Geographical and Gender Diversity in Cochrane and non-Cochrane Reviews Authorship: A Meta-Research Study

Ahmad Sofi-Mahmudi*, ORCiD: 0000-0001-6829-0823
Elpida Vounzoulaki3, ORCiD: 0000-0003-3137-8295
Jana Stojanova4,5, ORCiD: 0000-0003-4812-5745
Eve Tomlinson6, ORCiD: 0000-0002-0969-602X
Ana Beatriz-Pizarro7, ORCiD: 0000-0003-4089-454X
Sahar Khademioore2, ORCiD: 0000-0002-3025-0006
Etienne Ngeh8, ORCiD: 0000-0002-6555-4085
Amin Sharifan9,10, ORCiD: 0000-0003-0571-5964
Lucy Elauteri Mrema11, ORCiD: 0000-0003-4465-5618
Alexis Ceecee Britten-Jones12-14, ORCiD: 0000-0002-1101-2870
Santiago Castiello-de Obeso15, ORCiD: 0000-0002-3672-1366
Vivian A. Welch16,17, ORCiD: 0000-0002-5238-7097
Lawrence Mbuagbaw1,2,18-20, ORCiD: 0000-0001-5855-5461
Peter Tugwell16,17,21, ORCiD: 0000-0001-5062-0556

1 National Pain Centre, Department of Anesthesia, McMaster University, Hamilton, ON, Canada.
2 Department of Health Research Methods, Evidence and Impact, McMaster University, Hamilton, ON, Canada.
3 Leicester Real World Evidence Unit, Diabetes Research Centre, University of Leicester, UK.
4 Department of Clinical Pharmacology and Toxicology, St. Vincent's Hospital, Sydney, NSW, 2010, Australia.
5 School of Medicine, Universidad de Valparaiso, Chile.
6 Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK.
7 Clinical Research Center, Fundación Valle del Lili, Cali, Colombia.
8 Department of Allied Health Professions, Sheffield Hallam University, L108, 36 College Crescent, Sheffield S10 2BP, UK.
9 Department of Pharmaceutical Care, Sina Hospital, Tehran University of Medical Sciences, Iran.
10 Research Center for Rational Use of Drugs, Tehran University of Medical Sciences, Iran.
11 National Institute for Medical Research - Mbeya Medical Research Centre, Mbeya, Tanzania.

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
12 Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, Australia.
13 Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, Australia.
14 Department of Optometry and Vision Sciences, University of Melbourne, Melbourne, Australia
15 Yale University, New Haven, CT 06520, USA.
16 Bruyere Research Institute, University of Ottawa, Ottawa, ON, Canada.
17 School of Epidemiology, University of Ottawa, Ottawa, ON, Canada.
18 Biostatistics Unit, Father Sean O’Sullivan Research Centre, Hamilton, ON, Canada.
19 Centre for Development of Best Practices in Health, Yaoundé Central Hospital, Yaoundé, Cameroon.
20 Department of Global Health, Stellenbosch University, Cape Town, South Africa.
21 Department of Medicine, University of Ottawa, Ottawa, ON, Canada.

Corresponding author: Ahmad Sofi-Mahmudi; **Address:** MDCL 2109, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada; **Telephone:** +1 (905) 525-9140 ext. 22743; **Email:** sofima@mcmaster.ca, a.sofimahmudi@gmail.com.

Conflict of interest disclosure: AS-M, EV, AB-P, EN, AS, LEM, and SC-dO are members of the steering group of the Early Career Professionals Network in Cochrane. ET, VAW, LM, and PT are members of the Health Equity Thematic Group in Cochrane. VAW declares funding from CIHR-PHAC Applied Public Health Chair.

Funding disclosure: This study did not receive any funding.
Abstract

Background: Cochrane is a recognized source of quality evidence that informs health-related decisions. As an organization, it represents a global network of diverse stakeholders. Cochrane’s key organizational values include diversity and inclusion, to enable wide participation and promote access. However, the diversity of Cochrane review authorship has not been well summarized.

Objective: The aim of this study was to examine the distribution of country, region, language, and gender diversity in the authorship of Cochrane reviews.

Methods: We retrieved all published articles from the Cochrane Library (until November 6, 2023)—a web crawling technique that extracted pre-specified data fields, including publication date, review type, and author affiliations. We used E-utility calls to capture the data for non-Cochrane systematic reviews. We determined the country and region of affiliations and the gender of the first, corresponding, and last authors for Cochrane reviews, as well as the country and region of affiliations and the gender of the first authors for non-Cochrane reviews. Trends in geographical and gender diversity over time were evaluated using logistic regression. Fisher’s exact test was used for comparisons. The diversity of first authors between Cochrane and non-Cochrane reviews was explored through visual presentation, Pearson’s product-moment correlation, and the Granger Causality Test. We used R for data collection and analysis.

Results: A total of 22681 citations were retrieved. The United Kingdom had the highest first-author representation (33.2%), followed by Australia (11.6%) and the United States (7.0%). We observed an increase in the proportion of first authors from non-English speaking countries, from 16.7% in 1996 to 42.8% in 2023. Female first authorship increased steadily, from 15.0% in 1996 to 55.6% in 2023. The proportion of first authors from lower-and-middle-income countries (LMICs) was highest in 2012 at 23.2%. Since then, it has decreased to 18.4% in 2023. Similarly, the proportion of last authors from LMICs decreased over time (25.0% in 1996 vs. 16.2% in 2023). Among review groups, Sexually Transmitted Infections and Consumers and Communication were the most and least diverse groups with 68.1% and 1.6% of first authors from LMICs, respectively. In terms of gender diversity, Fertility Regulation had the highest percentage of female first authors (72.1%). Urology (28.1%) had the lowest percentage of female first authors. In 2023, over half of the non-Cochrane reviews had first authors from non-English-
speaking countries (n=14,589, 56.9%), 50.8% (n=13,014) had first authors from LMICs, and 42.3% (n=10,841) had female first authors. The Pearson’s product-moment correlations between Cochrane and non-Cochrane reviews’ trends were 0.265 (P=0.450) for LMICs, 0.823 (P<0.001) for non-English speaking, 0.634 (P<0.001) Spanish-speaking, and 0.829 (P<0.001) for female first authorship.

Conclusion: Overall, this study found positive trends, with an increase in first authorship by individuals who were female and from non-English speaking countries. However, the representation of first authors from non-high-income countries decreased. Future research could further explore these trends, identifying potential barriers influencing access and participation of individuals and groups and assessing strategies that help promote diversity and inclusion.

Keywords: Review; Diversity; Equity; Inclusion; Publications; Authorship; Cochrane
Introduction

Global health challenges transcend geographical boundaries. For over 30 years, Cochrane has brought together diverse researchers and stakeholders within a large global network, with the aim of producing high-quality systematic reviews that address important challenges in healthcare (1). These comprehensive reviews are pivotal in guiding clinical practice, policy development, and research agendas (2). A further organizational aim is the translation of research findings, and Cochrane supports global reach in research translation through a network of Geographic Groups, currently representing 54 countries (3).

With origins in the United Kingdom, and early membership predominantly representing anglophone countries, Cochrane has grown substantially as an organization with wide global reach. Of the 137 Cochrane Geographic Groups, 114 are from countries where English is not the primary spoken language (3). Cochrane’s vision is “a world of better health for all people where decisions about health and care are informed by high quality evidence” with the aim to make evidence accessible to all (1). Collaboration is one of the core values in the organizational strategy (4) and the organization has multiple avenues for participation and inclusion, including membership (predominantly reflecting status as a recent author) and supporter (which may involve active participation through initiatives such as crowd-sourced screening, among many other initiatives) (5). Membership in leadership structures, such as the Governing Board and Council, is attained through member vote, and these entities are structured to support wide representation. Despite this, collated feedback from over 1300 people over the world in a “diversity and inclusion listening and learning exercise,” reported by Cochrane in 2022, highlighted that Cochrane is not as diverse and inclusive as it could be, and has work to do to address systemic institutional biases in its systems, processes, and attitudes (6).

Cochrane’s key output is the systematic review. Agendas regarding strategic topics for reviews are set by Cochrane Review Groups (CRGs), a majority of which are based in high-income, anglophone countries (6). While some CRGs undertake priority-setting processes involving stakeholders to determine research priorities (7), in line with the 2019 Cochrane Priority Setting Guidance (7), it is unclear how common this is, and Cochrane leadership has recognized that this
process often does not have a global focus (8). Furthermore, research has found that Cochrane Reviews tend to be authored primarily by individuals from high-income countries, with limited representation from low- and middle-income countries (9–12). There is also a gender imbalance, with women underrepresented among Cochrane Review authors (13,14). This is an issue, as broad representation of authors from different countries, regions, languages, and genders brings a wider range of experiences, knowledge, and perspectives to the review process, enriching the synthesis and interpretation of evidence (15). This diversity is likely to help to ensure that Cochrane Reviews consider issues of health equity and in turn that the findings apply to a wide range of populations and healthcare settings, or that they specifically address the unique needs and circumstances of disadvantaged groups (16).

Publications on this topic today have focused on narrow topics such as hematology (9), eyes and vision (10), gastroenterology (11), cardiology (13), and general surgery (14), or a specific geographical location (e.g., sub-Saharan Africa (17)). Thus, this meta-research study aims to assess the distribution of country, region, language, and gender diversity in Cochrane and non-Cochrane reviews’ authorship. We compared income status (high vs lower-and-middle-income countries (LMICs)), English-speaking countries (vs others), and the gender of the first, last, and corresponding authors. Given that approximately a third of Cochrane Geographic groups are based in Spanish-speaking countries, and have a dedicated conglomerate, Cochrane Iberoamerica, we also evaluated representation from these countries. Further, we investigated diversity in the first authors of non-Cochrane reviews and compared results with those from Cochrane reviews. A fully automated and reproducible approach was applied to systematically extract and analyze author information from both sets of reviews (Cochrane and non-Cochrane).

Methods

The study protocol was published on the Open Science Framework (OSF) website (https://osf.io/bxj2e). Deviations from the protocol are detailed in Appendix 1. All datasets and codes of workflows used in this study are publically available (OSF: https://osf.io/fv5ys, GitHub:
https://github.com/choxos/cochraneauthors). To ensure transparency and facilitate the reproducibility of our analyses, a PDF document containing the codes and corresponding outputs is provided in Appendix 2.

Data sources and retrieval

All reviews published by Cochrane on the Cochrane Library website (cochranelibrary.com) were retrieved (up to November 6, 2023).

Since the Cochrane Library provides only the latest version of reviews in their search interface, links to all review versions were automatically created using standard patterns for the digital object identifier (DOI). A typical DOI has the format: "10.1002/14651858.CD" + Review ID + ".pubN".

The first version is usually the protocol, and does not include ".pubN". The N represents subsequent protocol versions, e.g. ".pub2" for version 2. All the possible DOIs were created automatically and used for the final extract of Review titles.

We applied a web crawling technique to extract pre-specified data fields for each review from their dedicated information page on the Cochrane Library website (including date, review type, review stage, review group, author position, and author affiliation for all authors). The URL of the review information page was structured as follows:

"https://www.cochranelibrary.com/cdsr/doi/" + DOI + "/information"

Authorship position/role was determined (first, last, corresponding). Affiliations were categorized according to country and World Bank economic status. We then categorized the country of the first, corresponding, and last authors in three different ways: (A) high-income vs. LMICs, (B) high-income English-speaking vs. non-English-speaking, and (C) Spanish-speaking vs. non-Spanish-speaking. The list of the countries in each of these categories is available in Appendix 3.

The authors’ gender was attributed using the World Gender Name Dictionary 2.0 (18). This database includes approximately 3.5 million names from different languages across the world, and the probability that a name is considered male or female is higher. For this study, we
considered the higher probability as the definitive gender and assigned a dichotomous gender variable for all authors.

Review updates can have the same author composition as the previous version, although there are deviations (for example, see (19–23) and their previous versions). Also, in this study, the unit of analysis is a published paper and not a project. Therefore, we included all the updates of a review in our analyses.

All non-Cochrane systematic reviews were retrieved from PubMed using the following search query: "Systematic Review"[PT]) NOT "The Cochrane database of systematic reviews"[Journal], using E-utility calls (24) from 1996 to 2023 (to be comparable with Cochrane reviews). We extracted the PMID, publication date, name, and affiliation of the first author for each review and applied the approach detailed above to ascertain the gender, country, and region.

Analysis

We used R (25) for data extraction, data processing, analysis, and reporting. Searching and data gathering for non-Cochrane review was done using a bash script available in Appendix 2. Web scraping was done using the rvest package (26). Trends over time were reported using descriptive tabulations and graphical illustrations using the ggplot2 package (27). We used logistic regression to explore whether geographical and gender diversity has changed over the years. We also used a random intercept generalized linear model to investigate the trend of geographical and gender diversity among different review groups. To compare the geographical and gender differences between the first, corresponding, and last author between review groups, we performed Fisher’s exact test with 2000 replicates.

To compare the trend of first authorship diversity between Cochrane and non-Cochrane reviews, alongside visual presentation and Pearson's product-moment correlation, we also used the Granger Causality Test (28,29). This test assesses whether past values of one time series can predict future values of another. The null hypothesis is that one time series does not cause the other.
Results

Overall perspective

We extracted 22,681 articles, of which 9,153 (40.4%) were the most recent review version and 7,157 (31.6%) were protocols. The annual number of published articles (from 1995 to November 2023) is presented in Appendix 2 (mean=782.1, standard deviation=446.02). Publications peaked in 2012 (n=1,508) and the most recent total was 376 (in 2023). Most articles represented interventional reviews (n=21,965, 96.8%). Diagnostic reviews (n=358, 1.6%) and overviews (n=140, 0.6%) had minor representation.

The Cochrane Review Groups with the highest number of published reviews were Pregnancy and Childbirth (now closed) (n=1,634, 7.2%), Neonatal (n=1,118, 4.9%), and Airways (n=873, 3.8%). Lower representation was apparent for Sexually Transmitted Infections (n=47, 0.2%), Methodology (n=104, 0.5%), and Work (n=108, 0.5%) Groups. Twenty-three reviews were collaborations between two review groups. The yearly trend of the number of reviews by each group is available in Appendix 4.

Geographical diversity

Similar trends were observed across different author types (Table 1). First authors were from a greater number of countries compared to the last authors (102 vs. 93). Across author types, 107 countries were represented. Regardless of the author type, most authors were from high-income and English-speaking countries (approximately 80% and 60%, respectively). Most authors were from the United Kingdom, Australia, and the United States (approximately one-third, 10%, and 7% respectively). A World heat map of the countries based on the number of authors is presented in Figure 1. The detailed information about the countries is available in Appendix 5.

Table 1. Summary of the number of Cochrane authors by each diversity index (from 22,681 reviews).
<table>
<thead>
<tr>
<th></th>
<th>First authors</th>
<th>Corresponding authors</th>
<th>Last authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of countries</td>
<td>102</td>
<td>98</td>
<td>94</td>
</tr>
<tr>
<td>Number of affiliations where a country could not be identified</td>
<td>318 (1.4%)</td>
<td>112 (0.5%)</td>
<td>442 (1.9%)</td>
</tr>
<tr>
<td>Number of countries represented by a sole review</td>
<td>12 (11.8%)</td>
<td>12 (12.2%)</td>
<td>8 (8.5%)</td>
</tr>
</tbody>
</table>

Most represented countries

<table>
<thead>
<tr>
<th>Country</th>
<th>First authors</th>
<th>Corresponding authors</th>
<th>Last authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>United Kingdom</td>
<td>7,426 (33.2%)</td>
<td>7,412 (33.2%)</td>
<td>7,720 (34.7%)</td>
</tr>
<tr>
<td>Australia</td>
<td>2,595 (11.6%)</td>
<td>2,619 (11.7%)</td>
<td>2,640 (11.9%)</td>
</tr>
<tr>
<td>United States</td>
<td>1,559 (7.0%)</td>
<td>1,537 (6.9%)</td>
<td>1,626 (7.3%)</td>
</tr>
</tbody>
</table>

Income status

<table>
<thead>
<tr>
<th>Status</th>
<th>First authors</th>
<th>Corresponding authors</th>
<th>Last authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>High-income</td>
<td>18,195 (81.9%)</td>
<td>18,234 (80.4%)</td>
<td>18,682 (82.4%)</td>
</tr>
<tr>
<td>Lower-and-middle-income</td>
<td>4,016 (18.1%)</td>
<td>4,446 (19.06%)</td>
<td>3,998 (17.6%)</td>
</tr>
</tbody>
</table>

English speaking country

<table>
<thead>
<tr>
<th>Speaking status</th>
<th>First authors</th>
<th>Corresponding authors</th>
<th>Last authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>13,866 (62.0%)</td>
<td>13,871 (62.1%)</td>
<td>14,252 (64.1%)</td>
</tr>
<tr>
<td>No</td>
<td>8,497 (38.0%)</td>
<td>8,469 (37.9%)</td>
<td>7,987 (35.9%)</td>
</tr>
</tbody>
</table>

Spanish speaking country

<table>
<thead>
<tr>
<th>Speaking status</th>
<th>First authors</th>
<th>Corresponding authors</th>
<th>Last authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>753 (3.4%)</td>
<td>743 (3.3%)</td>
<td>651 (2.9%)</td>
</tr>
<tr>
<td>No</td>
<td>21,610 (96.6%)</td>
<td>21,597 (96.7%)</td>
<td>21,588 (97.1)</td>
</tr>
</tbody>
</table>

Gender (by first name)

<table>
<thead>
<tr>
<th>Gender</th>
<th>First authors</th>
<th>Corresponding authors</th>
<th>Last authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Female</td>
<td>10,545 (50.8%)</td>
<td>9,947 (48.1%)</td>
<td>7,804 (37.3%)</td>
</tr>
<tr>
<td>Male</td>
<td>10,207 (49.2%)</td>
<td>10,720 (51.9%)</td>
<td>13,106 (62.7%)</td>
</tr>
</tbody>
</table>

Please note that the total number for each diversity index is different due to different number of missing values.
Figure 1. World heat map of the countries based on the number of (A) first, (B) corresponding, and (C) last authors (in log10 scale).
Author representation by income status (high/LMIC) and language (English/non-English speaking and Spanish/non-Spanish speaking) over time and by author type are presented in Figure 2. In a given year, LMIC representation was at most 26.7% (first authors in 1996), and non-English country representation was at most 43.8% (corresponding authors in 2020). The first authors exhibited a greater representation of LMIC and non-English countries than the last authors. Following initial growth, the rate plateaued from about 2009 for non-English representation, and exhibited a decrease after 2012 for LMIC status. The results of the logistic regression modelling showed that the effect of year on the proportion of articles in each diversity index varied between 0.997 and 1.029 with P-values <0.001 except for Spanish-speaking and the last author from LMICs models (Appendix 6).
Figure 2. Region diversity in Cochrane Reviews authorship. (A) non-high-income OECD vs. high-income OECD. (B) non-English-speaking vs. English-speaking. (C) non-Spanish-speaking vs. Spanish-speaking. Please note that the y-axis for C is magnified to 0%-25%.
Gender diversity

Over time, female first authorship increased from about a quarter in 1997 (27.7%) to more than half in 2023 (50.8%). Percentages of female corresponding and last authors likewise increased; however, growth was less pronounced for the last authors (39.4% in 2023; Figure 3). Logistic regression modelling showed that the coefficient for the year ranged between 1.015 and 1.030 with \(P \)-values <0.001 (Appendix 6).

Figure 3. Gender diversity in Cochrane Reviews authorship.

Diversity among Review Groups

Among the 53 CRGs, Childhood Cancer (n=118, now closed) had the highest proportion of authors from non-English-speaking countries (all three categories=87%). Sexually Transmitted
Infections had the highest proportion of authors from LMICs (first=68.1%, corresponding=66.0%, and last authors=57.4%). This was the only CRG with representation above 50% of LMICs for all three author categories. HIV/AIDS and Infectious Diseases were the next most diverse groups, with 50.6% and 41.1% of first authors from LMICs. Lower geographical diversity was observed in the Consumers and Communication group, with 1.6% and 13.3% of their first authors from LMICs and non-English countries, respectively. Seven CRGs had less than 10% of first authors from LMICs, and seven CRGs had 10-20% of first authors from non-English countries (Table 2).

Table 2. Number of CRGs with indicated proportions of first, corresponding, and last authors.

<table>
<thead>
<tr>
<th>Proportion of authors</th>
<th>First authors</th>
<th>Corresponding authors</th>
<th>Last authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>LMICs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[0–10%)</td>
<td>7</td>
<td>6</td>
<td>9</td>
</tr>
<tr>
<td>[10–25%)</td>
<td>33</td>
<td>33</td>
<td>35</td>
</tr>
<tr>
<td>[25–50%)</td>
<td>11</td>
<td>13</td>
<td>8</td>
</tr>
<tr>
<td>[50–100%]</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Non-English-speaking countries</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[0–10%)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>[10–25%)</td>
<td>7</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>[25–50%)</td>
<td>30</td>
<td>30</td>
<td>33</td>
</tr>
<tr>
<td>[50–100%]</td>
<td>16</td>
<td>16</td>
<td>13</td>
</tr>
<tr>
<td>Female (by first name)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[0–10%)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>[10–25%)</td>
<td>0</td>
<td>0</td>
<td>8</td>
</tr>
<tr>
<td>[25–50%)</td>
<td>20</td>
<td>26</td>
<td>38</td>
</tr>
<tr>
<td>[50–100%]</td>
<td>33</td>
<td>27</td>
<td>7</td>
</tr>
</tbody>
</table>
In terms of gender diversity, Fertility Regulation had the highest percentage of female first authors (72.1%), followed by Consumers and Communication (69.1%), and Skin (66.6%). Lower representation of female first authors was observed in Urology (28.1%), Hepato-Biliary (31.1%), and Colorectal (34.6%). Appendix 7 shows bar plots of geographical and gender diversity for each CRG and Appendix 8 presents percentages.

The results of Fisher’s exact test showed a \(P \)-value<0.001 for all the comparisons between review groups in terms of geographical and gender diversity. The random intercept generalized linear mixed-effects logistic models showed higher random effects variance for the effect of CRGs for Spanish-speaking models (about 1) and lower for female models (less than 0.2). Full details are available in Appendix 9.

Comparison with non-Cochrane reviews

We retrieved 224,484 non-Cochrane systematic reviews, representing the period 1987 to 2024. Lack of information in first author affiliations precluded assigning country and language status for 41,266 (18.4%), and income region for 43,315 (19.3%) of reviews. Gender could not be assigned for 39,619 (17.6%) first authors.

In 1996, of 60 non-Cochrane reviews, none included first authors that were female, from LMICs, or from Spanish-speaking countries. However, 11 (18.3%) reviews had first authors from non-English-speaking countries. In 2023, of 25,629 reviews, over half had first authors from non-English-speaking countries (n=14,589, 56.9%), 50.8% (n=13,014) had first authors from LMICs and 42.3% (n=10,841) had female first authors (Figure 4).
Figure 4. Geographical and gender diversity in the first authorship of non-Cochrane reviews

The results of the Granger Causality Test showed P-values of 0.062, 0.701, 0.483, and 0.499 when comparing LMIC, non-English speaking, Spanish-speaking, and female first authorship trends between Cochrane and non-Cochrane reviews. This means the non-Cochrane and Cochrane trends may not be predictive of each other. The Pearson’s product-moment correlations were 0.265 ($P=0.450$), 0.823 ($P<0.001$), 0.634 ($P<0.001$), and 0.829 ($P<0.001$), respectively.
Discussion

This work represents a comprehensive evaluation of geographic and gender diversity among Cochrane reviews since the first Cochrane review was published in 1995. We showed that the first author representation from LMICs peaked at 26.7% in 1996 and at 43.8% in 2020 for non-English speaking countries. Both categories exhibited growing rates through to approximately 2010, followed by plateau periods. From 2015, representation from LMICs exhibited a decline, decreasing to 16.2% in 2023. Overall, authors were predominantly from high-income and English-speaking countries, approximately 80% and 60%, respectively, and of English-speaking countries, predominantly from the UK (approximately one-third of all authors). Despite a very active community of researchers from Spanish-speaking countries in Cochrane, evidenced by a sizable proportion of Geographic Groups and a dedicated conglomerate (Cochrane Iberoamerica), author representation from Spanish-speaking countries was low.

These results echo findings from previous work in specific medical fields, showing poor representation of Cochrane review authors from LMICs in the fields of hematology (9), gastroenterology (11), and cardiology (13). Additionally, in 2022 Cochrane reported that only 12% of the 111,000 members were based in an LMIC (6). Low representation of authors from LMICs may be, in part, due to the limited investment in research funding, academic institutions, and infrastructure in these countries, and in contrast, the large concentration of research resources and infrastructure in high-income countries (30). These findings may also reflect a lack of processes in Cochrane to ensure that individuals from LMICs are supported with Cochrane review production. For example, while there are initiatives such as free access for LMIC authors to a suite of state-of-the-art online training modules, perhaps more work is warranted to promote them and engage LMIC members.

Despite the low prevalence of LMIC-led Cochrane reviews, Cochrane reviews came from 107 countries across author types, including at least 59 LMIC countries (55.1%), suggesting significant diversity and demonstrating that academic research is a global endeavour involving contributions from scholars all across the world.
Regarding gender diversity, since 1996 there has been a steady increase in female authorship in Cochrane reviews across the three author categories (first, corresponding, and last). Female first authors increased from 15.0% in 1996 to 55.6% in 2023. This is in line with research by Bhat (13) who found that the representation of females as first authors of Cochrane cardiology reviews had increased over time. There are a number of reasons that may contribute to the observed changes in gender representation. It is plausible that initiatives aimed at fostering gender equality in academia and research, coupled with increasing awareness of diversity issues, have played a role in encouraging and supporting female researchers to assume more prominent roles within Cochrane. Additionally, broader societal shifts toward recognizing and addressing gender disparities in various professional fields may have indirectly influenced the trends witnessed in this study.

There was a notably lower rate of growth for female last authors, which in 2023 represented about a third of last authors, compared to approximately half of first authors. This is concerning given that the last authors typically represent senior positions on the review team. These findings may suggest that additional factors or barriers may be influencing the advancement of women into higher-ranking authorship roles within Cochrane.

Our findings also suggested varying diversity between Cochrane Review Groups. For instance, the Sexually Transmitted Infections group had the most diversity of authors, even though it was among the review groups with the least published Cochrane systematic reviews. In contrast, the Airways and Neonatal groups, both of which had high numbers of published Cochrane reviews, had less diversity in their authorship, suggesting inadequate representation of authors from non-English speaking or LMICs. In the future, it would be interesting to explore how Cochrane Review Groups achieve diversity in authorship and encourage shared learning between groups, particularly within the changing landscape of Cochrane review production. The number of Cochrane Review Groups has reduced since 2023 when the National Institute for Health and Care Research ceased funding for the Cochrane Review Groups that were based in the United Kingdom (31). At the same time, seven “Cochrane Thematic Groups” were created, each focusing on an aspect of healthcare (32). Cochrane also introduced “Evidence Synthesis Units” which focus on developing locally and regionally relevant evidence and responding to diverse
stakeholder needs (33). It is important that the remaining Cochrane Review Groups, and the new thematic groups, prioritize diversity and inclusion in review production.

Analyzing PubMed-indexed non-Cochrane reviews showed lower gender diversity compared to Cochrane Reviews (42.3% vs. 55.6% in 2023). However, non-Cochrane reviews were more diverse in terms of having a higher proportion of first authors from non-English-speaking (56.9% vs. 42.8% in 2023) and LMICs (50.8% vs. 18.4% in 2023). This suggests that the focus on international collaboration and standardized methodologies in Cochrane Reviews might unintentionally favour authors from high-income, English-speaking regions. The long time it takes to publish reviews can also be another barrier. New mechanisms to engage qualified researchers from a more diverse range of geographical locations might be needed.

Implications

The findings of this study have potential implications for Cochrane review production. It is clear that Cochrane needs to do more to improve the inclusion of individuals from LMICs. Supporting individuals from LMICs as authors of Cochrane reviews will encourage varying perspectives, interests, and priorities. This is likely to lead to a wider coverage of health topics, a stronger focus on health equity, and attention to conditions with a high global burden of disease. In turn, this will help to ensure that harder-to-reach groups within the population benefit from Cochrane evidence and that intervention-generated inequalities are avoided (34). Also, it is shown that higher authorship of underrepresented groups in Cochrane reviews is associated with greater considerations of equity-related analyses in the reviews (e.g., females (35)). The Cochrane Health Equity Thematic Group is well positioned to help in this effort, as the Group aims to promote health equity within Cochrane, by supporting CRGs and author teams to consider health equity in their work, and by developing and evaluating methods to analyze health equity in systematic reviews and the evidence base (36). Working together with other organizations globally will also be crucial to improving the inclusion of people from LMICs. An example of such collaboration is the Global Evidence Synthesis Initiative (37).

The finding that there is a gender disparity in leadership roles in Cochrane reviews suggests that Cochrane would benefit from exploring ways to support female authors into senior author roles. Future research should explore potential challenges or biases that may hinder the progression of
female researchers. Identifying and addressing these barriers, which could encompass institutional practices, and biases in funding and mentorship opportunities (38), is crucial for achieving a more equitable distribution of authorship responsibilities. In 2022, the U.S. National Institutes of Health developed new initiatives to promote gender equity. For example, they offer additional financial support to assist researchers in maintaining their work during childbirth, adoption, and primary caregiving duties. Additionally, they are acknowledging institutions that effectively tackle gender diversity and equity concerns, thereby promoting the adoption of proven, replicable strategies for enhancing faculty diversity (39).

Regarding geographical diversity, further research investigating citation metrics, collaboration patterns, and the significance of the research may provide a more comprehensive understanding of the impact of Cochrane reviews, and of the make-up of the entirety of author teams.

Strengths and limitations

Strengths of this study include that it followed a pre-registered protocol and used a fully reproducible methodology to systematically extract and analyze data from Cochrane reviews. Data was extracted from Cochrane reviews using an automated technique, allowing for the collection of a large amount of data. Additionally, the study was conducted by a diverse and international team of researchers with varying backgrounds in healthcare.

Limitations include that we were unable to identify the country for 318 affiliations due to insufficient information on the website. This could be an area for improvement in data collection or reporting standards. Additionally, as the variable gender was inputted with the use of the World Gender Name Dictionary (WGND) 2, there is room for error in classification. Even though this dictionary includes an extensive list of names from many languages, our variable gender is a probabilistic proxy. However, we believe that even if we had the gender ground truth, our results would not change significantly given two reasons: (1) diversity increases in other variables, thus is likely to have an increase also in gender; and (2) the WGND 2 usability, thus is the closest that we have to ground truth and it has been used in research elsewhere, providing a powerful tool with no systematic biases. Additionally, this tool has been used in other studies (40–45). The use of an automated process to collect data also has potential limitations. For example, data cleaning is a complex procedure and prone to errors if not tested adequately.
However, this was a pragmatic approach and allowed for the collection of a large amount of data that would have otherwise been impossible with the available resources.

Conclusions

Our analysis of Cochrane Reviews revealed progress in gender diversity, with a significant increase in female first authors. However, geographic diversity remains limited, with an overrepresentation of authors from high-income, English-speaking countries. Notably, diversity varied across Review Groups, with Sexually Transmitted Infections exhibiting the highest representation from non-English speaking and low/middle-income countries. While non-Cochrane reviews showed a similar trend of increasing diversity, no causal relationship between Cochrane and non-Cochrane review trends was observed. These findings suggest that while progress has been made in gender representation, further efforts are needed to enhance geographic diversity within Cochrane Reviews. Strategies such as fostering international collaborations and exploring alternative authorship models could be implemented to achieve this goal.

References

