The impact of wildtype SARS-CoV-2 on fatigue and quality of life: prevalence of post COVID-19 condition in a Dutch population-based serosurveillance cohort.

Elizabeth N. Mutubuki1,2*, Cheyenne C.E. van Hagen1*, Eric R.A. Vos1, Gerco den Hartog2,3, Fiona R.M. van der Klis1, Cees C. van den Wijngaard1, Hester E. de Melker1, Albert Jan van Hoek1

1National Institute for Public Health and the Environment (RIVM), Center for Infectious Disease Control, Bilthoven, the Netherlands
2National Institute for Public Health and the Environment (RIVM), Center for Health and Society, Bilthoven, the Netherlands
3Laboratory of Medical Immunology, Radboud UMC, Nijmegen, The Netherlands

* These authors contributed equally to this work.

Corresponding author: Cheyenne C.E. van Hagen (cheyenne.van.hagen@rivm.nl)

Manuscript word count: 3448
Abstract word count: 250

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Abstract

Background: Our aim was to assess the relationship between (time since) wild-type SARS-CoV-2 infection and health-related quality of life (HRQoL) and fatigue as endpoints linked to Post COVID-19 condition (PCC).

Methods: Participants ≥15 years were selected from the February 2021 round of the population-based PIENTER Corona study. We investigated the association between (time since) SARS-COV-2 infection and health outcomes: HRQoL (health utility (SF-6D); physical health and mental health (both SF-12)) and fatigue (CIS-fatigue) using multivariable logistic regression analyses adjusted for age, sex, educational level, number of comorbidities, COVID-19 vaccination status, and the intensity of restrictions. For each outcome, multivariable logistic regression models were fitted at cut-off points selected based on the cumulative distribution of those uninfected.

Results: Results shown correspond to the cut-off point related to the worst off 15% of each outcome. Significant differences between those uninfected (n=4,614) and cases infected ≤4 months ago (n=368) were observed for health utility (OR [95%CI]: 1.6 [1.2-2.2]), physical health (OR [95%CI]: 1.7 [1.3-2.3]) and fatigue (OR [95%CI]: 1.6 [1.2-2.0]), but not for mental health. There were no significant differences between uninfected and cases infected >4 months ago (n=345) for all outcomes.

Conclusions: In a Dutch population-based cohort of seroconverted individuals, those infected with wild-type SARS-CoV-2 ≤4 months ago more often reported poor health utility and physical health and were more often severely fatigued compared to those uninfected (at the 15% cut-off). HRQoL and fatigue remained below the detection limit for those infected >4 months ago, suggesting a relatively low prevalence of PCC.

Keywords: Health-related quality of life, mental health, physical health, post-covid-19 condition, fatigue, SARS-CoV-2 infection, seroepidemiology
Background

The overall impact of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on health-related quality of life (HRQoL) is important to identify and measure in order to inform public health strategies. During the pandemic, HRQoL of the general population was negatively affected as a result of both physical (e.g. infection or disease) and psychological (e.g. anxiety or social isolation) factors and different groups were disproportionately impacted (1-3). Some groups are also more at risk for (severe) infection with SARS-CoV-2 (4). Clinical presentations of SARS-CoV-2 can range from no or mild symptoms to critical illness and mortality. In a proportion of patients, symptoms develop or remain after the acute phase resulting in long-term complaints, a condition referred to as long-covid or post-COVID-19 condition (PCC) (5-8). PCC is defined by the World Health Organization as “the continuation or development of new symptoms 3 months after the initial SARS-CoV-2 infection, with these symptoms lasting for at least 2 months with no other explanation” (9). Symptoms of PCC include shortness of breath and cognitive dysfunction, with the most common symptom being fatigue (9, 10). Due to the long duration and/or detrimental impact of these symptoms, PCC may form a significant proportion of the overall disease burden of SARS-CoV-2. Therefore, the impact of PCC on the population in terms of HRQoL is important to investigate.

The population burden of PCC depends on SARS-CoV-2 infection rates and the proportion developing PCC after infection. Although the prevalence of PCC has been studied in prospective cohorts and in cross-sectional population samples, where patients are identified by a positive SARS-CoV-2 PCR or lateral flow test (11, 12), discrepancies in PCC prevalence estimates exist (ranging from 9% to 81%) (10). These result from a multitude of reasons, but predominantly arise due to variations in definitions of PCC, population under investigation, identification of (re-)infection/COVID-19, or potential other factors such as SARS-CoV-2 variant or time since infection. In addition, all these studies that rely on positive SARS-CoV-2 testing are prone to selection bias due to testing behavior and asymptomatic infections. Therefore, to establish the true prevalence of PCC after SARS-CoV-2 infection as well as its impact on HRQoL on a population level, population-based serological studies are needed. Such studies provide a more comprehensive and unbiased assessment of the number of infections in the general population.

Hence, using Dutch population-based serosurveillance data from the first year of the COVID-19 pandemic, the aim of this study was to assess the relationship between (time since) wild-type SARS-CoV-2 infection and HRQoL and fatigue as endpoints linked to PCC.
Methods

Study design and population

The PIENTER Corona (PICO) study is a prospective population-based cohort study aimed at monitoring humoral immunity against SARS-CoV-2 in the Dutch population. The PICO study started in April 2020 (PICO1) when 3,244 participants aged 2-92 years were enrolled (13). These participants were sampled from the PIENTER3 serosurvey, an existing cohort established in 2016/2017 (14), for which participants had been randomly selected from the Dutch population registry. In the second round, in June 2020 (PICO2), the study sample was supplemented with an additional sample of 4,606 randomly-selected participants from the Dutch population registry in order to enhance national coverage and overall power (combined response rate, 21.4%) (15). Subsequent rounds were conducted in September 2020 (PICO3) and February 2021 (PICO4) using the same study sample as in PICO2 with exception to dropouts and non-responders (n=1,320) (Figure 1).

In every study round, participants were asked to return a finger-prick blood sample in a microtainer by mail and complete a questionnaire (online or on paper). The questionnaire collected information on demographics, experienced COVID-19 like symptoms (i.e., respiratory, gastro-intestinal, systemic, etc.), SARS-CoV-2 testing, COVID-19 vaccination, clinical risk factors for disease, contact patterns, HRQoL and fatigue (only from PICO4 onwards for those 15 years and older). In this study we included all PICO4 participants with questionnaire data on HRQoL and fatigue and at least one blood sample in PICO1-4. The PICO study protocol was approved by the Medical Ethics Committee MEC-U, the Netherlands (Clinical Trial Registration NTR8473). All participants provided written informed consent.

Time since SARS-CoV-2 infection

To assess SARS-CoV-2 infection, we composed two groups; those with serological proof of previous SARS-CoV-2 infection (seropositives/cases) and those without (seronegatives/uninfected). Proof of infection was defined as the presence of infection-induced serum immunoglobulin G (IgG) antibodies against the SARS-CoV-2 spike-S1 antigen in rounds PICO1-4. This was determined using a fluorescent bead-based immunoassay with a specificity and a sensitivity of 99.7% and 91.6% respectively (16-18). The cut-off for seropositivity was set at a spike-S1-specific IgG antibody level of 10.08 BAU/mL, in accordance with international standards (16, 17). Antibodies derived from SARS-CoV-2 infection were distinguished from vaccination-induced antibodies using self-reported vaccination status, pre-vaccination seropositivity, presence of Nucleoprotein-specific IgG antibodies and self-reported test positivity (PCR/rapid antigen tests) (18). Participants who were seropositive for infection-induced antibodies at least once were considered a case, irrespective of negative PCR/rapid antigen tests or serostatus in subsequent rounds. To assess time since SARS-CoV-2 infection, cases were further...
classified according to time since seroconversion; we distinguished participants that seroconverted in PICO1-3, i.e. before or in September 2020 (cases >4 months) and participants that seroconverted in PICO4, i.e. after September 2020 (cases ≤4 months). The uninfected group consisted of all participants who had not been seropositive for infection-induced antibodies through PICO1-4. Uninfected participants who missed serological data in PICO4 or self-reported a positive PCR or rapid antigen test in one of the study rounds were excluded. Thus, three SARS-CoV-2 serostatus groups were ultimately identified: uninfected, cases >4 month and cases ≤4 months.

Outcome measures

HRQoL: Short Form Health Survey 12 (SF-12) and Short-Form Six Dimensions (SF-6D)

HRQoL was assessed in the form of mental health, physical health and health utility. To measure these, the Dutch translation of the SF-12 version 1 was used. The SF-12 consists of 12 questions from eight health dimensions that can be summarized into a physical health score (physical component summary; PCS) and a mental health score (mental component summary; MCS). The PCS comprises of the following health dimensions; physical functioning, role limitations due to physical health problems, bodily pain and general health, whereas the MCS consists of vitality (energy/fatigue), social functioning, role limitations due to emotional problems and mental health (psychological distress and psychological wellbeing). The summarized scores were weighted using orthogonal regression coefficients from the general Dutch population (19). PCS and MCS scores range from 0 (lowest health) to 100 (highest health) (20). To convert results of the SF-12 into health utility scores the SF-6D was used (21). The SF-6D uses seven items from the SF-12 and consists of six dimensions: physical functioning, role limitations, social functioning, pain, mental health and vitality (21). SF-6D scores range from 0.3 to 1, with higher scores indicating better health (21, 22). In the online version of the questionnaire, item 12 (social functioning) of the SF-12 questionnaire had a six-scale answer (SF-12 version 1 UK) instead of a five-scale answer (SF-12 version 1 US). Participants that selected the additional answer option were equally randomized to a category below and a category above in order to analyze all questionnaires in the SF-12 version 1 US format.

Fatigue: Checklist Individual Strength (CIS)

Fatigue severity was assessed using the subscale fatigue of the Checklist Individual Strength (CIS-fatigue). The CIS-fatigue is an 8-item questionnaire (23, 24). Each item is scored on a 7-point Likert scale. Scores can range from 8 to 56 with fatigue severity increasing with higher scores (25).

Statistical analysis

Participant demographic (age, sex and educational level) and health characteristics (BMI, smoking, number of comorbidities, COVID-19 vaccination status, health utility, physical health, mental health
and fatigue) were presented using proportions (%) and frequencies (n). Information collected in PICO4 were used, except for educational level, BMI, smoking and number of comorbidities which were determined at baseline. Vaccination status refers to whether participants were vaccinated in PICO4 regardless of moment of potential SARS-CoV-2 infection.

In the analyses we looked at four different outcomes: health utility (SF-6D), mental health (MCS), physical health (PCS) and fatigue (CIS). To enable comparison between the four outcome variables with different scales and score ranges, we opted for a uniform approach. In this approach, we separately plotted the cumulative distribution of each outcome for all three SARS-CoV-2 serostatus groups to visualize differences between these groups over the entire range of the outcome. Since higher CIS scores indicate worse outcomes, the cumulative distribution of the CIS scale was inverted for comparability. The cumulative distribution of individuals in the uninfected group guided the selection of cut-off points. Cut-off points were determined at each 5% increment along the cumulative distribution of the uninfected group (5% to 75%), and at each cut-off individuals were assigned 0 (score above the cut-off) or 1 (score on or below the cut-off). For each of the cut-off points multivariable logistic regression models were fitted separately, per outcome. The following confounders were added to the multivariable logistic regression models: age group (18-35/36-65/66+ years), sex (male/female), educational level (low/intermediate/high), number of comorbidities (none/one/two or more), COVID-19 vaccination status (vaccinated/unvaccinated) and Stringency Index (75/79). The Stringency Index measures the intensity of restrictions in the Netherlands on a scale of 0 to 100 (strictest) as quantified by the COVID-19 Stringency Index of the Oxford Coronavirus Government Response Tracker (OxCGRT) (26, 27). The Stringency Index was dichotomized into score 75 and 79 because the scores remained steady during the inclusion period (78.7 from 11 February to 2 March 2021 and 75.0 from 3 March to 6 April 2021). Complete case data on all variables except for smoking and BMI were used for the analyses, (adjusted) odds ratios (OR) and 95% confidence intervals (CI) were provided and a p-value of p<0.05 was considered statistically significant.

Post-hoc analyses were conducted to explore the power to detect a minimal difference in prevalence between cases >4 months and those uninfected given the observed cases in our study. With those uninfected as reference group, an iterative process was performed in which per outcome, the prevalence of cases >4 months meeting the cut-off (assigned a 1) was increased until the CI of the OR was above 1. In this process the cases >4 months were included at random. To account for stochasticity, an average of ten independent samples was taken for each prevalence point, for each cut-off point.

Data was cleaned in SAS (94 M7 English) and analyzed in R (version 4.1.0).
Results

Demographic and clinical characteristics of the participants

From a total of 5,666 participants (supplementary file – Table 1), complete case analysis was conducted with 5,327 participants of which 4,614 were uninfected, 345 cases >4 months and 368 cases ≤4 months (Table 1), thus excluding 6% of participants (missings). All groups had a higher proportion of females compared to males (56-60%). The majority of the participants in all groups were aged between 36-65 years (50-54%) and had a high or intermediate educational level (79-83%). About half of the participants in all groups had normal weight and were a current or ex-smoker. Among cases ≤4 months there were fewer participants with comorbidities (28%) compared to those uninfected and cases >4 months (35%). In all groups, a comparable small proportion had been vaccinated (5-8%). Mean SF-6D scores were 0.8 for all groups. Mean MCS (47-48) and PCS scores (53-55) were also similar between groups. Mean CIS scores of those uninfected and cases >4 months were comparable (22), but those of cases ≤4 months deviated (24).

Cumulative distribution

For health utility, the cumulative distribution of SF-6D scores showed that cases ≤4 months had a higher proportion of individuals with a lower score, compared to those uninfected and cases >4 months (Figure 2, upper panel); 20% of cases ≤4 months had an SF-6D score below 0.66, whereas for those uninfected and cases >4 months 20% scored below 0.72 (supplementary file – Table 2). Looking at mental health, cases ≤4 months had a higher proportion of individuals with lower MCS scores compared to those uninfected (Figure 3, upper panel); among those uninfected and cases >4 months, 30% of participants scored below MCS 46, whereas for cases ≤4 months this was below a score of 44 (supplementary file – Table 3). For physical health, cases ≤4 months also had a higher proportion of individuals with lower PCS scores compared to those uninfected and cases >4 months (Figure 4, upper panel); 20% of those uninfected had a PCS score below 51, whereas 20% of cases ≤4 months scored below 48 (supplementary file – Table 4). For fatigue, cases ≤4 months had a higher proportion of individuals with higher CIS scores throughout most of the cumulative distribution (Figure 5, upper panel); among those uninfected and cases >4 months 15% of participants scored above 35, whereas for cases ≤4 months this was 22% (supplementary file – Table 5).

Multivariable logistic regression

The results of the logistic regression analyses showed that statistically significant differences between the groups differed based on the cut-off point of the outcome used. The 15% cut-off point corresponds to an SF-6D score of 0.66, an MCS score of 37.25, a PCS score of 48.14 and a CIS score of 35 (supplementary file – Table 2-5). This cut-off represents clinically relevant severity for the fatigue (CIS).
scale (25), hence the regression results for the 15% cut-off point are presented (to note: the regression results for the other cut-off points can be found in the supplementary files (supplementary file – Table 6-19)). At the 15% cut-off, prevalence of cases ≤4 months was 5.2, 4.0, 5.7 and 7.4 percentage point higher (prevalence cases ≤4 months minus prevalence uninfected) compared to those uninfected for SF-6D, MCS, PCS and CIS respectively (supplementary file – Table 2-5). In the multivariable logistic regression, significant differences between those uninfected and cases ≤4 months were observed for health utility (OR [CI]: 1.62 [1.17-2.20]), physical health (OR [CI]: 1.73 [1.30-2.27]) and fatigue (OR [CI]: 1.55 [1.19-2.01]), but not for mental health (OR [CI]: 1.19 [0.89-1.57]) (Table 2). For all outcomes, there was no significant difference observed between those uninfected and cases >4 months at the 15% cut-off point (or any of the other cut-off points).

At the 15% cut-off point, multivariable logistic regressions (Table 2) showed that older age groups (35-65 and 66+ years) were significantly associated with poorer physical health, but with better health utility, mental health, and fatigue (p<0.001). Female sex (p<0.001) and having comorbidities (p<0.001 to p=0.015) were significantly associated with poorer outcomes on all four scales. Low educational level was significantly associated with better mental health (p=0.002), but poorer health utility (p=0.018) and physical health (p<0.001). Better health utility (p=0.003) and fatigue (p=0.017) were significantly associated with a higher stringency index. Vaccination status was significantly associated with mental health, where not being vaccinated indicated poorer mental health (p=0.037).

Post-hoc analysis

In the post-hoc analysis we investigated the power to detect a minimal difference in prevalence between cases >4 months and those uninfected required to detect a significant difference (with those uninfected as reference group). Given the 345 cases >4 months, a difference in prevalence at the 15% cut-off would only become significant when the prevalence in this group was at least 3.8% points higher than that of the uninfected for the SF-6D, 5.5% for the MCS, 3.2% for the PCS and 5.1% for the CIS. Using the given cut-offs, the largest possible difference while having a non-significant outcome of the logistic regression would be 7.3%, 7.5%, 4.4% or 7.1% respectively (supplementary file – Figure 1-4).
Discussion

In this nationwide Dutch cohort study, we assessed the relationship between time since serologically identified wild-type SARS-CoV-2 infection and HRQoL (health utility, physical health, mental health) and fatigue. Our findings show that recently infected participants (≤4 months ago) more often had poor outcomes in health utility, physical health and fatigue compared to those uninfected (at the 15% cut-off). No significant differences were observed for mental health. For participants infected more than 4 months ago, no statistically significant differences were found compared to those uninfected at the 15% cut-off. Similar results were observed at all other cut-offs (see Supplementary File). These observations are interesting, as it suggests that at the population level (including those symptomatic and asymptomatic) the impact of long-term sequelae after a SARS-CoV-2 infection was lower in our sample compared to the lowest estimated prevalence of PCC (9%) (10).

This observed lower PCC prevalence in our study can be explained by the fact that the prevalence among those infected requires to be significantly different compared to those uninfected. Such explicit use of an uninfected group is lacking in many other studies (10). Our results highlight the importance of doing so. Furthermore, because of the sampling there is a variety in time since infection for those infected more than 4 months ago, where the majority are likely infected in March and April 2020 given the epidemic curve in the Netherlands before September 2020. This equates to 10 to 11 months since infection, which is long and can contribute to the lower observed prevalence. Further subdivision of our cases >4 months into exact round of seroconversion was not possible due to the small numbers (PICO1: N=65; PICO2: N=44; PICO3: N=10). Furthermore, our study was randomly sampled from the population, therefore the impact of several risk factors such as hospitalization, admission to the intensive care unit, having comorbidities, smoking and high body mass index (28, 29) are less obvious from our sample, as the majority had mild infections, and these risk groups are underrepresented.

We observed differences in health utility between those uninfected and cases ≤4 months, which is in line with the study by Poudel (2021) that reported that quality of life was impacted more during the acute phase of SARS-CoV-2 infection (30). Although HRQoL can also be impacted among PCC patients, we did not observe any significant differences in health utility between those uninfected and cases >4 months. There were no differences in mental health observed in our study between those uninfected and cases >4 months or ≤4 months. This could be because the severe restrictions that were in place in February 2021 (schools were closed, people had to work from home and an evening curfew was in place from January 20th until April 28th) had an impact on the entire population, irrespective of infection status. Literature also shows that although society as a whole was affected by the pandemic, some groups in society were disproportionally affected such as females and younger age groups (31).
There are some limitations to consider in the interpretation of our results. Firstly, our results are predominantly valid for the impact of wild-type SARS-CoV-2 infections, as the Alpha variant of concern only started circulating in the end of 2020 and was not dominant until week 7 of 2021 (15-21 February 2021) (32). Our aim was to investigate PCC prevalence after wild-type SARS-CoV-2 infection. However, follow-up research should be conducted to assess the effects of other SARS-CoV-2 variants on HRQoL and fatigue. Secondly, because we use serological data, acute infections with SARS-CoV-2 just before blood sampling were not included in our analysis as it takes two to three weeks to seroconvert after primary infection (33). However, the use of serological data to identify cases enabled identification of infections, independent of testing policies and adherence, which is a major strength of this study. In addition, reinfections were not taken into account in our study as few reinfections occurred early in the pandemic, and thus most likely did not affect our results (34, 35).

Lastly, some individuals may have been misclassified in the cases or uninfected groups due to false negative or false positive serological testing. Few individuals do not seroconvert after infection (36-41). To minimize the effect of misclassification on our estimation, we excluded participants that reported a positive PCR or rapid antigen test from the uninfected group. However, since widescale PCR testing was not available in the Netherlands until June 2020, there is still a possibility of misclassification. Given that the validation studies of the assay used showed a high sensitivity and specificity (16, 42), we believe these consist of a small minority, and hence the overall impact on our results is limited. In this study we included a study population that was randomly selected from the Dutch population in order to ascertain representativeness of the Dutch population. However, despite these efforts, participants of Dutch descent and potentially more health-oriented persons were overrepresented.

Conclusion

In a Dutch randomly-selected population-based cohort of, seroconverted, SARS-CoV-2 wild-type infected individuals with low proportion of vaccinations and re-infections, those infected in the previous four months more often reported poor health utility and physical health and were more often severely fatigued compared to those uninfected (at the 15% cut-off). HRQoL and fatigue remained below the detection limit for those infected more than four months ago, suggesting a relatively low prevalence of PCC.
Acknowledgements

We would like to thank our colleagues from the National Institute of Public Health and Environment (RIVM), Centre of Infectious Disease Control for their contributions regarding logistics, laboratory analyses, methodological insights and manuscript reviewing.

This work was supported by the Ministry of Health, Welfare and Sports (VWS), the Netherlands. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. There was no additional external funding received for this study.

Data availability

The data that support the findings of this study can be requested via the PICO study website (https://www.rivm.nl/en/pienter-corona-study/information-for-researchers). Restrictions may apply to the availability of these data.

Conflicts of interest

The authors report no conflicts of interest.
Figure 1. Flowchart of participant recruitment in PICO1-4

Recruitment from previous PIENTER3 study
n = 3,244

Recruitment from personal records database (BRP)
n = 4,606

Dropouts / non-responders
n = 1,320

PICO1 N = 3,244
April 2020

PICO2 N = 7,473
June 2021

PICO3 N = 6,686
September 2021

PICO4 N = 6,530
February 2022

N = 6,530

Dropout reasons
- Moved abroad or passed away
- Participation too time consuming
- Finger-prick too difficult or painful
- No longer interested in participation
- No reason specified

Exclusion criteria
1. Age ≤ 14 years (N=588)
2. Incomplete SF-12 and/or CIS-fatigue questionnaire (N=162)
3. Missing serological data in all four study rounds (N=1)

Extra exclusion criteria for the control group:
4. Missing serological data in PICO4 (N=52)
5. Reporting a positive PCR or rapid antigen test (N=61)

Excluded (N = 864)
N = 5,666
Complete case analysis
N = 5,327

N = 713
Cases
Cases >4 months
N = 345
Cases ≤4 months
N = 368
Uninfected
N = 4,614
Table 1: Participant demographic and health characteristics*

<table>
<thead>
<tr>
<th></th>
<th>UNINFECTED</th>
<th>CASES >4 MONTHS</th>
<th>CASES ≤4 MONTHS</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>4,614</td>
<td>345</td>
<td>368</td>
</tr>
<tr>
<td>SEX = FEMALE % (N)</td>
<td>56.2 (2,593)</td>
<td>57.4 (198)</td>
<td>60.1 (221)</td>
</tr>
<tr>
<td>AGE GROUPS % (N)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15-35</td>
<td>19.9 (916)</td>
<td>27.5 (95)</td>
<td>29.6 (109)</td>
</tr>
<tr>
<td>36-65</td>
<td>53.5 (2,467)</td>
<td>50.1 (173)</td>
<td>53.8 (198)</td>
</tr>
<tr>
<td>66+</td>
<td>26.7 (1,231)</td>
<td>22.3 (77)</td>
<td>16.6 (61)</td>
</tr>
<tr>
<td>EDUCATIONAL LEVEL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HIGH</td>
<td>48.3 (2,227)</td>
<td>43.2 (149)</td>
<td>38.9 (143)</td>
</tr>
<tr>
<td>INTERMEDIATE</td>
<td>31.8 (1,466)</td>
<td>39.4 (136)</td>
<td>40.2 (148)</td>
</tr>
<tr>
<td>LOW</td>
<td>20.0 (921)</td>
<td>17.4 (60)</td>
<td>20.9 (77)</td>
</tr>
<tr>
<td>BMI</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UNDERWEIGHT</td>
<td>1.0 (47)</td>
<td>0.0 (0)</td>
<td>2.4 (9)</td>
</tr>
<tr>
<td>NORMAL WEIGHT</td>
<td>47.6 (2,198)</td>
<td>47.0 (162)</td>
<td>45.1 (166)</td>
</tr>
<tr>
<td>OVERWEIGHT</td>
<td>35.0 (1,615)</td>
<td>35.1 (121)</td>
<td>35.9 (132)</td>
</tr>
<tr>
<td>OBESE</td>
<td>14.0 (647)</td>
<td>12.2 (42)</td>
<td>14.4 (53)</td>
</tr>
<tr>
<td>MISSING</td>
<td>2.3 (107)</td>
<td>5.8 (20)</td>
<td>2.2 (8)</td>
</tr>
<tr>
<td>SMOKING % (N)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SMOKER</td>
<td>10.9 (501)</td>
<td>7.0 (24)</td>
<td>7.9 (29)</td>
</tr>
<tr>
<td>EX-SMOKER</td>
<td>38.9 (1,795)</td>
<td>40.0 (138)</td>
<td>37.0 (136)</td>
</tr>
<tr>
<td>NON-SMOKER</td>
<td>47.9 (2,211)</td>
<td>47.5 (164)</td>
<td>53.3 (196)</td>
</tr>
<tr>
<td>MISSING</td>
<td>2.3 (107)</td>
<td>5.5 (19)</td>
<td>1.9 (7)</td>
</tr>
<tr>
<td>NUMBER OF COMORBIDITIES</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NONE</td>
<td>65.2 (3,007)</td>
<td>65.2 (225)</td>
<td>72.6 (267)</td>
</tr>
<tr>
<td>ONE</td>
<td>25.2 (1,164)</td>
<td>27.5 (95)</td>
<td>20.4 (75)</td>
</tr>
<tr>
<td>TWO OR MORE</td>
<td>9.6 (443)</td>
<td>7.2 (25)</td>
<td>7.1 (26)</td>
</tr>
<tr>
<td>SARS-COV-2 VACCINATED = NO % (N)</td>
<td>95.3 (4,399)</td>
<td>92.8 (320)</td>
<td>91.6 (337)</td>
</tr>
<tr>
<td>HEALTH UTILITY (SF-6D) MEAN (SD)</td>
<td>0.82 (0.11)</td>
<td>0.82 (0.11)</td>
<td>0.80 (0.13)</td>
</tr>
<tr>
<td>MENTAL HEALTH (MCS) MEAN (SD)</td>
<td>48.00 (10.14)</td>
<td>47.31 (10.98)</td>
<td>46.67 (10.87)</td>
</tr>
<tr>
<td>PHYSICAL HEALTH (PCS) MEAN (SD)</td>
<td>54.38 (7.64)</td>
<td>54.96 (6.68)</td>
<td>53.21 (8.52)</td>
</tr>
<tr>
<td>FATIGUE (CIS) MEAN (SD)</td>
<td>21.71 (11.68)</td>
<td>21.67 (11.52)</td>
<td>24.45 (12.96)</td>
</tr>
</tbody>
</table>

*All characteristics were determined in PICO4, except for educational level, BMI, smoking and comorbidities (determined at baseline).

A Educational level was classified as low (no education or primary education), intermediate (secondary school or vocational training), or high (bachelor’s degree, university).

B For underweight, normal weight, overweight and obesity respectively the following cut-offs were used:
- Men 15 years old: BMI <17.0; BMI 17.0-23.3; BMI 23.3-28.3; BMI ≥28.3.
- Women 15 years old: BMI <17.5; BMI 17.5-23.9; BMI 23.9-29.1; BMI ≥29.1.
- Men 16 years old: BMI <17.5; BMI 17.5-23.9; BMI 23.9-28.9; BMI ≥28.9.
- Women 16 years old: BMI <17.9; BMI 17.9-24.4; BMI 24.4-29.4; BMI ≥29.4.
- Men 17 years old: BMI <18.1; BMI 18.1-24.5; BMI 24.5-29.4; BMI ≥29.4.
- Women 17 years old: BMI <18.3; BMI 18.3-24.7; BMI 24.7-29.7; BMI ≥29.7.
- Men 18 years and older: BMI <18.5; BMI 18.5-25.0; BMI 25.0-30.0; BMI ≥30.0.
- Women 18 years and older: BMI <18.5; BMI 18.5-25.0; BMI 25.0-30.0; BMI ≥30.0.

C Included comorbidities are asthma, cancer, cardiovascular disease, diabetes (type 1 & 2), immunodeficiency, pulmonary disease and renal disease.
Table 2. Results of the four multivariable logistic regression models at the 15% cut-off of the cumulative distribution for health utility (SF-6D), mental health (MCS), physical health (PCS) and fatigue (CIS)

<table>
<thead>
<tr>
<th></th>
<th>SF-6D</th>
<th></th>
<th>MCS</th>
<th></th>
<th>PCS</th>
<th></th>
<th>CIS</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>OR [95%CI]</td>
<td>p-value</td>
<td>OR [95%CI]</td>
<td>p-value</td>
<td>OR [95%CI]</td>
<td>p-value</td>
<td>OR [95%CI]</td>
<td>p-value</td>
</tr>
<tr>
<td>Intercept</td>
<td>12311.23</td>
<td>0.023</td>
<td>1.36</td>
<td>0.936</td>
<td>87.09</td>
<td>0.271</td>
<td>610.52</td>
<td>0.073</td>
</tr>
<tr>
<td>SEROLOGICAL STATUS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Uninfected</td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Cases >4 months</td>
<td>1.14 [0.78-1.61]</td>
<td>0.493</td>
<td>1.09 [0.80-1.46]</td>
<td>0.567</td>
<td>0.81 [0.57-1.13]</td>
<td>0.235</td>
<td>1.03 [0.76-1.39]</td>
<td>0.833</td>
</tr>
<tr>
<td>Cases ≤4 months</td>
<td>1.62 [1.17-2.20]</td>
<td>0.003</td>
<td>1.19 [0.89-1.57]</td>
<td>0.228</td>
<td>1.73 [1.30-2.27]</td>
<td><0.001</td>
<td>1.55 [1.19-2.01]</td>
<td>0.001</td>
</tr>
<tr>
<td>AGE GROUP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18-35 years</td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>36-65 years</td>
<td>0.59 [0.47-0.74]</td>
<td><0.001</td>
<td>0.44 [0.37-0.52]</td>
<td><0.001</td>
<td>1.63 [1.27-2.10]</td>
<td><0.001</td>
<td>0.58 [0.48-0.69]</td>
<td><0.001</td>
</tr>
<tr>
<td>65+ years</td>
<td>0.43 [0.32-0.58]</td>
<td><0.001</td>
<td>0.17 [0.13-0.22]</td>
<td><0.001</td>
<td>2.31 [1.75-3.06]</td>
<td><0.001</td>
<td>0.28 [0.21-0.36]</td>
<td><0.001</td>
</tr>
<tr>
<td>EDUCATIONAL LEVEL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High</td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Intermediate</td>
<td>1.24 [1.00-1.53]</td>
<td>0.051</td>
<td>0.84 [0.71-1.00]</td>
<td>0.046</td>
<td>1.52 [1.26-1.82]</td>
<td><0.001</td>
<td>1.15 [0.98-1.37]</td>
<td>0.095</td>
</tr>
<tr>
<td>Low</td>
<td>1.37 [1.05-1.77]</td>
<td>0.018</td>
<td>0.68 [0.53-0.86]</td>
<td>0.002</td>
<td>1.81 [1.48-2.22]</td>
<td><0.001</td>
<td>1.13 [0.91-1.40]</td>
<td>0.280</td>
</tr>
<tr>
<td>SEX</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>1.55 [1.27-1.89]</td>
<td><0.001</td>
<td>1.45 [1.23-1.70]</td>
<td><0.001</td>
<td>1.59 [1.35-1.88]</td>
<td><0.001</td>
<td>1.84 [1.56-2.16]</td>
<td><0.001</td>
</tr>
<tr>
<td>Female</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMORBIDITIES</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No comorbidities</td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1 comorbidity</td>
<td>1.55 [1.24-1.93]</td>
<td><0.001</td>
<td>1.26 [1.04-1.52]</td>
<td>0.015</td>
<td>2.08 [1.74-2.48]</td>
<td><0.001</td>
<td>1.71 [1.43-2.04]</td>
<td><0.001</td>
</tr>
<tr>
<td>2+ comorbidities</td>
<td>2.44 [1.80-3.27]</td>
<td><0.001</td>
<td>1.74 [1.30-2.30]</td>
<td><0.001</td>
<td>4.09 [3.26-5.13]</td>
<td><0.001</td>
<td>3.00 [2.34-3.84]</td>
<td><0.001</td>
</tr>
<tr>
<td>VACCINATION STATUS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vaccinated</td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Not vaccinated</td>
<td>1.33 [0.87-2.13]</td>
<td>0.205</td>
<td>1.49 [1.04-2.21]</td>
<td>0.037</td>
<td>1.13 [0.80-1.63]</td>
<td>0.511</td>
<td>1.43 [1.01-2.07]</td>
<td>0.050</td>
</tr>
<tr>
<td>STRINGENCY INDEX</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>75</td>
<td>0.86 [0.77-0.95]</td>
<td>0.003</td>
<td>0.98 [0.89-1.08]</td>
<td>0.628</td>
<td>0.91 [0.82-1.01]</td>
<td>0.055</td>
<td>0.90 [0.82-0.98]</td>
<td>0.017</td>
</tr>
</tbody>
</table>
Figure 2. Health utility – cumulative distribution and logistic regression analyses*

* Each 5% increment (5-75%) along the cumulative distribution of the control group is marked with a grey bar. The 15% point of the distribution is marked with a dark grey bar.
Figure 3. Mental health – cumulative distribution and logistic regression analyses*

Cumulative distribution of mental health scores

- Study groups
 - Uninfected
 - Cases >4 months
 - Cases ≤4 months

Logistic regression cases >4 months vs uninfected

Logistic regression cases ≤4 months vs uninfected

* Each 5% increment (5-75%) along the cumulative distribution of the control group is marked with a grey bar. The 15% point of the distribution is marked with a dark grey bar.
Figure 4. Physical health – cumulative distribution and logistic regression analyses*

* Each 5% increment (5-75%) along the cumulative distribution of the control group is marked with a grey bar. The 15% point of the distribution is marked with a dark grey bar.
Figure 5. Fatigue – cumulative distribution and logistic regression analyses*

* Each 5% increment (5-75%) along the cumulative distribution of the control group is marked with a grey bar. The 15% point of the distribution is marked with a dark grey bar.
References

