Misclassification of a frequent loss of function variant from *PMS2CL* pseudogene as a *PMS2* variant in Brazilian patients

Anthony Vladimir Campos Segura¹, Sara Iolanda Oliveira da Silva¹, Karina Miranda Santiago¹, Rafael Canfield Brianese¹, Dirce Maria Carraro¹,², Giovana Tardin Torrezan¹,²*

1- Clinical and Functional Genomics Group, A.C.Camargo Cancer Center, São Paulo, Brazil
2- National Institute of Science and Technology in Oncogenomics and Therapeutic Innovation, São Paulo, Brazil.

*Corresponding author:
Giovana Tardin Torrezan, Clinical and Functional Genomics Group, International Research Center/CIPE, A.C.Camargo Cancer Center
Mailing address: 440 Taguá St., Sao Paulo, SP, 01508-010 Brazil.
giovana.torrezan@accamargo.org.br
https://orcid.org/0000-0002-8659-5329

Statements and Declarations:
The authors declare no conflict of interests.

Financial support: This work was supported by the São Paulo Research Foundation (FAPESP 2014/50943-1 and 2022/05162-8); the National Council for Scientific and Technological Development (CNPq - 465682/2014-6) and the Coordination for the Improvement of Higher Education Personnel (CAPES - 88887.136405/2017-00).

Authors contribution:

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Abstract

PMS2, a Lynch Syndrome gene, presents challenges in genetic testing due to the existence of multiple pseudogenes. This study aims to describe a series of cases harboring a rare LoF variant in the PMS2CL pseudogene that has been incorrectly assigned to PMS2 with different nomenclatures. We reviewed data from 647 Brazilian patients who underwent multigene genetic testing at a single center to identify those harboring the PMS2 V1:c.2186_2187delTC or V2:c.2182_2184delACTinsG variants, allegedly located at PMS2 exon 13. Gene-specific PCR and transcript sequencing was performed. Among the 647 individuals, 1.8% (12) carried the investigated variants, with variant allele frequencies ranging from 15 to 34%. By visually inspecting the alignments, we confirmed that both V1 and V2 represented the same variant and through gene-specific PCR and PMS2 transcript analysis, we demonstrated that V1/V2 is actually located in the PMS2CL pseudogene. Genomic databases (ExAC and gnomAD) report an incidence of 2.5% - 5.3% of this variant in the African population. Currently, V1 is classified as "uncertain significance" and V2 as "conflicting" in ClinVar, with several laboratories classifying them as “pathogenic”. We identified a frequent African PMS2CL LoF variant in the Brazilian population that is misclassified as a PMS2 variant. It is likely that V1/V2 have been erroneously assigned to PMS2 in several manuscripts and by clinical laboratories, underscoring a disparity-induced matter. Considering the limitations of short-read NGS differentiating between certain regions of PMS2 and PMS2CL, using complementary methodologies is imperative to provide an accurate diagnosis.

Keywords: PMS2, PMS2CL, pseudogene, multigene panels, conflicting variants.
Introduction

The use of Next-Generation Sequencing has significantly improved the accessibility and effectiveness of genetic diagnosis for patients with hereditary cancer predisposition syndromes. However, challenges arise in complex variants, such as errors found in classifying variants within genes that have homologous genomic regions or pseudogenes with sequences very similar to the original gene. These findings highlight the ongoing need for refinement in variant identification and classification methodologies.

PMS2 is a gene involved in DNA mismatch repair. Deficiencies in this gene are associated with Lynch Syndrome (LS), a condition related to increased risks for developing colorectal, endometrial, ovarian and other cancers. Genetic testing for this gene is challenging due to the existence of multiple pseudogenes [1, 2]. Fourteen pseudogenes have been identified and described as ψ1 to ψ14, overlapping with some or all of PMS2 exons 1 to 5 and varying in length. Additionally, there is the PMS2CL pseudogene (formerly known as ψ0) with high homology to the 3’ end of PMS2 in exons 9 and 11 to 15 [3, 4].

Prior research has highlighted the misclassification of the loss-of-function (LoF) variant c.2182_2184delACTinsG within the PMS2CL pseudogene, mistakenly ascribed to exon 13 of the PMS2 gene [5]. In this study, we describe a series of cases harboring this frequent LoF variant in the PMS2CL that has been incorrectly identified as a pathogenic variant in PMS2, with varying nomenclatures throughout the years. We confirmed the variant location in PMS2CL using different molecular techniques in several patients. Additionally, we discuss the importance of performing alternative methods to circumvent the NGS limitations in distinguishing similar regions shared between PMS2 and its pseudogenes and the relevance of increasing sequencing efforts across diverse populations. Finally, we empathize the pivotal role these endeavors play in ensuring precision in genetic diagnoses and mitigating disparities in genetic testing.

Methods

Patient cohort and data collection
We collected retrospective data from 647 patients who performed genetic testing with multigene panels harboring 26 to 126 cancer predisposing genes between 2018 and 2023 at the A.C. Camargo Cancer Center. A retrospective analysis was carried out using Sophia DDM platform to identify patients with PMS2 (NM_000535.5) c.2182_2184delACTinsG (V1) or c.2186_2187delTC (V2) variants. Clinical information (age of onset, tumor histology, familial history of cancer) was collected from hospital electronic records. All patients signed a written informed consent and were included in studies approved by the Institutional Review Board of A.C. Camargo Cancer Center (protocol numbers 2483/18 and 2497/18).

Gene-specific PCR

Germline DNA from saliva or leucocytes from 12 patients with the presence of V1/V2 variant were obtained. A gene-specific PCR (GSP) was performed to examine exon 13 of PMS2 and exon 4 of PMS2CL, like described by Hendricks [6]. Briefly, PCR primers were designed to anneal preferentially in the desired gene by positioning the primer in a variable region between PMS2 and PMS2CL that contains three mismatched bases between gene and pseudogene. Primers sequences used were PMS2_E13GSP_F: GAAGTTTTTGACACTTAGCTGAGTAG and PMS2_E13GSP_R: TTGGCCTCCCAGAGTGTG; PMS2CL_E4GSP_F: TTGTGACACTTAGCTGAATTAGTTTG and PMS2CL_E4GSP_R: TTATGTTAGCGAGGCTGGTCTCAAAC (underscored bases refer to those 3 discriminating bases). PCR products were analyzed by amplicon NGS using the Ion GeneStudio S5 system, followed by sequence analysis using the Integrative Genomics Viewer (IGV).

Transcript analysis

As a complementary and confirmatory analysis, RNA was extracted from peripheral blood of 2 patients. RNA was then converted into cDNA and subjected to a nested PCR to analyze the transcription of PMS2. The first PCR targeted regions from exons 10 to 15, and the second PCR focused on exons 12 to 14. The PCR products were subjected to amplicon sequencing NGS, and the sequences were analyzed using the CLC Genomics workbench software.
Results

The allegedly \textit{PMS2} variant received two different nomenclatures on previous testing: V1: \texttt{c.2186_2187delTC; p.(Leu729Glnfs)} - rs587779335, and V2: \texttt{c.2182_2184delinsG (p.Thr728Alafs)} - rs1554294508. We observed that the nomenclature of the variant changed in 2020, after a software update. Upon visual inspection of the alignments from patients with these variants, we confirmed that both nomenclatures represent the same variant (Figure 1A). The difference between the variants is that for V1, a single nucleotide variant (SNV) \texttt{PMS2:c.2182A>G; p.(Thr78Ala)} is called as a separated variant, while in V2 this variant is considered part of the delins event, as recommended by HGVS nomenclature.

Among the 647 individuals evaluated, 12 (1.8\%) patients carried the V1/V2 variant, exhibiting variant allele frequencies ranging from 15\% to 34\% (Table 1). These patients presented distinct cancer types, such as breast (8), colorectal (2) and gastric (1). Four patients had germline pathogenic variants detected in other cancer predisposing genes. The racial distribution of these patients was diverse, with three patients self-identified as Black (one having molecularly confirmed African ancestry), one as Brown and three as White.

We performed gene-specific PCR of all 12 cases and determined that V1/V2 is not present in the \textit{PMS2} gene. Moreover, sequencing analysis of exon 4 of the \textit{PMS2CL} pseudogene unequivocally demonstrated the presence of this variant (Figure 1B). The corresponding correct nomenclature for this variant in \textit{PMS2CL} is \texttt{n.1122_1124delinsG}. To further confirm that V1/V2 is not present in the \textit{PMS2} gene, we conducted an analysis of \textit{PMS2} transcripts by nested PCR in two patients, and in both cases no read containing V1/V2 variant was detected (Figure 1C).
<table>
<thead>
<tr>
<th>ID</th>
<th>Tumor (age range)</th>
<th>Self-declared race</th>
<th>Genetic testing date</th>
<th>Prior nomenclature</th>
<th>Revised nomenclature</th>
<th>VAF</th>
<th>Additional tests/results</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_01</td>
<td>Breast (25-30)</td>
<td>Black</td>
<td>2018</td>
<td>PMS2: c.2186_2187delTC</td>
<td>PMS2CL: n.1122_1124delinsG</td>
<td>25.4%</td>
<td>Ancestry: AFR 66%<sup>a</sup></td>
</tr>
<tr>
<td>P_02</td>
<td>Breast (40-45)</td>
<td>White</td>
<td>2018</td>
<td>PMS2: c.2186_2187delTC</td>
<td>PMS2CL: n.1122_1124delinsG</td>
<td>15.4%</td>
<td>BRCA1 GPV</td>
</tr>
<tr>
<td>P_03</td>
<td>Breast (40-45)</td>
<td>White</td>
<td>2018</td>
<td>PMS2: c.2186_2187delTC</td>
<td>PMS2CL: n.1122_1124delinsG</td>
<td>17.2%</td>
<td>BRCA1 GPV</td>
</tr>
<tr>
<td>P_04</td>
<td>Breast (35-40)</td>
<td>Black</td>
<td>2018</td>
<td>PMS2: c.2186_2187delTC</td>
<td>PMS2CL: n.1122_1124delinsG</td>
<td>34.2%</td>
<td>-</td>
</tr>
<tr>
<td>P_05</td>
<td>Gastric (45-0)</td>
<td>White</td>
<td>2019</td>
<td>PMS2: c.2186_2187delTC</td>
<td>PMS2CL: n.1122_1124delinsG</td>
<td>19.4%</td>
<td>-</td>
</tr>
<tr>
<td>P_06</td>
<td>CRC (25-30)</td>
<td>NA</td>
<td>2020</td>
<td>PMS2: c.2182_2184delinsG</td>
<td>PMS2CL: n.1122_1124delinsG</td>
<td>20.0%</td>
<td>dMMR (MLH1/PMS2); somatic MLH1 LoF variant</td>
</tr>
<tr>
<td>P_07</td>
<td>Breast (50-55)</td>
<td>NA</td>
<td>2021</td>
<td>PMS2: c.2182_2184delinsG</td>
<td>PMS2CL: n.1122_1124delinsG</td>
<td>14.8%</td>
<td>-</td>
</tr>
<tr>
<td>P_08</td>
<td>Rectum (45-50)</td>
<td>Brown</td>
<td>2022</td>
<td>PMS2: c.2182_2184delinsG</td>
<td>PMS2CL: n.1122_1124delinsG</td>
<td>18.4%</td>
<td>MSH2 GPV</td>
</tr>
<tr>
<td>P_09</td>
<td>Breast (50-55)</td>
<td>NA</td>
<td>2022</td>
<td>PMS2: c.2182_2184delinsG</td>
<td>PMS2CL: n.1122_1124delinsG</td>
<td>18.8%</td>
<td>-</td>
</tr>
<tr>
<td>P_10</td>
<td>Asymptomatic (40-45)</td>
<td>NA</td>
<td>2022</td>
<td>PMS2: c.2182_2184delinsG</td>
<td>PMS2CL: n.1122_1124delinsG</td>
<td>18.8%</td>
<td>-</td>
</tr>
<tr>
<td>P_11</td>
<td>Breast (60-65)</td>
<td>NA</td>
<td>2023</td>
<td>PMS2: c.2182_2184delinsG</td>
<td>PMS2CL: n.1122_1124delinsG</td>
<td>19.0%</td>
<td>MSH2 GPV</td>
</tr>
<tr>
<td>P_12</td>
<td>Breast (60-65)</td>
<td>Black</td>
<td>2023</td>
<td>PMS2: c.2182_2184delinsG</td>
<td>PMS2CL: n.1122_1124delinsG</td>
<td>21.9%</td>
<td>-</td>
</tr>
</tbody>
</table>

Abbreviations: CRC, colorectal cancer; NA, not available; AFR, African; GPV, germline pathogenic variant; dMMR, deficient mismatch repair; LoF, loss of function. ^aPatient with confirmed African ancestry by Axiom Precision Medicine Diversity Array (PMDA).
Figure 1. Analysis of PMS2 V1/V2 variants and reclassification as a PSM2CL variant. A. NGS reads alignment of multigene DNA panel sequencing, showing the PMS2 exon 13 region in IGV. The image depicts the bases involved in V1 and V2 nomenclatures. B. RNA sequencing for the PMS2 transcript and analysis by CLC Genomics software, showing absence of V1/V2. C. Depiction of gene-specific PCR (GSP) performed for PMS2 exon 13 and PMS2CL exon 4. Genomic coordinates (Hg19) correspond to amplicons location. Left alignment shows mapping of PMS2 GSP, demonstrating the absence of V1/V2, and right alignment shows mapping of PMS2CL GSP, demonstrating the presence of PMS2CL: n.1122_1124delinsG.

Discussion

Here, we present data on a frequent PMS2CL African variant found in the Brazilian population, which is incorrectly classified as a PMS2 variant. We detected this variant with two distinct nomenclatures (PMS2:c.2182_2184delACTinsG and c.2186_2187delTC) in 1.8% of genetic tests performed in our center. Through gene-specific PCR and PMS2 transcript analysis, we established that both variants represent the same PMS2CL variant (n.1122_1124delinsG). Moreover, in our center 4 patients have received a genetic test report from external laboratories containing this
variant mistakenly described as a \textit{PMS2} LoF variant, 3 of them describing the variant as VUS and one as pathogenic, highlighting the relevance of our investigation.

Currently, for the \textit{PMS2} gene, V1: c.2186_2187delTC is classified as "Uncertain significance reviewed by expert panel" and V2 as "Conflicting" in ClinVar, with several laboratories classifying both as "pathogenic." The conflicting data for classifying both variants is related to the need of confirming the variant as a \textit{PMS2} variant. The annotation by the International Society for Gastrointestinal Hereditary Tumours (InSiGHT) expert group in Clinvar regarding this variant is “This variant is likely to come from pseudogene”. When no confirmation is performed, most likely this variant should be assigned to the \textit{PMS2CL} pseudogene, making it not disease-causing [7].

The V1:c.2186_2187delTC has been reported in the literature in more than 12 articles, published between 1995 and 2019. Few articles described the variant in compound heterozygosity with another \textit{PMS2} variant in patients affected with Turcot Syndrome [8] or Constitutional Mismatch Repair Deficiencies (CMMRD) [9], indicating a true occurrence of the variant in \textit{PMS2}. However, V1 has also been reported in individuals with other cancer types, including colorectal [1, 10], breast [11, 12] and prostate [13], and pseudogene interference was not ruled out in most of these studies. A recent pediatric study reported the finding of V1 in 2 patients with pilocytic astrocytoma, but after applying long-range PCR, they determined that the variant belonged to the pseudogene [14].

The V2: c.2182_2184delinsG is much less cited in the literature, with only 2 articles referring to the variant [1, 5]. The more recent report of this variant most likely reflects updates in variant calling algorithms that incorporated the \textit{PMS2}:c.2182A>G SNV as part of the indel variant, as recommended by HGVS rules. While Guindalini [1] did not describe any sequential technique confirming the variant to \textit{PMS2}, Chong et al showed that indeed the variant was located at \textit{PMS2CL} in all 5 tested patients. In Clinvar, the variant is described as “Conflicting”, with 4 clinical laboratories classifying the variant as Pathogenic/Likely pathogenic and one as VUS. Based on the evidence outlined above, we believe that both V1 and V2 have been incorrectly assigned to \textit{PMS2} and mistakenly classified as pathogenic in several articles and that these variants should be classified as pathogenic only when unequivocal confirmed to be within the \textit{PMS2} gene.
Global genomic databases (ExAC and gnomAD) report an incidence of these variants ranging from 2.5% to 5.3% in the African population, while in ABraOM (a Brazilian genomic database) [15] V1 appears at a frequency of 1.3%. Brazil has a significant percentage of Afro-descendant population with an average African genetic ancestry of 12.7% [5, 16]. In our study, 57% (4/7) of the patients tested with the presence of the PMS2CL variant declared themselves as Black or Brown, and one had a 66% African genetic ancestry molecularly confirmed.

Genomics disparities represent a current challenge in clinical genetics [17]. It is well-documented that minorities and underrepresented populations often have more VUS detected in clinical genetic testing. Our report emphasizes this issue by highlighting a common African variant frequently misclassified as a VUS or as pathogenic. Our results also underscore the importance of addressing these misclassification errors caused by NGS's inability to differentiate short regions that are very similar between PMS2 and its pseudogenes. The misclassification of variants in the PMS2 gene can lead to significant consequences in clinical genetics, with clinicians misinterpreting the genetic risk and potentially providing inappropriate management or surveillance recommendations. Moreover, the racial disparity in genomic analysis further exacerbates the challenges faced by minority populations in receiving accurate and timely genetic testing results, stressing the need for increasing the available genomic data from diverse populations.
References

