The magnitude of exercise-induced hypoalgesia can be improved and correlated with endogenous pain modulation following a 4-week treadmill running in female

XU, Zi-Han
1
School of Sport Medicine and Rehabilitation, Beijing Sport University
Beijing, China
2290259311@qq.com
https://orcid.org/0000-0002-2090-3528

AN, Nan
1
School of Sport Medicine and Rehabilitation, Beijing Sport University
Beijing, China
616455768@qq.com
https://orcid.org/0000-0001-9197-4465

Xu, Z.H., An, N., contributed equally to this manuscript.

Corresponding author: Xu, Z.H. email: 2290259311@qq.com

Disclosures:
The authors declare no actual or potential conflicts of interest that could influence this work.
Abstract

Objective: This study aimed to investigate the changes in pain perceptions, acute exercise-induced hypoalgesia (EIH), and endogenous pain modulation responses following 4-week treadmill running exercises with different intensities in female.

Methods: Forty-two female individuals were randomly assigned to two groups (TRL and TRH) and performed 12 sessions of treadmill running within 4 weeks. Running intensities for each group is 55% of reserve heart rate (HRR) in TRL or 70% HRR in TRH. Before and after each running sessions, the pressure pain thresholds (PPT) and mechanical pain thresholds (MPT) were measured and the difference between pre- and post-running results were calculated as EIH responses. The conditioned pain modulation (CPM) and temporal summation (TS) were also measured at baseline and 24h after final running session.

Results: Treadmill running only induced acute EIH responses with all pre-running PPT and MPT remained unaltered. However, the value EIH responses were significantly positively correlated with running sessions in TRL group, and negatively correlated with running sessions in TRH group. And running at low-intensity also showed greater EIH and CPM responses, and lower TS responses than running at high intensity. Besides, the EIH were positively correlated with CPM, and negatively correlated with TS after 12 running sessions.

Conclusion: Four-week low-intensity treadmill running may improve acute EIH responses with the enhancement of endogenous pain modulation in healthy females. Meanwhile, CPM and TS may be correlated with EIH and be changed after exercise training, respectively. However, the individuals’ baseline pain thresholds may remain unaltered and not be affected by EIH or endogenous pain modulation.

Key words: exercise-induced hypoalgesia; endogenous pain modulation; treadmill running; training-induced hypoalgesia
Introduction

The acute reduction of pain perception in full body following a single bout of exercise has been widely confirmed in healthy individuals and some pain patients, commonly called exercise-induced hypoalgesia (EIH)[1]. Usually, both the global aerobic[2] or local resistance exercise[3] with certain intensity and time can temporarily increase various pain thresholds (e.g., pressure pain thresholds, PPT or mechanical pain thresholds, MPT) and enhance emotional well-being[4]. However, the EIH response may be weaken (e.g., absence of hypoalgesia or even hyperalgesia) in elderly[5] or patients with pain conditions[6], and tends to be related to the impairment of endogenous pain modulation[7] (e.g., pain sensitization or pain-related psychological syndrome) in these individuals.

Since exercise has been recommended as a non-pharmacological intervention and overall health promotion for various pain patients and aged people, the attenuation of chronic pain syndrome and improvement of pain-related behavior following long-term exercise training has been reported in many studies[8-10], which is also known as training-induced hypoalgesia (TIH)[11]. However, there's no clear evidence yet that the magnitude of analgesic effects following a single bout of exercise could be improved or restored by long-term training in whether healthy individuals or pain patients.[12]

In both healthy individuals and pain patients, the magnitude of EIH has been reported to be affected by the conditioned pain modulation (CPM)[13, 14], or the temporal summation (TS)[15], which were refer to the function of endogenous pain modulation, and usually changed in these individuals with sensitization of pain perception. In healthy individuals, pain perception can be inhibited or facilitated by the descending control of the midbrain[16] and cortex[17] when the thalamus[18] received certain inputs from peripheral nociceptors (e.g., C fibers), which might also be activated by exercise with sufficient loads and lead to EIH. Thus, it's important to understand whether the function of endogenous pain modulation can also be improved through the long-term exercise.

Besides, the magnitude of EIH can also be modulated by the intensity of exercise[19], where high-intensity exercises often exacerbate pain in both human and rodent studies[20, 21], while moderate-intensity training can still increase pain threshold in many conditions[22, 23]. Previous studies[24, 25] have showed that the relationship between EIH and exercise intensity is an inverted U-shaped curve in healthy individuals. Considering the possibility of pain exacerbation following high-intensity exercise[26], the long-term influence on the pain perception and the endogenous pain modulation may also be differed between high-intensity and moderate-intensity exercise.

Thus, we aimed to compare the long-term effect on EIH effects and endogenous pain modulation in healthy individuals following 4-week high-intensity exercise and moderate-intensity exercise. We measured EIH effects in every exercise session, and the changes in CPM and TS responses before and after the 4-week training sessions. We hypothesized that (1) Both high- and
moderate-intensity exercise might elicit EIH responses (e.g., increase in PPT or MPT) in every exercise session, (2) the magnitude of EIH and CPM response might be gradually improved following long-term moderate-intensity exercise with the attenuation of TS response, (3) the magnitude of EIH might be correlated with the CPM and TS responses.

Methods

This study was approved (2023023H) by the Sports Science Experimental Ethics Committee of Beijing Sport University and registered in Chinese Clinical Trial Registry (registration number: ChiCTR2300074367).

Study design

A total of forty-two healthy participants were included in this study, and they were invited to perform exercise interventions for 12 times within 4 weeks. The consent forms were provided and signed by all the participants before undergoing this study. The demographic data and baseline measurements (e.g., resting-heart rate (HRrest), PPT, MPT, and CPM responses) were collected. The maximum-heart rate (HRmax) was estimated using the formula[27]: HRmax=202.5-0.53*age, and the reserved heart rate (HRR) was calculated as HRR=HRmax-HRrest. The real-time HR were collected and recorded via the HR belt worn by the participants during running. To avoid potential long-lasting analgesic effects of the CPM test, the first running session performed 48 hours after the baseline measurements.

All participants conformed to this study were randomly assigned to two experimental groups (TRL and TRH) with high- or low-intensity. And the randomized sequences were generated by the Excel software. All of the participants were labeled from number 01 to 42, and allocated following the A-B circulation order. The screeners of the participants were AN and XZH.

The participants would execute the low-intensity treadmill running with 55% HRR in group TRL or high-intensity (70% HRR) in group TRH. And the speed of the running would be determined in coherence with the target heart rate (THR) during the baseline measurements. All participants would perform a single exercise session once a day, three times per week and for 4 weeks. (Figure 1)
Participants

Based on the previous studies[28], the long-term aerobic exercise-induced effect size on PPT changes ranged from 0.20 to 0.38 was 0.20. Our study utilized G-Power Software with the effect size = 0.38; alpha level = 0.05; and power = 0.80. Thus, a minimum total sample size of 38 participants across two groups was determined.

A total of forty-six healthy female students (aged 18 to 30 years) from Beijing Sport University were included in this study, and 42 of them were finally enrolled. The exclusion criteria were: (1) had pain-related pathological or psychological syndrome within 3 months; (2) had injury history of lower extremities within 1 year; (3) had potential or confirmed heart disease, or recovered from a heart disease less than 1 year, (4) failed to maintain or tolerant the exercise intensity during the long-term treadmill running interventions; (5) showed serious exertion or fatigue in 24h after any exercise sessions; (6) showed intolerable pain during the pain perception test; (7) currently menstruating; and (8) have regular exercise or training experiences previously.

Procedures

All participants performed a single treadmill running session with different intensities based on their THR. The THR was 55% HRR in group TRL and 70% HRR in group TRH. Participants wore an HR belt to monitor and record real-time HR during the test and running session. One week prior to implementing the exercise interventions, a running assessment was administered to every participant. This assessment involved a progressive increase in speed until the target heart rate was reached. Subsequently, the predetermined speed for each individual was established to be employed at the commencement of the running. During the running session, the running speed would be adjusted at any time according to the participant's heart rate changes.
Outcome measures

The outcome measures were assessed at multiple time points, where the PPT-arm, PPT-leg and MPT were recorded 5 min before and 10 min after each running sessions. And the CPM and TS responses were evaluated at baseline measurements (48 hours before first running session) and 24 hours after last running session. All testing locations were marked with a sterile waterproof marker to ensure consistency in the repeated measures. And the testing angle of algometer were adjusted carefully to be perpendicular to the skin.

PPT

PPT was evaluated using a quantitative sensory testing protocol[29] with a handheld pressure algometer (Baseline Dolorimeter, Fabrication Enterprises, USA) equipped with a 1 cm² metal probe. Pressure was applied at a rate of 0.5 kg/s over two locations: the extensor carpus radialis (PPT-arm) and peroneus longus (PPT-leg) on the right side. The participants were instructed to indicate their perceived pain intensity using the visual analog scale (VAS) ranging from 0 to 100 cm. When participants reported a pain intensity of 30 out of 100 cm (Pain30) during pressure application, the pressure thresholds were recorded as PPT values.

MPT

MPT was evaluated using a quantitative sensory testing protocol[30] with a handheld algometer (Baseline Dolorimeter, Fabrication Enterprises, USA) equipped with a needle probe. Pressure was applied at a rate of 0.1 kg/s over one location: the extensor carpus radialis on the left side. The participants were instructed to indicate their perceived pain intensity using the visual analog scale (VAS) ranging from 0 to 100 cm. When participants reported a pain intensity of 30 out of 100 cm (Pain30) during pressure application, the pressure thresholds were recorded as MPT values.

CPM

The CPM response was measured using a quantitative sensory testing protocol[29], specifically the cold pressor procedure. In this procedure, pressure was applied as the test stimulation, and cold-water immersion served as the conditioned stimulation. Participants first received pressure stimulation at the ipsilateral extensor carpus radialis and reported the PPT as a test stimulus when the pain intensity reached Pain30. Subsequently, participants were instructed to immerse the contralateral hand into cold water at 8°C for 1 min. The PPT at Pain30 was reassessed when the participants withdrew their hands from immersion. The difference between the two PPTs was recorded as a response to the CPM.

TS

The TS response was measured using a quantitative sensory testing protocol[30]. In this procedure, the needle probe of the algometer was applied to the extensor carpus radialis on the left side at the intensity of 1.25 times the individuals’ MPT. And the mechanical stimulations were repeated 10 times at the frequency of 0.5Hz (e.g., 1-second stimulus following 1-second interval). Subsequently, participants were instructed to report the pain perception of first and last stimulation via the VAS score, and the differences in scores between these two mechanical stimulations was recorded as a response to the TS.
Statistical analysis

The normality of all data was assessed using the Shapiro-Wilk test. The difference in baseline data (height, weight, HRrest, PPT, MPT, CPM and TS) between groups were analyzed using an independent t-test. The differences of PPT and MPT values between the pre- and post-running in each session were calculated as EIH responses, including EIH-A for changes in PPT-arm, EIH-L for changes in PPT-leg, and EIH-M for changes in MPT.

To determine the differences within the two groups over time (running sessions), a two-way (running sessions and intensities) repeated measures ANOVA and independent t-tests (without post-hoc comparisons) was applied to examine the EIH values of PPT and MPT. And an independent t-test were also applied for the between group comparison of CPM and TS responses.

Linear regression analysis was used to investigate whether there was a linear correlation between running sessions and EIH-A, EIH-L, and EIH-M value. Meanwhile, the relationships among CPM and TS values and EIH-A, EIH-L, and EIH-M values after running intervention were analyzed by Pearson correlation methods. All statistical analyses were performed using SPSS Version 21.0, and a significance level of p<0.05 was applied to all tests.

Results

Baseline characteristics

Four participants were excluded from this study for the myofascial pain syndrome occurred 1 month before the experiments. Of the forty-two participants enrolled in this study, 20 of them in group TRL completed 12 running sessions with low intensity, and 18 of them in group TRH completed 12 running sessions with high intensity. Four participants withdrew from the study because of onset of menstruation, failing to finish all of the running sessions, and being lost to follow-up. All of baseline characteristics did not present significant differences between the groups (p > 0.05, Table 1).

<table>
<thead>
<tr>
<th>Table 1. Baseline measurement (M±SD) ¹</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>Group TRL (n=20)</td>
</tr>
<tr>
<td>-----------------</td>
</tr>
<tr>
<td>PPT-arm (kg/cm²)</td>
</tr>
<tr>
<td>PPT-leg (kg/cm²)</td>
</tr>
<tr>
<td>MPT (kg/cm²)</td>
</tr>
<tr>
<td>CPM (kg/cm²)</td>
</tr>
<tr>
<td>TS score (cm)</td>
</tr>
<tr>
<td>Age (y)</td>
</tr>
<tr>
<td>Height (cm)</td>
</tr>
<tr>
<td>Weight (kg)</td>
</tr>
</tbody>
</table>

All data were presented as mean -/+ standard deviation (M±SD)
1-way ANOVA, significant difference was set by $p \leq 0.05$.

Changes in EIH-A following running sessions

The two-way repeated-measures ANOVA revealed significant main effects ($F=15.465$, $p<0.001$) for the running sessions on the EIH-A, which indicated that 4-week running intervention significantly increased global EIH responses considering all participants. The interaction effect ($F=28.347$, $p<0.001$) between running intensity and time on the EIH-A was also significant. However, independent t-tests showed that the EIH-A in group TRL were significantly increased and higher ($p<0.001$) than the group TRH, which indicated that only the global EIH in TRL group were improved following 4-week treadmill running. Besides, all of the pre-running PPT-arm value remained unaltered, which indicated that long-term running may not change the baseline level of PPT-arm. (Figure 2 and 3)

![Figure 2. Changes in PPT of arms following running sessions](image)

Figure 2. Changes in PPT of arms following running sessions

All data were presented as mean and standard deviation; PPT=pressure pain threshold; HRR=reserved heart rate
Changes in EIH-A following running sessions

All data were presented as mean and standard deviation; PPT=pressure pain threshold; EIH=exercise-induced hypoalgesia; EIH-A=EIH value of PPT-arms; HRR=reserved heart rate

*: PPT in TRL group significantly higher than TRH group

Changes in EIH-L following running sessions

The two-way repeated-measures ANOVA revealed significant main effects (F=3.639, p<0.001) for the running sessions on EIH-L, which indicated that 4-week running intervention significantly increased local EIH responses considering all participants. The interaction effect (F=34.274, p<0.001) between running intensity and time on EIH-L was also significant. However, independent t-tests showed that EIH-L in group TRL were significantly increased and higher (p<0.001) than the group TRH, which indicated that only the local EIH in TRL group were improved following 4-week treadmill running. Besides, all of the pre-running PPT-leg value remained unaltered, which indicated that long-term running may not change the baseline level of PPT-leg. (Figure 4 and 5)

Figure 3. Changes in EIH-A following running sessions

Figure 4. Changes in PPT of legs following running sessions
All data were presented as mean and standard deviation; PPT=pressure pain threshold; HRR=reserved heart rate

Figure 5. Changes in EIH-L following running sessions

All data were presented as mean and standard deviation; PPT=pressure pain threshold; EIH=exercise-induced hypoalgesia; EIH-L=EIH value of PPT-legs; HRR=reserved heart rate

*: PPT in TRL group significantly higher than TRH group

Changes in EIH-M following running sessions

The two-way repeated-measures ANOVA revealed significant main effects (F=4.288, p=0.01) for the running sessions on the EIH-M, which indicated that 4-week running intervention significantly decreased EIH responses considering all participants. The interaction effect (F=7.445, p<0.001) between running intensity and time on the EIH-M was also significant. Interestingly, independent t-tests showed that the EIH-M in group TRH were significantly higher (p<0.001) than the group TRH in first to third running sessions, and significantly lower (p<0.001) than the group TRH from the 9th to 12th sessions. This result indicated that the EIH-M in TRH group were gradually decreased following 4-week treadmill running, where the EIH-M in TRL group were unaltered during the intervention. Besides, all of the pre-running MPT value remained unaltered, which indicated that long-term running may not change the baseline level of MPT. (Figure 6 and 7)
Figure 6. Changes in MPT following running sessions
All data were presented as mean and standard deviation; MPT=mechanical pain threshold;
HRR=reserved heart rate

Figure 7. Changes in EIH-M following running sessions
All data were presented as mean and standard deviation; MPT=mechanical pain threshold;
EIH=exercise-induced hypoalgesia; EIH-M=EIH value of MPT; HRR=reserved heart rate
#: MPT in TRH group significantly higher than TRL group
*: MPT in TRL group significantly higher than TRH group

Relationship between running sessions and EIH magnitudes

The linear regression analysis showed significant positive correlation between running sessions and EIH-A (p<0.001) and EIH-L (p<0.001) magnitudes in 4-week low-intensity running intervention. And the regression formulas were presented as: (Figure 8)
EIH-A (low-intensity running) = 0.564 + 0.084 * running sessions
EIH-L (low-intensity running) = 0.717 + 0.071 * running sessions

Figure 8. Linear regression analyses between running sessions and EIH magnitudes
EIH-A = EIH value of PPT-arms; EIH-L = EIH value of PPT-legs; EIH-M = EIH value of MPT;

And the linear regression analysis also revealed the significant negative correlation between running sessions and EIH-A (p < 0.001), EIH-L (p < 0.001), and EIH-M (p < 0.001) magnitudes in 4-week high-intensity running intervention. And the regression formulas were presented as:
(Figure 9)

EIH-A (high-intensity running) = 0.515 - 0.013 * running sessions
EIH-L (high-intensity running) = 0.760 - 0.037 * running sessions
EIH-M (high-intensity running) = 0.217 - 0.015 * running sessions

Figure 9. Linear regression analyses between running sessions and EIH magnitudes
EIH-A = EIH value of PPT-arms; EIH-L = EIH value of PPT-legs; EIH-M = EIH value of MPT;

Changes in CPM and TS following running sessions

The independent t-tests revealed significant between-groups differences in both CPM (p < 0.001) and TS responses (p < 0.001) after 4-week treadmill running intervention. The CPM responses of TRL group were significantly increased and higher than the TRH group. On the contrary, the TS score of TRL groups were significantly decreased and lower than the TRH group, which showed no significant changes before and after 4-week running intervention. (Figure 10)
Figure 10. Changes in CPM after 4-week running
All data were presented as mean/standard deviation; CPM=conditioned pain modulation;
HRR=reserved heart rate
*: CPM in TRL group significantly higher than TRH group

Figure 11. Changes in TS after 4-week running
All data were presented as mean/standard deviation; TS=temporal summation; HRR=reserved heart rate
#: TS in TRH group significantly higher than TRL group

Relationship between endogenous pain tests and EIH magnitudes
Considering all data in participants after 4-week running intervention, Pearson correlation analysis showed there were significant positive relationships between CPM values and EIH-A ($r=0.830$, $p<0.001$), EIH-L ($r=0.866$, $p<0.001$) and EIH-M ($r=0.551$, $p<0.001$) magnitudes, respectively. Meanwhile, there were also significant negative relationships between TS values and EIH-A ($r=-0.773$, $p<0.001$), EIH-L ($r=-0.714$, $p<0.001$) and EIH-M ($r=-0.419$, $p=0.008$) magnitudes, respectively. (Figure 12 and 13)

Figure 12: Relationship between CPM and EIH magnitudes
CPM=conditioned pain modulation; EIH-A= EIH value of PPT-arms; EIH-L= EIH value of PPT-legs; EIH-M=EIH value of MPT.

Figure 13: Relationship between TS and EIH magnitudes
TS=temporal summation; EIH-A= EIH value of PPT-arms; EIH-L= EIH value of PPT-legs; EIH-M=EIH value of MPT.

Discussion

This study aimed to investigate the changes in pain perceptions, EIH, and endogenous pain modulation responses following 4-week treadmill running exercises with different intensities in females. Our results revealed several interesting findings. Firstly, both the low- or high-intensity running might only induce short-term analgesia effects, including the improvements of global and local PPT, MPT within 24 hours or less. Secondly, the acute EIH responses following once running session varies from type of pain perceptions and exercise intensities, where the EIH-A and EIH-L following low-intensity running were significantly increased along with the exercise time,
and the EIH-A and EIH-L following high-intensity running were slightly decreased after exercise intervention. Thirdly, the EIH-M following high-intensity running were significantly decreased along with the exercise time, and the EIH-M following low-intensity running remained unaltered. Lastly, the function of endogenous pain inhibition was enhanced, and facilitation was decreased following 4-week low-intensity running exercise, and showed positive and negative correlation with the EIH responses, respectively.

The baseline pain perceptions threshold is known to be relatively constant in healthy individuals[31], which may only be affected by the activated or impaired endogenous pain modulation, rather than long-term exercise training. Recent studies showed that both the 24-week high-intensity interval training[32] or 20-week resistant band exercise[33] had no significant changes on the PPT in healthy individuals. And Tesarz et al[34] investigated the baseline pain perceptions in athletes and normally active individuals, and found that differences between groups in pain threshold were not significant.

However, as the response of the endogenous pain modulation, the EIH following once exercise may be changed after the long-term exercise intervention. A recent review by Song et al[12] suggested that exercise training appears to induce physiological changes and lead to improved EIH. Ohlman et al[5] found a greater EIH response in individuals who perform moderate physical activity per week than sedentary controls. And Hansen et al[35] also found that the PPT and EIH in healthy individuals were significantly increased following 7-week military training. But the evidence from randomized trials with pretest-posttest design was remain limited.

It’s acknowledged that once exercise with sufficient loads can induce a short-term EIH responses, where the exercise with low or moderate intensity may elicit greater analgesia effects compared high-intensity or even exhausted exercise[24, 25]. The running with low- or moderate-intensity may activate non-noxious C fibers[36] via repeated muscle contractions and induce the descending inhibition, upregulate 5-HT receptors in the brainstem[37], then attenuate the pressure or thermal pain perception. And the high-intensity exercises may trigger both noxious[38] and non-noxious C fibers and potentially induce descending facilitation[39] with limited EIH responses. Besides, the upregulation of the cannabinoid and opioids following high-intensity exercise may also decrease the perception to the mechanical stimulus.[40]

Thus, we hypothesized that the long-term exercise may induce a plastic change in the endogenous pain modulation. On the one hand, the low- or moderate intensity exercise may enhance the central descending inhibition function and increase the acute EIH responses with the increment of CPM responses. Lemley et al investigated EIH in healthy individuals, and found that people with greater CPM were more likely to experience greater EIH. And Naugle et al also found that the healthy adults with self-reported more total physical activity exhibited reduced TS of pain and greater CPM.

On the other hand, the high-intensity exercise may induce the adaptation of the endocannabinoids and opioid modulation, decrease the EIH of MPT with unaltered baseline pain perceptions. For example, athletes experiencing high-intensity training showed partially decreased EIH response
than healthy controls. And Siebers et al found a downregulate in endocannabinoids levels following long-term running training. However, the differential changes in PPT, MPT and other pain perception measurements represented various pain modulation pathway.

There were several limits in this study. Firstly, the indicators of the pain tests were limited, for instance, adding the heat pain detection thresholds might give a more complete description of the changes in pain perception. Secondly, the intervention period of running exercise were relatively short, future studies should investigate long-term (over 6 weeks) effects on the pain perception and modulation following various types of exercises. Lastly, all of the participants in this study were female. Considering the potential gender differences in the endogenous pain modulation function and the exercise behaviors, future studies might take into account gender, behavior and physiological factors to provide a comprehensive understanding in the changes of EIH following long-term exercises.

Conclusion

Four-week low-intensity treadmill running may improve acute EIH responses with the enhancement of endogenous pain modulation in healthy females, which may also be referred as the effects of TIH. Meanwhile, CPM and TS may be correlated with EIH and be changed after exercise training, which indicated that the treadmill running may induced TIH though the functional changes of endogenous pain modulation. However, the individuals’ baseline pain thresholds may remain unaltered and not be affected by long-term exercise interventions.

References

29. Kovacevic, M., et al., Test-retest reliability of pressure pain threshold and heat pain threshold

Acknowledgments

We thank Tian-rui Wu, Zheng-quan Shi, Meng-fei Lei, Zhao-xia Zhou, Hua-lian Tang, and all the researchers who provided assistance and advice during our experiments.

Funding
This study is self-funded

Data availability statement
Data available on request from the authors

Disclosure statement
The authors declare no actual or potential conflicts of interest that could influence this study.
Assessed for eligibility (n=46)

Baseline measurements (n=42)
(PPT-Arm, PPT-Leg, MPT, CPM, TS)

Group TRL (n=20)
55% HRR for 30min

Group TRH (n=18)
70% HRR for 30min

Excluded (n=8)
- Not meeting criteria (n=4)
- Failed to finish running or follow-up measures (n=4)

12 Running Sessions with pre- and post-running measurements (PPT-Arm, PPT-Leg, and MPT)

24h after final running session
Outcome measurements (CPM and TS)

Statistical analysis and comparison (n=38)
EIH-L

ΔPPT (kg/cm²)

Running Sessions

- TRL (55%HRR)
- TRH (70%HRR)
EIH-A (high-intensity running)
EIH-A = 0.515 - 0.013 * Running sessions
p < 0.001

EIH-L (high-intensity running)
EIH-L = 0.760 - 0.037 * Running sessions
p < 0.001

EIH-M (high-intensity running)
EIH-M = 0.217 - 0.015 * Running sessions
p < 0.001