNA sequencing yielded 109 ~ 148 million (× 2, paired-ends) raw reads per sample. These were then purified using conventional procedures (33, 34, 35, 36).

Differential expressed genes (DEG) analysis

Using the edgeR package in R, significantly differentially expressed genes were detected by performing likelihood ratio tests. The results showed that 922 downregulated and 641 upregulated genes were significantly differentially expressed between the 6 CONs and 8 BMTs with P < 0.05 and fold-change > 1.2. DEGs were used for GO and KEGG pathway enrichment analysis using the DAVID website. Similarly, the same test was calculated under the same conditions between BMT and AMT to investigate the effect of HKT administration.

Detection of intron retentions

IR-containing genes were analysed to determine their possible role in stress sensing as proposed in the previous study (27, 28, 29). rMATS v.4.1. was used to assess the differential IR landscape embedded in the RNA-seq data. The optional parameters for the rMATS program are as follows:
A cut-off of P < 0.05 in the likelihood ratio test and an absolute difference of the IR ratio > 0.05, used as the statistical significance test in the rMATS program, was used to call differential IR events. Similarly, the same test was calculated under the same conditions between BMT and AMT to study the effect of HKT administration.

Interactome analysis
A protein-protein interaction network was generated using Cytoscape ver. 3.9.1 with StringApp version 1.7.1. The network type "full STRING network" was selected for drawing and a confidence (score) cut-off value of 0.7 was used (Other parameters were used as default values.). Fig. 5 was calculated with a confidence (score) cut-off value of 0.7 using proteins encoded by IR genes and DEGs, and we analysed protein-protein interactions with each functional gene group, cilia-related genes (proteins), psychiatric disorders-relevant (PD) genes (proteins), adaptive and innate immunity related genes (proteins).

Results

RNA-seq and analysis of DEG.

The study included a group of subjects with depression ranging from 17 to 27 on the BDI-II score, designated as BMT group (8 individuals), which is neither severe nor mild. Relatively mild subjects with scores ranging from 7 to 16 were used as controls, designated as CON group (6 individuals), and healthy subjects were not used as controls (Figure 1A(i)(ii)). As we are all on the spectrum, we wanted to gain molecular insight into the transition from mild to moderate depression. All subjects were also screened to ensure that they had not taken any medication or been hospitalised during the three-month period before examination (see details in the method section). These are the characteristics of subjects in this study. PBMC and RNA were isolated from each sample and used for RNA-seq. DEG analysis resulted in the identification of 651 upregulated and 820 downregulated genes for the BMT group compared to the CON group (Figure 1BC, Supplementary Table 1). GO enrichment analysis was performed for upregulated genes (Figure 1D, Supplementary Figure 1), showing enrichment for innate immunity-related terms such as infection, phagocytosis and inflammation as well as adaptive immunity, and for downregulated genes (Figure 1E, Supplementary Figure 2), showing enrichment for adaptive immunity-related terms such as antigen presentation, T cell activation as well as synapse-related terms. Figure 1B shows the genes involved in positive regulation of T cell activation (5 genes in Figure 1E) from the downregulated genes and the genes involved in innate immune responses (21 genes in Figure 1D) from the upregulated genes, which include a large number of
immunoglobulin heavy chains (37, 38), suggesting an inflammatory phenotype of the subjects (37).

Identification of IncIR and DecIR genes in the depressed subjects.

Since IR is a stress response and genes susceptible to IR are a physiological sensor (27, 28); see later), we characterised genes for increased intron (IncIR) and those for decreased intron (DecIR) in depressed subjects, considering that such an analysis would give an indication of the type of stress to which the subjects were exposed. The 158 IncIR and 198 DecIR genes were isolated (Figure 2AB, Supplementary Table 2) and their characteristics were first studied from the literature. As expected, many sensor or regulatory genes were isolated from the protein-coding IR genes, some of which are shown in Table 1 (45 genes). This is only half of the genes identified as sensors, regulators and modulators among the IR genes in this analysis, in which genes controlling inflammation, innate immunity and adaptive immunity were found. Their GO enrichments were then analysed, as shown in Figure 2CD. In IncIR, TNF signalling pathway and several terms related to innate immune response were enriched, and in DecIR genes, T cell signalling and other adaptive immune response as well as inflammation and innate immune processes were enriched. In short, both innate and adaptive immunity were highlighted in the IR analysis, as in the case of the DEG analysis, suggesting that IR genes are mirrored by DEG genes. The important difference between IR genes and DEG genes is that immunoglobulin was included in the DEG list (in fact, almost half of the upregulated genes in our RNA-seq analysis are immunoglobulin genes, see Supplementary Figure 1), but not in the IR genes. The reason why immunoglobulin genes were not listed in the IR genes is discussed later. Most interestingly, the highest enrichment score of genes in DecIR was for cilium assembly, suggesting that cilium is involved in sensing depressive stress in these subjects (see Discussion).

IR genes statistically significantly interact with those for innate immune response.

To characterise the IR genes in more detail, we first determined the possible overlap of IR genes with immune-related genes, cilia genes and psychiatric disease-related genes (PD genes) using a Venn diagram (Figure 3AB). Among the 317 IR genes (Supplementary Table 2), 32 cilia genes (Figure 3C) and 34 immune-related genes (Figure 3D) were included. Since many IR genes in Table 1 were involved in innate immunity, including viral and bacterial infection, we next examined whether IR genes could specifically interact with genes involved in the innate immune response (Figure 3E). Compared to the interaction of randomly chosen genes, IR genes interact with genes involved in innate immunity in a statistically significant manner. Figure 3F
shows the ranking of the IR gene interactions. Among the IR genes, the \textit{STAT1} gene, signal transducer and activation of transcription gene 1 (39; Table 1), has the highest number of interactions with innate immunity genes. It is interesting to note that this gene is an important member of the JAK-STAT pathway (39), which is involved in both innate and adaptive immunity including inflammation (see Discussion).

We also looked at the interaction of IR genes with genes involved in leukocyte activation (adaptive immunity) or immune response. Their ranking of IR gene interaction was informative (Figure 3JK), as \textit{STAT1} ranked highest in both cases.

\section*{IR-DEG interactome}

Using all the protein-coding genes of DEG (285 up-regulated + 433 down-regulated) and IR (127 IncIR + 169 DecIR + 8 Mixed), we can create a large interactome using the PPI network software (Figure 4A). A large interactome was formed, with many hub genes connecting to other genes (Supplementary Table 3). The largest hub is the \textit{SRC} gene (40), one of the DEGs, connected to 43 genes (Figure 4B). Among the IR genes, the largest hub was \textit{DLG4} (41), which is involved in synaptic function. The second was \textit{STAT1}, a member of the JAK-STAT pathway (39). The third and fifth were integrin genes (42, 43), and the fourth was HLA-A (44), which is involved in antigen presentation. The sixth was \textit{MYH10} (45), myosin heavy chain, which has 11 links, one of which was linked to myosin light chain kinase (MYLK) (46, 47) and was restored by the administration of Japanese herbal medicine (see later).

\section*{Recovery of IR genes by administration of HKT}

After 2 months of HKT, PMBC were isolated from the subjects and RNA-seq was performed (Figure 1A). We characterised two types of IR gene recovery, reverse V-shaped recovery (Figure 5A) and V-shaped recovery (Figure 5B), consisting of 30 and 34 protein-coding genes, respectively (Supplementary Table 4). Since only 17 genes (7 V-shaped genes and 10 reverse V-shaped genes) were recovered in DEG (data not shown), the fact that four times as many genes were recovered in IR suggests that IR is superior to DEG as a marker for evaluating the efficacy of a drug in the present case.

Characterisation of the IR genes restored by HKT (Figure 5C) showed that inflammation-related genes were the major restored IR genes (24 genes; 37.5%), with 7 mitochondria-related and 7 cilia-related genes each accounting for 10.9%. The anti-inflammatory effect shown here is consistent with the reported efficacy of many Japanese herbal medicines (31), including HKT (30). Interestingly, while HKT has been reported to have
anti-inflammatory effects by reducing inducible nitric oxide synthase (iNOS), the IR of NOSIP (48), which has been reported as a modulator of NO, was consistently restored in the present study. The appearance of haemopoietic genes (3 genes) may also indicate that inflammation and haemopoiesis are linked in a compensatory way, as inflammation consumes a large number of macrophages. Oxidative stress is common in depressed patients (49) and can lead to increased DNA damage together with mitochondrial dysfunction (49). The restoration of these genes may be the hallmark of this herbal medicine.

Pathways recovered by herbal medicine can be characterized from the DEG-IR interactome.

The recovered 64 IR genes shown in Figure 5 and 17 DEGs were superimposed on the DEG-IR interactome (shown in Figure 4) to determine whether these recovered genes can network with each other. Ten new pathways were found (Figure 6). Some of these pathways are known to have protein-protein interactions, but to our knowledge this is the first time that these pathways have been shown to be involved in restoring a physiological state. As the DEG-IR interactome was generated without the use of herbal medicines, different new pathways would be found if different medicines were used in the same patient. This means that this method can be used to discover new pathways involved in the mechanism of action of drugs.

Discussion

The upregulated genes in this study were significantly enriched in GO terms associated with innate and adaptive immunity. Many of these genes (approximately 50%) were related to immunoglobulin heavy chains (Figure 1B, Supplementary Table 1). In contrast, downregulated genes were enriched in GO terms associated with antigen presentation, T cell function and adaptive immunity. This trend in depressed patients has been reported previously (3, 4).

An important aspect of our study is that we have shown that IR can be used as an alternative method to detect specific changes in depression, in addition to traditional DEG methods. Roughly speaking, GOs detected in IncIR genes correspond to GOs of upregulated DEGs, whereas GOs detected in DecIR genes correspond to GOs of downregulated DEGs. This correspondence can be better understood in the light of our recently proposed intron fine-tuning model (29). That is, an increase in introns leads to a decrease in the amount of mature cytoplasmic mRNA (and thus a decrease in cytoplasmic protein), whereas a decrease in introns leads to an increase in mature cytoplasmic mRNA (and thus an increase in cytoplasmic protein). In other words, IR is thought to play a role in regulating the correct amount of protein in the
cytoplasm. This is the molecular mechanism by which intracellular homeostasis is regulated.

As can be easily imagined from the model described above, genes that cause IR have a sensor role. Indeed, many of the IR genes analysed in this study have the word ‘sensor’ or ‘regulate’ in their title of the literature to describe their role (Table 1). Analysis of IR genes may reveal new, as yet unidentified, regulatory roles of these genes in the stress of depression.

In many cases, IR genes do not correspond to DEGs. Of the 30 DEGs shown in Figure 1B, only one gene, HLA-DRB1 (50), is actually subject to IR. DEGs are often quantitative, whereas IR genes are more qualitative. By analogy, the DEG is the soldier, the manual worker, whereas the IR genes is the commander in chief. A typical example of the qualitative difference between DEGs and IR genes is secreted proteins, where secreted proteins are sometimes detected as DEGs (indeed, half of the upregulated genes are immunoglobulins; Supplementary Figure 1), but not as IR genes. This is because these proteins are secreted out of the cell via the Golgi apparatus and are therefore not captured by the homeostasis detection mechanism in the cytoplasm.

There are 20-30,000 genes in the genome, some of which may have a predetermined role as commanders in causing IR. Indeed, in budding yeast, introns have been shown to play a mediator role in monitoring the physiological state of the cell (51, 52). Thus, the function of IRs as sensors described here is likely to be an evolutionarily conserved universal function. It remains to be seen by what mechanism this particular intron reflects physiological states and is involved in cellular homeostasis (29), which is a major challenge for the future.

Many researchers have analysed DEGs between case-controls to look for markers of depression. What has been found is that even when the top 10 genes with the highest expression variability are examined, the data differ from experiment to experiment and do not match (53). As shown in the current study, IR variation is likely to be more sensitive as a marker of depression. Consider this in practice: a 10% fluctuation in immunoglobulin levels in DEG would not represent the physiological state of many individuals, but a 10% reduction in the intron of the inflammation sensor STAT1 (39) would have a significant impact on immune homeostasis because it would increase the amount of STAT1 protein in the cytosol by 10%. The accumulation of various studies to date suggests that the cause of depression is polygenic (54), but it is more plausible that the reason why genes for better markers have not been found in the DEGs is due to the nature of the DEGs themselves, rather than because depression is polygenic.

So, among the genes that cause IR, are there any that are particularly likely to be common markers for depression? Depression is an immune disorder. Therefore, among the IR genes analysed in this study, the 34 genes identified as immune-related (Figure 3D) are likely to be
good candidates. In addition, immune-related genes change with depression, and the IR genes most likely to interact with them are most likely to change with depression, so IR genes with a high ranking for interaction with immune-related genes, shown in Figure 3FJK, also have a high potential to be markers. Also, hub IR genes with many connections in the interactome (Figure 4B), which we discussed earlier, are also good candidates.

In terms of common markers for depression, a particular highlight of the present study is the detection of a number of cilia-related genes (32 genes; Figure 3C) as IR genes. This may reflect the functional stress state of cilia as antennae in leukaemic cells, although the presence of cilia on leukaemic cells is controversial (55). It is known that when dendritic cells present antigens to T cells, they form structures known as immunological synapses, in which the internal environment of the T cell resembles that of cilia (56, 57, 58). Therefore, the observation of IR in cilia genes may represent a failure of T cells to recognise antigens during depression. An interesting possibility is that cilia-related genes are not equally likely to be IR genes. Of the 1117 ciliary genes currently known, IR was observed in 32 genes in this study (Figure 3C). Surprisingly, of the 37 ciliary genes currently known to cause Joubert syndrome, six (AHI1 (59), CELSR2 (60), CEP104 (61), IFT172 (62), NPHP1 (63), TMEM107 (64)) were found to be among the IR genes. In addition, four of these six genes were found to be restored by Japanese herbal medicine. Thus, the Joubert syndrome genes are particularly enriched in IR and highly responsive to Japanese herbal medicine, making these genes probably the best candidates for marker genes for depression. AHI1 and NPHP1 were also found to be pathways for recovery, as described below (Figure 5). Future clinical trials are awaited to confirm these possibilities, where it will be necessary to determine more reads during sequencing, assuming rMATs is used (rMATs requires approximately five times more sequencing reads than DEG).

When these IR-recovered genes were mapped onto the IR-DEG interactome, 10 pathways were discovered that recovered in association with each other. Although each of these 10 pathways deserves detailed investigation (most of them were newly discovered in this study), it is important to emphasise that in each of the 10 pathways shown here, changes in the IR of one gene are linked to changes in the IR or DEG of another gene, forming a single functional unit (which we call a gear). We will discuss a few of these. The first is the NPHP1-AHI1 pathway. As mentioned above, these two genes are involved in cilia function and their mutations cause a ciliopathy called Joubert syndrome (59, 65, 66, 67). It has been shown experimentally that jouberin, a protein encoded by AHI1, can interact with nephrocystin, a protein encoded by NPHP1, using the yeast two-hybrid system (68). The two proteins form a heterodimer, and mutations in AHI1 that do not form a heterodimer (i.e. V443D in AHI1) alter the intracellular localisation of AHI1 and NPH1 so that the two proteins can, although not always, behave as if
they were one protein (59). It is interesting to note that the introns of these two mRNAs are reduced in depression and both are restored by the administration of the herbal medicine. In other words, the mRNAs transcribed from these two genes seem to be under the same control mechanism of RNA processing, as if they were the same mRNA. These observations remind us of a model we have recently proposed that there may be a novel mechanism that senses the correct level of functional proteins in the cytoplasm and transmits this information to the nucleus to regulate the level of IR (29). If such a mechanism exists, it would mean that introns in the genes for \textit{AHI1} and \textit{NPHP1} are regulated by a common factor.

In the case of the \textit{MYLK-MYH10} pathway, inflammatory inputs activate MYLK and phosphorylate the L-chain of myosin (47). This causes the contracted L-chain of myosin to transmit information to the H-chain, which in turn regulates the copy number of mitochondrial DNA, which is tightly bound to the non-muscle H-chain (45). In this biological GEAR, the input is inflammation and the output is the control of the number of copies of mitochondrial DNA. The other eight pathways, including the two already postulated, need to be demonstrated biochemically in practice, but brief outlines of the hypothetical pathways are given in the legend of Figure 6.

Figure 5K shows the 10 pathways restored by HKT mapped on the IR-DEG interactome described in this study. This interactome was generated using data from depressed patients and controls only. This means that if a different drug with a different effect to the one used here was used, the new pathways restored by the drug could be detected. Accordingly, such an IR-DEG interactome should be useful for assessing the efficacy of all drugs, including herbal medicines, and for finding new pathways affected by drugs.

In short, we have shown in this paper that IR can be an excellent marker of depression. The combination of network analysis and drug response gene analysis may also reveal new pathways of drug efficacy. The strategy presented here are not limited to the analysis of depression, but can be applied to any disease.

Authors’ Contributions
Norihiro Okada conceived, supervised and validated the project and wrote and finalised the manuscript. Kenshiro Oshima analysed and visualised the data and wrote the Materials and Methods and legends. Akiko Maruko analysed the PCR data. Mariko Sekine suggested the application of the IR method to human subjects. Naoki Ito performed PBMC isolation. Akino Wakasugi analysed the human data. Eiko Mori and Hiroshi Odaguchi designed and performed the clinical research. Yoshinori Kobayashi organised the human COI project. All authors read, revised, edited, and approved the final manuscript.
Competing interests

N.O., K.O. and A.M. received a research grant from TSUMURA and CO. Although TSUMURA is a manufacturer of the Japanese herbal (Kampo) medicine, the company did not provide the Kampo used in this study, which was prepared at the Kitasato University Oriental Medicine Research Center. All research members of this study declare no potential conflicts of interest.

Figure legends.

Fig. 1. Comparison of RNA expression between depressed subjects and less depressed controls. (A) Table of subject information. Classification was based on the BDI-II score at the first examination, with <16 being less depressed controls and ≥16 being depressed subjects. (CON, less depressed controls; BMT, depressed subjects (before medical treatment); AMT, depressed subjects after 2 months of taking HKT (after medical treatment)) (i) In each group, mean and standard deviation of sex, age, and BDI-II score were shown. (B) Volcano plot of RNA expression between BMT and CON groups. Horizontal axis shows log2 fold-change of BMT/CON and vertical axis shows -log10P values. Significantly upregulated genes are indicated by red dots (FC > 1.2 and P < 0.05), downregulated genes are indicated by blue dots (FC > 1/1.2 and P < 0.05), and no significant differences are shown in grey using the likelihood ratio test. Gene symbols of T cell associated genes were indicated. (C) Heatmap of significantly differentially expressed genes between BMT and CON individuals. (D-E) Enrichment analysis of biological process gene ontology and KEGG pathway terms using 641 up-regulated (D) or 922 down-regulated (E) genes in BMT. Horizontal axis shows -log10P values. Green bars indicate gene ontology biological process terms and yellow bars indicate KEGG pathway terms.

Fig. 2. IR genes were isolated and characterised by comparison between BMT and CON. (A) Bar chart of the number of IR genes with significantly increased (IncIR) or decreased (DecIR) in BMT using rMATS software v.4.1.1. Significant difference criteria are P-value less than 0.05 and difference in intron ratios greater than 0.05. (B) Heatmap of significantly different IR loci between BMT and CON. (C-D) Bar chart of enrichment analysis of biological process gene ontology and KEGG pathway terms using 158 genes with IncIR (C) and 198 genes with DecIR (D) in BMT. Gene symbols corresponding to the terms are shown on the right.
horizontal axis shows -log10P values. Green bars indicate gene ontology biological process terms and yellow bars indicate KEGG pathway terms.

Figure 3. IR loci interact preferentially with genes involved in innate immunity. (A) Number of IR genes and IR protein-coding genes. (B) Venn diagram between IR genes, cilia-related genes (GO:0060271 cilium assembly + SCGSv2 ciliary genes (69)), adaptive and innate immunity related genes (GO:0046649 lymphocyte activation and GO:0006955 immune response). psychiatric disorders-relevant (PD) genes. The PD gene sets was constructed by merging genes from the following databases or previous studies: SFARI (autism-related gene database, https://www.sfari.org/resource/sfari-gene/); PsyGeNET (mental disorder-related gene database, https://www.sfari.org/resource/sfari-gene/); Psychiatric disorders-related genes http://www.psygenet.org/web/PsyGeNET/menu/home); Psychiatric disorders-relevant genes (70); Major depression risk genes (71) (C) Gene symbols shared between IR and cilia-related genes are shown, corresponding to the area circled in red in Fig. 3B. Groups were classified as IncIR, DecIR or Mixed (‘Mixed’ indicates a gene containing both IncIR and DecIR). (D) Gene symbols shared between IR and immunity related genes, corresponding to the area surrounded by blue in Fig. 3B. (E) Network showing significant protein-protein interactions (PPI) between IR genes and innate immune response-related genes. The interaction score was calculated using the full STRING network confidence score 0.7 from the STRING database. (left) Network of PPIs between proteins encoded by IR genes and innate immune response proteins (GO:0045087). Innate immune response proteins are placed in the central circle and IR proteins (red: IncIR, blue: DecIR, green: mixed) on either side. (right) Instead of IR proteins, an equal number of randomly selected gene sets were placed on both sides. Ranking table of the top 30 proteins with the highest number of interactions (number of links) with the IR in (F) and with 5 randomly selected protein sets in (G). (H) Bar chart comparing the average number of interactions (number of links) with innate immune response proteins in the IR and DecIR proteins. (I) Bar chart comparing the average number of interactions (number of links) with innate immune response proteins in IncIR and DecIR proteins. (J) Ranking table of the top 30 proteins with the highest number of interactions (links) to lymphocyte activation proteins (GO:0046649) in IR proteins. (K) Ranking table of the top 30 proteins with the highest number of interactions (links) to immune response proteins (GO:0006955) in the IR proteins.

Fig.4. PPI network of IR and DEG proteins. (A) A main network showing protein-protein interactions using all IR and DEG proteins between CON and BMT. The interaction score was calculated using the full STRING network confidence score 0.7 from the STRING database. (IncIR: red filled circle, DecIR: blue filled circle, Mixed: green filled circle, Upregulation: small
Fig. 5. Recovery of IR by administration of HKT. (A) (Top, left) Venn diagram of intronic loci that were significantly increased (IncIR between CON and BMT) and those that were decreased (DecIR between BMT and AMT) by drug treatment. (Bottom, left) Gene symbols with recovered loci are shown (Protein coding genes are shown in bold.). (Right) Box plot showing average intron ratios at recovered loci. (B) (Top, left) Venn diagram of intronic loci that were significantly decreased (DecIR between CON and BMT) and those that were increased (IncIR between BMT and AMT) by drug treatment. (Bottom, right) Gene symbols with recovered loci are shown (Protein coding genes are shown in bold.). (C) Table of functional categorisation from the literature of the recovered IR genes.

Figure 6. New pathways discovered from drug recovery on the PPI network. (A-J) The network was extracted from the PPI network overlaid with recovered IR and DEG loci. All recovered IR loci except PLD2 showed a significant difference (P < 0.05, FC > 1.2) between CON and BMT and between BMT and AMT. All DEG loci showed a significant difference (P < 0.05, FC > 1.2) between CON and BMT, but their significance between BMT and AMT is marginal (P < 0.3) using the likelihood ratio test. IR gene is indicated by a large circle, where blue is DecIR and red is IncIR. DEG is indicated by a small circle, where blue indicates downregulation and red indicates upregulation. Bar graphs show intron ratios for IR and gene expression levels for DEG. In the bar graph, asterisks indicate statistically significant differences (*: p < 0.05, **: p < 0.01, ***: p < 0.001, NS: not significant). (A) The pathway involving NDUFA5, FOXRED1, NDUFV2 and ATP5MGL (72) regulates mitochondrial function. (B) The TP73 (73) - FAS (74) - CAV1 (75, 76) - PDGFRA (77) pathway is involved in inflammatory signalling. (C) The CAV1 (75, 76) - PLD2 (78) - NAPEPLD (79, 80) signalling pathway is involved in the regulation of lipid metabolism involving caveolae as a vital plasma membrane sensor. (D) The DDX5 (81, 82) - ZWINT (83) - UBE2T (84) pathway is involved in the amplification by ubiquitination of an inflammatory signal taken up by DDX5 via the immune infiltration stimulated by ZWINT. (E) The CERT1 (85) - COL4A3 (86) - ITGA9 (87) pathway is involved in anti-inflammatory responses. (F) The HOXA1 (88) - ROBO3 (89) -
NTN1 (90) signalling pathway regulates inflammation. (G) See text. (H) The SMARCD2 (91, 92) - BRD9 (93, 94) signalling pathway is involved in a mediator of an inflammatory input activated by BRD9 leading to mediated granulopoiesis as an output through activation of SMARCD2. (I) See text. (J) The EOGT (95) - DOCK6 (96) pathway is involved in the regulation of haematopoiesis. (K) On the main network, each position of the pathways (A - H) is indicated by a red square.

Table 1. Sensor / Regulatory genes were isolated from the protein-coding IR genes

<table>
<thead>
<tr>
<th>Category</th>
<th>Gene</th>
<th>Function</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensor</td>
<td>ADGRB2</td>
<td>Metabotropic mechanosensor</td>
<td>(123)</td>
</tr>
<tr>
<td></td>
<td>AIF1</td>
<td>Innate response sensor</td>
<td>(124)</td>
</tr>
<tr>
<td></td>
<td>CD163</td>
<td>Macrophage innate immune sensor</td>
<td>(125)</td>
</tr>
<tr>
<td></td>
<td>DDX5</td>
<td>Interferon antiviral sensor</td>
<td>(126)</td>
</tr>
<tr>
<td></td>
<td>DDX3X</td>
<td>Interferon antiviral sensor</td>
<td>(126)</td>
</tr>
<tr>
<td></td>
<td>ERLIN1</td>
<td>Innate immune sensor</td>
<td>(127)</td>
</tr>
<tr>
<td></td>
<td>GBF1</td>
<td>ER_sensor</td>
<td>(102)</td>
</tr>
<tr>
<td></td>
<td>HTRA2</td>
<td>Mitochondria stress sensor</td>
<td>(128)</td>
</tr>
<tr>
<td></td>
<td>LRSAM1</td>
<td>Bacterial sensor</td>
<td>(129)</td>
</tr>
<tr>
<td></td>
<td>MAP3K12 (DLK)</td>
<td>axon-damage sensor</td>
<td>(130)</td>
</tr>
<tr>
<td></td>
<td>MOK (RAGE)</td>
<td>Haem sensor</td>
<td>(131)</td>
</tr>
<tr>
<td></td>
<td>NDRG2</td>
<td>Inflammation sensor</td>
<td>(115)</td>
</tr>
<tr>
<td></td>
<td>NFATC4</td>
<td>Nerve sensor</td>
<td>(116)</td>
</tr>
<tr>
<td></td>
<td>OAS2</td>
<td>Viral sensor</td>
<td>(117)</td>
</tr>
<tr>
<td></td>
<td>PQBP1</td>
<td>HIV innate response sensor</td>
<td>(132)</td>
</tr>
<tr>
<td></td>
<td>SARM1</td>
<td>Metabolic sensor</td>
<td>(133)</td>
</tr>
<tr>
<td></td>
<td>SLC9A5 (NHE5)</td>
<td>PH sensor</td>
<td>(134)</td>
</tr>
<tr>
<td></td>
<td>SLC16A11</td>
<td>Glucose lipid sensor</td>
<td>(135)</td>
</tr>
<tr>
<td></td>
<td>ZNF598</td>
<td>Collided_ribosome sensor</td>
<td>(136)</td>
</tr>
<tr>
<td>Regulator</td>
<td>ADCY4</td>
<td>Controls caspase-11 inflammasome activation</td>
<td>(107)</td>
</tr>
<tr>
<td></td>
<td>BRD9</td>
<td>Regulates interferon-stimulated genes</td>
<td>(93)</td>
</tr>
<tr>
<td></td>
<td>BTBD3</td>
<td>Controls dendrite orientation</td>
<td>(137)</td>
</tr>
<tr>
<td></td>
<td>BTN3A3</td>
<td>Regulates ERK1/2 phosphorylation</td>
<td>(138)</td>
</tr>
<tr>
<td></td>
<td>CACNB3</td>
<td>Regulates ATP-dependent migration of dendritic cells</td>
<td>(139)</td>
</tr>
<tr>
<td>Gene</td>
<td>Function Description</td>
<td>Reference</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>-----------</td>
<td></td>
</tr>
<tr>
<td>CFB</td>
<td>Regulates cellular senescence</td>
<td>(140)</td>
<td></td>
</tr>
<tr>
<td>CLK4</td>
<td>Regulates DNA damage induced NF-κB</td>
<td>(141)</td>
<td></td>
</tr>
<tr>
<td>HAGHL</td>
<td>Regulates human colorectal cancer progression</td>
<td>(142)</td>
<td></td>
</tr>
<tr>
<td>ITGAL</td>
<td>Regulates glioma growth</td>
<td>(143)</td>
<td></td>
</tr>
<tr>
<td>MAT2B</td>
<td>Regulates EGFR signaling pathway</td>
<td>(144)</td>
<td></td>
</tr>
<tr>
<td>Mettl17</td>
<td>Regulates mitochondrial ribosomal RNA modifications</td>
<td>(145)</td>
<td></td>
</tr>
<tr>
<td>MICAL1</td>
<td>Regulates actin microfilaments</td>
<td>(146)</td>
<td></td>
</tr>
<tr>
<td>MSH5</td>
<td>Regulates Ig class switch recombination</td>
<td>(147)</td>
<td></td>
</tr>
<tr>
<td>MYO1G</td>
<td>Regulates exocytosis, and endocytosis in B lymphocytes</td>
<td>(148)</td>
<td></td>
</tr>
<tr>
<td>MYSM1</td>
<td>Regulates hematopoietic stem cell maintenance</td>
<td>(149)</td>
<td></td>
</tr>
<tr>
<td>NAPEPLD</td>
<td>Regulates liver lipid metabolism</td>
<td>(79)</td>
<td></td>
</tr>
<tr>
<td>PGM3</td>
<td>Regulates beta-catenin activity</td>
<td>(150)</td>
<td></td>
</tr>
<tr>
<td>PLD2</td>
<td>Regulates phagocyte cell migration</td>
<td>(151)</td>
<td></td>
</tr>
<tr>
<td>PTPN18</td>
<td>Regulates the c-MYC-CDK4 axis</td>
<td>(152)</td>
<td></td>
</tr>
<tr>
<td>ROBO3</td>
<td>Modulates prognosis via AXL-associated inflammatory network</td>
<td>(89)</td>
<td></td>
</tr>
<tr>
<td>SCFD1</td>
<td>Regulates SNARE complex formation</td>
<td>(153)</td>
<td></td>
</tr>
<tr>
<td>SNAP23</td>
<td>Regulates phagocytosis</td>
<td>(154)</td>
<td></td>
</tr>
<tr>
<td>STARD9</td>
<td>Regulates Spindle Pole Assembly</td>
<td>(155)</td>
<td></td>
</tr>
<tr>
<td>STAT1</td>
<td>Regulates transcription in the interferon JAK-STAT pathway</td>
<td>(39)</td>
<td></td>
</tr>
<tr>
<td>TRA2A</td>
<td>Regulates EZH2/beta-catenin pathway</td>
<td>(156)</td>
<td></td>
</tr>
<tr>
<td>UBE2T</td>
<td>Promotes autophagy</td>
<td>(121)</td>
<td></td>
</tr>
</tbody>
</table>

Reference

4. Leonard BE (2010): The concept of depression as a dysfunction of the immune system. CURR

maoto (ma-huang-tang) on host lipid mediator and transcriptome signature in influenza virus infection. Sci Rep 11, 4232.

44. Crux NB, Elahi S (2017): Human Leukocyte Antigen (HLA) and Immune Regulation: How Do Classical and Non-Classical HLA Alleles Modulate Immune Response to Human Immunodeficiency Virus and Hepatitis C Virus Infections? Front Immunol 8, 832.

46. Kim DY, Helfman DM (2016): Loss of MLCK leads to disruption of cell-cell adhesion and
invasive behavior of breast epithelial cells via increased expression of EGFR and ERK/JNK signaling. Oncogene 35, 4495-4508.

69. Vasquez SSV, Dam Jv, Wheway G (2021): An updated SYSCILIA gold standard (SCGSv2) of known ciliary genes, revealing the vast progress that has been made in the cilia research field. Molecular Biology of the Cell 32, br13.

87. Ciechanowska A, Rojewska E, Piotrowska A, Barut J, Pawlik K, Ciapala K et al. (2022): New insights into the analgesic properties of the XCL1/XCR1 and XCL1/ITGA9 axes.
modulation under neuropathic pain conditions - evidence from animal studies. Front Immunol 13, 1058204.

100. Yoon SW, Lee MS, Xaver M, Zhang L, Hong SG, Kong YJ et al. (2016): Meiotic prophase
roles of Rec8 in crossover recombination and chromosome structure. Nucleic Acids Res 44, 9296-9314.

112. Zimmerman MA, Singh N, Martin PM, Thangaraju M, Ganapathy V, Waller JL et al. (2012): Butyrate suppresses colonic inflammation through HDAC1-dependent Fas upregulation

131. May O, Yatime L, Merle NS, Delguste F, Howsam M, Daugan MV et al. (2021): The receptor for advanced glycation end products is a sensor for cell-free heme. FEBS J 288, 3448-3464.

133. Figley MD, Gu W, Nanson JD, Shi Y, Sasaki Y, Cunnea K et al. (2021): SARM1 is a metabolic sensor activated by an increased NMN/NAD(+) ratio to trigger axon degeneration. Neuron 109, 1118-1136 e1111.

152. Li C, Li SZ, Huang XC, Chen J, Liu W, Zhang XD et al. (2021): PTPN18 promotes
colorectal cancer progression by regulating the c-MYC-CDK4 axis. Genes Dis 8, 838-848.

(A) (i)

<table>
<thead>
<tr>
<th>Sample</th>
<th>ID</th>
<th>Gender</th>
<th>Age</th>
<th>BDI-II Score</th>
<th>Before Medicine</th>
<th>After Medicine</th>
</tr>
</thead>
<tbody>
<tr>
<td>CON-1</td>
<td>CO04</td>
<td>M</td>
<td>40s</td>
<td>11.33 ± 3.86</td>
<td>32.50 ± 3.54</td>
<td>10.63 ± 6.20</td>
</tr>
<tr>
<td>CON-2</td>
<td>CO02</td>
<td>M</td>
<td>40s</td>
<td>40.67 ± 6.52</td>
<td>40.38 ± 9.04</td>
<td></td>
</tr>
<tr>
<td>CON-3</td>
<td>CO03</td>
<td>F</td>
<td>20s</td>
<td>18.8</td>
<td>21.12</td>
<td></td>
</tr>
<tr>
<td>CON-4</td>
<td>CO06</td>
<td>F</td>
<td>40s</td>
<td>13</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>CON-5</td>
<td>CO07</td>
<td>M</td>
<td>40s</td>
<td>16</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>BMT-1</td>
<td>AMT-1</td>
<td>F</td>
<td>50s</td>
<td>23</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>BMT-2</td>
<td>AMT-2</td>
<td>M</td>
<td>30s</td>
<td>22</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>BMT-3</td>
<td>AMT-3</td>
<td>M</td>
<td>40s</td>
<td>27</td>
<td>27</td>
<td></td>
</tr>
<tr>
<td>BMT-4</td>
<td>AMT-4</td>
<td>F</td>
<td>30s</td>
<td>27</td>
<td>27</td>
<td></td>
</tr>
</tbody>
</table>

(B)

LogFC (BMT / CON) for differentially expressed genes:

- HLA-DOA1
- HLA-DRB1
- MID2
- IGHG3
- IGHV3-33
- IGHV3-30
- DDX5B
- DAB2IP
- SHMS
- PYCARD
- SHMS

(C)

922 down-regulated genes and 641 up-regulated genes.

(D)

- Phagocytosis, recognition (16)
- Phagocytosis, engulfment (15)
- Defense response to bacterium (16)
- Positive regulation of B cell activation (15)
- Complement activation, classical pathway (16)
- Immunoglobulin production (13)
- B cell receptor signaling pathway (15)
- Immunoglobulin-mediated immune response (12)
- Adaptive immune response (25)
- Immune response (26)
- Innate immune response (21)
- Negative regulation of IFN-kappaB kinase/NF-kappaB signaling (5)
- Response to calcium ion (5)
- Memory (6)
- Sensory perception of sound (8)
- Beta-amyloid metabolic process (3)
- Positive regulation of epithelial cell migration (4)
- Circadian regulation of gene expression (5)
- Response to xenobiotic stimulus (10)
- Negative regulation of epithelial cell migration (3)
- Focal adhesion (10)
- Circadian rhythm (4)
- Axon guidance (8)
- Glutamatergic synapse (6)
- Calcium signaling pathway (9)
- ECM-receptor interaction (5)
- GOBP
- KEGG

(E)

Down-regulation:

- Antigen processing and presentation (7)
- Antigen processing and presentation of exogenous peptide antigen via MHC class II (5)
- Antigen processing and presentation, endogenous Ig (1)
- Fc receptor mediated inhibitory signaling pathway (3)
- Peptide antigen assembly with MHC class II protein complex (4)
- Antigen processing and presentation (6)
- Signal transduction (57)
- Negative regulation of T cell proliferation (7)
- Cellular response to calcium ion (8)
- Positive regulation of cytosolic calcium ion concentration (10)
- Positive regulation of T cell activation (5)
- Immune response (21)
- Regulation of actin cytoskeleton (13)
- Adherens junction (8)
- Notch signaling pathway (5)
- Activation of cysteine-type endopeptidase activity involved in apoptotic process (3)
- Positive regulation of adipose tissue development (4)
- cGMP-mediated signaling (5)
- Phospholipase C-activating G-protein coupled receptor signaling pathway (8)
- Hematopoietic cell lineage (8)
- cGMP-PKG signaling pathway (10)
- cAMP signaling pathway (11)
- Asthma (4)
- Phagosome (8)
- cerebellar cortex morphogenesis (3)
- Regulation of synaptic vesicle exocytosis (6)
- Tight junction (12)
- regulation of atrial natriuretic peptide receptor (3)
- Regulation of heart rate by cardiac conduction (5)
- Oxytocin signaling pathway (10)
- Vascular smooth muscle contraction (9)
- Pathways in cancer (21)
- Viral myocarditis (6)
- Axon guidance (10)
- Renin secretion (6)
- Platelet activation (8)
- Amoebiasis (7)
- Osteoclast differentiation (8)
- Gap junction (6)

GOBP
- KEGG

The copyright holder for this preprint is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
(A) IncIR (166 loci (158 genes))

DecIR (211 loci (198 genes))

(C) IncIR

- Zymogen activation (3)
- Chromatin organization (7)
- Positive regulation of apoptotic signaling pathway (3)
- Actin filament bundle assembly (3)
- Antigen processing and presentation (3)
- Myelin assembly (2)
- Amino sugar and nucleotide sugar metabolism (4)
- TNF signaling pathway (5)
- Lysosome (5)

(D) DecIR

- Cilium assembly (9)
- Post-Golgi vesicle-mediated transport (3)
- Vesicle-mediated transport (7)
- Exocytosis (5)
- Negative regulation of Ras protein signal transduction (3)
- Positive regulation of receptor internalization (3)
- T cell receptor signaling pathway (5)
- Intracellular transport (3)
- Protein transport (9)
- Retrograde transport, endosome to Golgi (4)
- Regulation of GTPase activity (4)
- Dendrite morphogenesis (3)
- Proteolysis (9)
- Cell adhesion mediated by integrin (3)
- Endocytosis (7)

- Protein K48-linked deubiquitination (3)
- Cellular response to interferon-beta (3)
- Protein ubiquitination (5)
- Cellular response to virus (7)
- Human papillomavirus infection (9)
- NOD-like receptor signaling pathway (6)
- Epstein-Barr virus infection (6)

- Negative regulation of smooth muscle cell proliferation (4)
- Positive regulation of translational initiation (3)
- Nuclear-transcribed mRNA catabolic process, 3-5
- Exonucleolytic nonsense-mediated decay (2)
- Rescue of stalled ribosome (3)
- RNA catabolic process (3)
- Positive regulation of protein targeting to mitochondrion (3)
- Histone acetylation (3)
Table (B)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>numLinks</th>
<th>IR</th>
<th>DEG</th>
</tr>
</thead>
<tbody>
<tr>
<td>SRC</td>
<td>43</td>
<td></td>
<td>down-regulation</td>
</tr>
<tr>
<td>RAC1</td>
<td>25</td>
<td></td>
<td>down-regulation</td>
</tr>
<tr>
<td>DLG4</td>
<td>18</td>
<td>DecIR</td>
<td>up-regulation</td>
</tr>
<tr>
<td>CAV1</td>
<td>16</td>
<td></td>
<td>up-regulation</td>
</tr>
<tr>
<td>JUN</td>
<td>16</td>
<td></td>
<td>up-regulation</td>
</tr>
<tr>
<td>CTNND1</td>
<td>15</td>
<td></td>
<td>down-regulation</td>
</tr>
<tr>
<td>SNAP25</td>
<td>15</td>
<td></td>
<td>down-regulation</td>
</tr>
<tr>
<td>STAT1</td>
<td>14</td>
<td>DecIR</td>
<td>down-regulation</td>
</tr>
<tr>
<td>ITGB4</td>
<td>13</td>
<td>DecIR</td>
<td>down-regulation</td>
</tr>
<tr>
<td>PPARG</td>
<td>13</td>
<td></td>
<td>down-regulation</td>
</tr>
<tr>
<td>CACK1A1D</td>
<td>12</td>
<td></td>
<td>down-regulation</td>
</tr>
<tr>
<td>HLA-A</td>
<td>12</td>
<td>DecIR</td>
<td>down-regulation</td>
</tr>
<tr>
<td>EDN1</td>
<td>11</td>
<td></td>
<td>down-regulation</td>
</tr>
<tr>
<td>ITGA3</td>
<td>11</td>
<td>DecIR</td>
<td>up-regulation</td>
</tr>
<tr>
<td>MYH10</td>
<td>11</td>
<td>inclIR (recovery)</td>
<td></td>
</tr>
<tr>
<td>ITGA9</td>
<td>10</td>
<td></td>
<td>down-regulation</td>
</tr>
<tr>
<td>NOTCH3</td>
<td>10</td>
<td></td>
<td>down-regulation</td>
</tr>
<tr>
<td>RYR1</td>
<td>10</td>
<td></td>
<td>down-regulation</td>
</tr>
</tbody>
</table>

Diagram (C)

- **Cilium**

Diagram (D)

- **Lymphocyte activation**

Diagram (E)

- **Innate immune response**
Erythropoiesis

<table>
<thead>
<tr>
<th>Gene</th>
<th>IR V shape</th>
<th>IR reverse -V</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CDN1</td>
<td></td>
<td></td>
<td>The congenital dyserythropoietic anemia: genetics and pathophysiology (97)</td>
</tr>
<tr>
<td>EO2T</td>
<td>✓</td>
<td></td>
<td>Synergistic regulation of Notch signaling by different O-glycans promotes hematopoiesis (95)</td>
</tr>
<tr>
<td>SMARC2D</td>
<td>✓</td>
<td></td>
<td>A SMARC2D-containing mSWI SNF complex is required for granulopoiesis (98)</td>
</tr>
</tbody>
</table>

Cilia

<table>
<thead>
<tr>
<th>Gene</th>
<th>IR V shape</th>
<th>IR reverse -V</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AH1</td>
<td>✓</td>
<td></td>
<td>AH1, whose human ortholog is mutated in Joubert syndrome, is required for Rab8a localization, cilogenesis and vesicle trafficking (59)</td>
</tr>
<tr>
<td>CELSR2</td>
<td>✓</td>
<td></td>
<td>Celsr2, Encoding a Planar Cell Polarity Protein, is a Putative Gene in Joubert Syndrome with Cortical Heterotopia, Microphthalmia, and Growth Hormone Deficiency (60)</td>
</tr>
<tr>
<td>CEPI04</td>
<td>✓</td>
<td></td>
<td>Joubert Syndrome in French Canadians and Identification of Mutations in CEP104 (61)</td>
</tr>
<tr>
<td>DNHD1</td>
<td>✓</td>
<td></td>
<td>Bi-allelic variants in DNHD1 cause flagellar axoneme defects and asthenoteratozoospermia in humans and mice (101)</td>
</tr>
<tr>
<td>GBF1</td>
<td>✓</td>
<td></td>
<td>The AT GEF GBF1 and ARF4 synergize with the sensory receptor cargo, rhodopsin, to regulate ciliary membrane trafficking (102)</td>
</tr>
<tr>
<td>NAPEDPL</td>
<td>✓</td>
<td></td>
<td>Small Molecule Activation of NAPEDPL Enhances Efferocytosis by Macrophages (80)</td>
</tr>
<tr>
<td>NPHP1</td>
<td>✓</td>
<td></td>
<td>Many Genes—One Disease? Genetics of Nephronophthisis (NPHP) and NPHP-Associated Disorders (67)</td>
</tr>
<tr>
<td>FOXRED1</td>
<td>✓</td>
<td></td>
<td>Characterization of mitochondrial FOXRED1 in the assembly of respiratory chain complex I (72)</td>
</tr>
</tbody>
</table>

Mitochondria

<table>
<thead>
<tr>
<th>Gene</th>
<th>IR V shape</th>
<th>IR reverse -V</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MFN2</td>
<td>✓</td>
<td></td>
<td>Mitofusin 2 (MFN2) links mitochondrial and endoplasmic reticulum function with insulin signaling and is essential for normal glucose homeostasis (103)</td>
</tr>
<tr>
<td>MYH10</td>
<td>✓</td>
<td></td>
<td>Actin and myosin contribute to mammalian mitochondrial DNA maintenance (46)</td>
</tr>
<tr>
<td>NDUF4A5</td>
<td>✓</td>
<td></td>
<td>Supernumerary subunits NDUFA3, NDUFA5 and NDUFA12 are required for the formation of the mitochondrial complex I (72)</td>
</tr>
<tr>
<td>SIGMAR1</td>
<td>✓</td>
<td></td>
<td>The role of SIGMAR1 gene mutation and mitochondrial dysfunction in amyotrophic lateral sclerosis (104)</td>
</tr>
<tr>
<td>SPG7</td>
<td>✓</td>
<td></td>
<td>SPG7 is an Essential and Conserved Component of the Mitochondrial Permeability Transition Pore (105)</td>
</tr>
<tr>
<td>TEFM</td>
<td>✓</td>
<td></td>
<td>TEFM (c17orf42) is necessary for transcription of human mtDNA (106)</td>
</tr>
</tbody>
</table>

Inflammation

<table>
<thead>
<tr>
<th>Gene</th>
<th>IR V shape</th>
<th>IR reverse -V</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADCY4</td>
<td>✓</td>
<td></td>
<td>cAMP metabolism controls caspase-11 inflammasome activation and pyroptosis in sepsis (107)</td>
</tr>
<tr>
<td>BRD9</td>
<td>✓</td>
<td></td>
<td>Bromodomain containing 9 (BRD9) regulates macrophage inflammatory responses by potentialization glucocorticoid receptor activity (93)</td>
</tr>
<tr>
<td>CDCA3</td>
<td>✓</td>
<td></td>
<td>CDCA3 promotes cell proliferation by activating the NF-kB/cyclin D1 signaling pathway in colorectal cancer (118)</td>
</tr>
<tr>
<td>CERT1</td>
<td>✓</td>
<td></td>
<td>Ceramides as Mediators of Oxidative Stress and Inflammation in Cardiometabolic Disease (85)</td>
</tr>
<tr>
<td>CXCL2</td>
<td>✓</td>
<td></td>
<td>NF-kB and STAT1 control CXCL1 and CXCL2 gene transcription (109)</td>
</tr>
<tr>
<td>DDX5</td>
<td>✓</td>
<td></td>
<td>IL-17D-induced inhibition of DDX5 expression in keratinocytes amplifies IL-36R-mediated skin inflammation (110)</td>
</tr>
<tr>
<td>ERLIN1</td>
<td>✓</td>
<td></td>
<td>The ERLIN1-CHUK-CWF19LT1 gene cluster influences liver fat deposition and hepatic inflammation in the NASHBlI Family Heart Study (111)</td>
</tr>
<tr>
<td>FAS</td>
<td>✓</td>
<td></td>
<td>The Many Roles of FAS Receptor Signaling in the Immune System (112)</td>
</tr>
<tr>
<td>IL17RB</td>
<td>✓</td>
<td></td>
<td>Cutting Edge: IL-17B Uses IL-17RA and IL-17RB to Induce Type 2 inflammation from Human Lymphocytes (113)</td>
</tr>
<tr>
<td>MYLK</td>
<td>✓</td>
<td></td>
<td>Myosin Light Chain Kinase: A Potential Target for Treatment of Inflammatory Diseases (47)</td>
</tr>
<tr>
<td>NCSTN</td>
<td>✓</td>
<td></td>
<td>Keratin 5-Cre-driven deletion of NCSTN in an acne inversa-like mouse model leads to a markedly increased IL-36a and SPRR2 expression (114)</td>
</tr>
<tr>
<td>NDRG2</td>
<td>✓</td>
<td></td>
<td>Association between NDRG2/IL-6-STAT3 signaling pathway and diabetic retinopathy in rats (115)</td>
</tr>
<tr>
<td>NFATC4</td>
<td>✓</td>
<td></td>
<td>NFAT is a nerve activity sensor in skeletal muscle and controls activity-dependent myosin switching (116)</td>
</tr>
<tr>
<td>NOSIP</td>
<td>✓</td>
<td></td>
<td>NOSIP, a novel modulator of endothelial nitric oxide synthase activity (44)</td>
</tr>
<tr>
<td>OAS2</td>
<td>✓</td>
<td></td>
<td>OAS1, OAS2, and OAS3 Contribute to Epidermal Keratinocyte Proliferation by Regulating Cell Cycle and Augmenting IFN-1-induced Jak1-Signal Transducer and Activator of Transcription 1 Phosphorylation in Psoriasis (117)</td>
</tr>
<tr>
<td>PRMT7</td>
<td>✓</td>
<td></td>
<td>The Role of Protein Arginine Methyltransferases in Inflammatory Responses (118)</td>
</tr>
<tr>
<td>ROBO3</td>
<td>✓</td>
<td></td>
<td>Axin guidance receptor ROBO3 modulates subtype identity and prognosis via AXL-associated inflammatory network in pancreatic cancer (89)</td>
</tr>
<tr>
<td>SLC22A5</td>
<td>✓</td>
<td></td>
<td>Characterisation of exosomal SLC22A5 (OCCT2) carmine transporter (119)</td>
</tr>
<tr>
<td>TRIM16</td>
<td>✓</td>
<td></td>
<td>TRIM16 exerts protective function on myocardial ischemia/reperfusion injury through reducing pyroptosis and inflammation via NLRP3 signaling (120)</td>
</tr>
<tr>
<td>UBE2T</td>
<td>✓</td>
<td></td>
<td>Correlations between UBE2T Expression and Immune Infiltration in Different Cancers (120)</td>
</tr>
<tr>
<td>USP21</td>
<td>✓</td>
<td></td>
<td>USP21 Deubiquinase Regulates AIM2 Inflammasome Activation (122)</td>
</tr>
</tbody>
</table>

Functional category

- **Erythropoiesis**
- **Cilia**
- **Mitochondria**
- **Inflammation**

Gene clusters

- [IncCON-BKT](https://doi.org/10.1101/2024.03.30.24305001)
- [DecBKT-AKT](https://doi.org/10.1101/2024.03.30.24305001)
- [IncBKT-AKT](https://doi.org/10.1101/2024.03.30.24305001)

Description

- [Figures](https://example.com)

License

- [CC-BY-NC-ND 4.0 International license](https://creativecommons.org/licenses/by-nc-nd/4.0/)

Intracellulary

- [Figures](https://example.com)

License

- [CC-BY-NC-ND 4.0 International license](https://creativecommons.org/licenses/by-nc-nd/4.0/)