Change in Striatal Functional Connectivity Networks Across Two Years Due to Stimulant Exposure in Childhood ADHD: Results from the ABCD Sample

Adam Kaminski BS1, Hua Xie PhD2, Brylee Hawkins BS1, Chandan J. Vaidya PhD1,2

1 Department of Psychology, Georgetown University, Washington, DC
2 Children’s Research Institute, Children’s National Medical Center, Washington, DC

*Correspondence concerning this article should be addressed to:
Adam Kaminski and Chandan Vaidya
Georgetown University, Dept. of Psychology, White-Gravenor Hall, Rm. 401, 3700 O St. NW. Phone: (202) 687-9133. Email:
ak1821@georgetown.edu, cjv2@georgetown.edu

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
ABSTRACT

Widely prescribed as the first choice of treatment for Attention-Deficit/Hyperactivity Disorder (ADHD), stimulants (methylphenidate and amphetamines) have been studied for their long-term effects on the brain in prospective designs that carefully control dosage and adherence. It is unknown whether those findings generalize to real-world conditions such as community-based treatment, which is marked by intermittent exposure and polypharmacy. To fill this gap, we capitalized on the observational design of the Adolescent Brain Cognitive Development (ABCD) study to examine effects of stimulant exposure on modulation of large-scale bilateral cortical networks’ resting-state functional connectivity (rs-FC) with 6 striatal regions (left and right caudate, putamen, and nucleus accumbens) across two years in children with ADHD. Out of 11,878 children, 179 met criteria for an ADHD diagnosis at baseline and high-quality imaging data at baseline and the two-year timepoint. Bayesian hierarchical logistic regressions revealed that change in rs-FC over the two-year period of multiple striatal-cortical networks associated with executive functions and a visuo-motor network predicted stimulant exposure. These networks did not overlap with those that predicted non-stimulant exposure. Of these networks, change selective to stimulant exposure was limited to rs-FC with the putamen, specifically frontoparietal and visual networks, implicating motor control. 23% of stimulant-exposed children did not meet criterion for ADHD at the two-year timepoint, and they were distinguished by change in rs-FC between left putamen and frontoparietal network. Thus, while stimulant exposure for a two-year period under real-world conditions modulated striatal-cortical functional networks broadly, therapeutic effects of that exposure were limited in scale, to network connections relevant to motor control in a small subset of children.
INTRODUCTION

Prescribed since the 1950s, stimulant medications’ (e.g., amphetamines, methylphenidate) efficacy for the acute attenuation of inattention, hyperactivity, and impulsivity, the core symptoms of Attention Deficit Hyperactivity Disorder (ADHD), is now well-established (1,2). About 3.5% of children in the US receive stimulant medication (3) and by high school approximately 1 out of every 6 adolescents have had some exposure (4), yet stimulants’ long-term effects on the brain are not well understood. While chronic use shows neuromodulation (e.g., on neurotransmission in rodents (5) and striatal gray matter volume in adults with ADHD (6)), it does not appear to alter long-term trajectories of ADHD symptoms, socioemotional functioning, or motor control (7). Indeed, prospective longitudinal studies are consistent with that dismal prognosis; symptoms persist into adolescence and adulthood, stimulants have no demonstrable benefit beyond the controlled trial period (8), and stimulant use is positively associated with symptom persistence (9,10). While findings from carefully controlled prospective studies are useful, it is unclear how well they generalize to the context of community-based treatment, which is marked by high medication nonadherence, intermittent stimulant exposure (11–13), and polypharmacy (14). While long needed, there have not been available community datasets that allow examination of real-world neural and symptom changes longitudinally in children being treated for ADHD with stimulants. Such an opportunity is now at hand with the Adolescent Brain Cognitive Development (ABCD) study (15), which is a large multisite study recruiting children in the United States at age 9 years (baseline) who are assessed every two years with functional and structural brain imaging and gold standard clinical assessments.

We examined striatal connectivity in light of the striatum’s centrality in stimulants’ mechanisms of action and ADHD pathophysiology, and focused on large-scale functional networks as they are known to be sensitive to developmental pathophysiology and stimulant exposure. Functional network connectivity, characterized by temporal correlation of neural activity during a task-free state (termed resting-state functional connectivity – rs-FC) has emerged as a
key locus of pathophysiology for psychiatric disorders (16,17). Rs-FC has revealed the existence of large-scale, distributed, and functionally-specialized networks in the brain which are disrupted in ADHD. Both the default mode network, engaged during self-referential processing, and the frontoparietal network, engaged during executive task performance, have shown atypical rs-FC patterns related to ADHD (18,19). Further, rs-FC of task-positive networks including the frontoparietal network (20) as well as the cingulo-opercular network (21) are broadly sensitive to stimulants in children and adults (see review 22). Subcortically, the striatum, a direct target of stimulant action by dopamine transport blockade (23), has consistently shown structural and functional atypicalities in children and adults with ADHD (19,24). Striatal activation is also modulated by acute stimulant exposure during attentional tasks (25), and in children with ADHD striatal rs-FC is modulated by 6-month stimulant treatment (26).

Here, we examined striatal-cortical rs-FC change and its association with both stimulant exposure and ADHD symptom improvement across two years. As the ABCD study is observational, medication exposure was not controlled, and we parsed stimulant-specific effects in a two-pronged analytic approach: First, we contrasted participants with ADHD whose parents or guardians reported use of stimulants during the two-year period with those reported to not be using them. Given the expected presence of comorbidity and polypharmacy in the sample (27), we additionally wanted to eliminate the possibility of effects being driven by psychotropic medication generally, without limiting the sample size beyond applying strict exclusion criteria for head motion. We therefore divided the stimulant naive group into individuals reported to be taking other psychotropic medications (e.g., antidepressants) and individuals reported to not be taking any psychotropic medication. Using seed-based rs-FC of left and right caudate, putamen, and nucleus accumbens with 10 bilateral large-scale cortical networks, we identified rs-FC changes across two years which predicted stimulant exposure but did not predict other psychotropic medication exposure. Selecting only connections passing these two criteria, we next identified which of these connections changed between baseline and timepoint 2 in the stimulant-exposed
group but not in the stimulant-naive group. For connections passing this second step, we finally tested whether rs-FC change predicted symptom improvement. We employed Bayesian multilevel (BML) modeling for all steps in an effort to efficiently address the issue of multiple testing without over-penalizing effect estimates, as this method has been shown to deal with multiplicity in imaging data while controlling for incorrect sign and magnitude error (28).

MATERIALS AND METHODS

Participants

Data from 11,878 individuals in the Adolescent Brain Cognitive Development (ABCD) Study (15,29) were obtained from the National Institute of Mental Health Data Archive, ABCD 4.0 data release. We limited our analysis to children who met the following criteria: 1) ABCD Study rs-FC inclusion criteria based on head motion and the quality of FreeSurfer reconstruction (30) at baseline and year two (Y2) timepoints, 2) ADHD diagnosis at baseline based on the parent/guardian-reported Kiddie Schedule for Affective Disorders and Schizophrenia (KSADS-5; (31)), 3) T-score > 60, a cutoff indicative of elevated symptoms as it is 1 standard deviation above the mean of 50, on the DSM-oriented ADHD Problems Scale of the parent/guardian-reported Child Behavior Checklist (CBCL; (32)) at baseline (see (33)), and 4) had mean framewise displacement (FD) less than 0.5mm for both baseline and Y2 resting-state data, in order to minimize the effect of head motion. These criteria resulted in a sample of 179 individuals (mean age at baseline=9.9 years, at Y2=11.9 years; 110 Male), which is described in Table 1.

An individual was then characterized as being stimulant-exposed (STIM-EXP), as compared to stimulant-naive (STIM-NAIVE), if they were reported by their parent or guardian to be using a stimulant at one timepoint or more, whether baseline, the one-year follow-up, or Y2 (a breakdown of all psychotropic medications is reported in Supplemental Material [SM] in Table S1). An individual from the STIM-NAIVE group was characterized as being other-psychotropic medication exposed (OTHER-EXP), as compared to other-naive (OTHER-NAIVE), in the same
way. Independent samples t-tests revealed that STIM-EXP (n=81) and STIM-NAIVE (n=98) did not differ on age, IQ (age corrected picture vocabulary scores from the NIH toolbox), socioeconomic status (SES; averaged z-scores for parental and partner education, coded as the total number of years in school, and combined family income, coded categorically from 1 to 10), number of comorbid diagnoses, and mean FD as well as the length of resting state data satisfying motion criteria at baseline or Y2 (ps > 0.09) (see Imaging Procedure below). Boys were significantly overrepresented in STIM-EXP ($\chi^2(1)=4.3$, p<0.05). OTHER-EXP (n=24) and OTHER-NAIVE (n=74) did not differ on age, IQ, SES, number of comorbid diagnoses, gender, or mean FD at baseline or Y2 (ps > 0.05).

Our primary outcome measure for symptom improvement was defined as having a T-score below 60 on the ADHD Problems Scale of the CBCL at Y2 (T>60 at baseline was criteria for inclusion). Improvers (n=67) and non-improvers (n=112) did not differ on age, IQ, SES, number of comorbid diagnoses, gender, exposure to non-stimulant psychotropic medications, and mean FD as well as the length of resting state data satisfying motion criteria at baseline or Y2 (ps > 0.15). Improvers had significantly lower T-scores on the ADHD problems scale at baseline ($t(144.2)=-3.2$, p<0.005). As a secondary outcome measure, we used the reliable change index (RCI), which assesses the reliability of change by taking into account the standard error (SE) of measurement (here, for the CBCL DSM-oriented ADHD Problems scale). The RCI is the difference score divided by the SE of measurement, and we defined a binary variable for reliable change by considering a difference score (Y2 – baseline) of -11 or lower reliable based on the 80% RCI confidence bound (34). Reliable improvers (n=39) did not differ from others on any of the above covariates (ps > 0.07), with the exception of T-scores on the ADHD problems scale at baseline ($t(60.6)=3.8$, p<0.001), which were significantly higher.
Table 1

<table>
<thead>
<tr>
<th></th>
<th>STIM-EXP</th>
<th>STIM-NAIVE</th>
<th>OTHER-EXP</th>
<th>OTHER-NAIVE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N (gender)</td>
<td>81 (24F)</td>
<td>98 (45F)</td>
<td>24 (11F)</td>
<td>74 (34F)</td>
</tr>
<tr>
<td>Age (years)</td>
<td>9.94 (0.63)</td>
<td>9.88 (0.66)</td>
<td>9.91 (0.71)</td>
<td>9.87 (0.65)</td>
</tr>
<tr>
<td>Mean FD (mm)</td>
<td>0.18 (0.11)</td>
<td>0.2 (0.12)</td>
<td>0.16 (0.11)</td>
<td>0.21 (0.12)</td>
</tr>
<tr>
<td>Length of Good Data (min)</td>
<td>15.07 (3.23)</td>
<td>15.15 (3.32)</td>
<td>15.65 (3.61)</td>
<td>14.98 (3.23)</td>
</tr>
<tr>
<td>IQ</td>
<td>109.09 (16.41)</td>
<td>105.82 (16.02)</td>
<td>100.67 (15.87)</td>
<td>107.49 (15.81)</td>
</tr>
<tr>
<td>Parental Education (years)</td>
<td>17.06 (2.33)</td>
<td>16.52 (2.55)</td>
<td>16.42 (2.17)</td>
<td>16.55 (2.67)</td>
</tr>
<tr>
<td>Partner Education (years)</td>
<td>16.55 (2.43)</td>
<td>16.49 (2.43)</td>
<td>16.87 (2.03)</td>
<td>16.40 (2.53)</td>
</tr>
<tr>
<td>Household Income (brackets)</td>
<td>7.49 (2.06)</td>
<td>6.9 (2.42)</td>
<td>6.17 (2.62)</td>
<td>7.15 (2.32)</td>
</tr>
<tr>
<td>Comorbidities</td>
<td>1.28 (1.23)</td>
<td>1.63 (1.9)</td>
<td>2.50 (2.78)</td>
<td>1.35 (1.42)</td>
</tr>
<tr>
<td>Year 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age (years)</td>
<td>11.95 (0.64)</td>
<td>11.84 (0.67)</td>
<td>11.90 (0.79)</td>
<td>11.82 (0.63)</td>
</tr>
<tr>
<td>Mean FD (mm)</td>
<td>0.15 (0.1)</td>
<td>0.16 (0.09)</td>
<td>0.19 (0.10)</td>
<td>0.14 (0.09)</td>
</tr>
<tr>
<td>Length of Good Data (min)</td>
<td>15.67 (2.71)</td>
<td>15.64 (2.84)</td>
<td>14.14 (3.49)</td>
<td>16.13 (2.42)</td>
</tr>
<tr>
<td>IQ</td>
<td>103.67 (15.55)</td>
<td>100.53 (16.54)</td>
<td>96.48 (17.79)</td>
<td>101.82 (16.03)</td>
</tr>
</tbody>
</table>

Imaging Procedure & Pre-analysis

Children completed four 5-minute runs of resting-state scans on either Siemens or General Electric 3T scanners while they kept their eyes open and focused on a fixation cross (see (15,30,35) for ABCD protocol). While stimulant last use data was collected, this information for baseline and Y2 scanning sessions was missing for all participants in the present sample, and therefore could not be taken into account (see Discussion). Preprocessing included the removal of initial frames, normalization of voxel time-series, nuisance regression (6 motion parameters and their squares, signal from cerebral white matter, ventricles, and the whole brain, as well as their derivatives), temporal filtering for respiratory signal, and band-pass filtering (0.009-0.08 Hz) (see (30) for details). The average time-series for parcels in the Gordon atlas (36) and subcortical regions from the Freesurfer Aseg Atlas (37) were then correlated to calculate rs-FC, followed by Fisher-z transformation. Each parcel in the Gordon atlas is affiliated with one of 12 functional networks (auditory, cingulo-opercular, cinguloparietal, default mode, dorsal attention, frontoparietal, retrosplenial, salience, somatomotor hand, somatomotor mouth, ventral attention, and visual) and rs-FC for parcels within each network was averaged, per subcortical region, producing an rs-FC value for each subcortical region-network pair. Using these pretabulated data,
we selected six striatal regions (left and right caudate, putamen, and nucleus accumbens) as seeds in order to focus on striatal seed-functional network pairs. Given mixed terminology and unclear evidence regarding the functional differentiation of the salience and cingulo-opercular networks (38), we averaged these networks. Similarly, we averaged the somatomotor hand and mouth networks. Volumes with FD > 0.2mm were excluded from rs-FC calculations, as were volumes with fewer than five contiguous timepoints where FD < 0.2mm for each volume, in order to minimize the effects of motion. Rs-FC was averaged across resting-state runs, weighted by the number of volumes in each run after motion censoring and excluding runs with fewer than 100 volumes (in the retained sample, the baseline range of total volumes was 546-1750; the Y2 range of total volumes was 514-1492). Lastly, we calculated the difference between striatal seed-to-network rs-FC at baseline and Y2.

Statistical Analysis
Analyses were conducted in three steps (see Figure 1). For all steps, we ran Bayesian hierarchical regressions (28) with random effects for ABCD site. Bayesian analyses were conducted with the brms package (39) in R and RStudio (version 4.2.2). We used weakly informative priors since we had limited information about the strength of possible associations but did not want to opt for noninformative flat priors in an effort to reduce type I error rates (40). Markov Chain Monte Carlo methods were used to estimate posterior distributions for model parameters with 4 independent chains of 10,000 iterations (2,000 for warm-up). The mean, standard deviation, and two-sided 95% credible interval (CI) of each estimate were used to interpret the findings. Seed-to-network connections selected to interpret were those whose 95% CIs did not overlap with zero (i.e., differed significantly from zero at the 5% level; as in (41)).

Step 1: Predicting Stimulant and Other Psychotropic Medication Exposure
To examine whether change in striatal seed-network rs-FC between baseline and Y2 predicted stimulant exposure (1 for STIM-EXP, 0 for STIM-NAIVE), we ran six Bayesian hierarchical logistic regression models, one for each striatal seed. Each model had 10 total striatal seed-network rs-
FC predictors, one for each functional network, and 10 covariates as follows: 4 measures of data quality (mean FD and the square root of the length of rs-FC data after volumes exceeding 0.2mm FD were removed, at baseline as well as Y2), a combined measure of SES as it may determine treatment access or intention, exposure to other psychotropic medication, the number of psychiatric comorbidities, IQ at baseline and Y2, and gender, since there was a disproportionate number of boys in STIM-EXP (see results). Next, to ensure that observed associations were specific to simulants, we fit the same logistic regression models to predict other psychotropic medication exposure, by including only participants classified as STIM-NAIVE (1 for OTHER-EXP, 0 for OTHER-NAIVE). Connections identified by both sets of models were dropped from further analysis as they were not selective to stimulant exposure.

Step 2: Verifying Driver of Association Between Stimulants and rs-FC Change

For the connections identified in Step 1, we tested for an interaction indicating a significant difference by time for STIM-EXP but not for STIM-NAIVE with a Bayesian hierarchical regression model. We arranged data in long format by time as well as by connection and predicted rs-FC with a 3-way interaction between stimulant exposure, time (1 for Y2, 0 for baseline), and connection (i.e., connections passing step 1), controlling for the same covariates as in step 1. For 3-way interactions significant at the 5% level, we ran post hoc paired samples t-tests, testing rs-FC differences across time for each group, to verify that STIM-EXP was driving the effect (i.e., that the differences in rs-FC across time for connections implicated in the Bayesian model were significant for STIM-EXP and not for STIM-NAIVE).

Step 3: Testing Associations Between rs-FC Change and Symptom Change

Finally, we conducted an additional Bayesian hierarchical logistic regression to test associations between ADHD symptom improvement (defined in Participants section) and rs-FC change of connections passing step 2. Covariates in this model were identical to those in steps 1 and 2, with the addition of length of stimulant exposure (1, 2, or 3 timepoints) and ADHD symptom T-score at baseline. As a secondary test, we reran this model to predict improvement based on RCI
(defined in Participants section), a more conservative definition of symptom improvement. Lastly, as control analyses, which are presented in the SM, we ran the above models predicting symptom improvement and reliable change based on RCI for STIM-NAIVE.

Figure 1

![Diagram showing steps and connections related to stimulant exposure and symptom improvement](image)

Step 1: Are rs-FC changes related to stimulant exposure?

- a. STIM-EXP (n=81) ≠ STIM-NAIVE (n=98)
- b. OTHER-EXP (n=24) ≠ OTHER-NAIVE (n=74)

Step 2: Are changes specific to stimulant exposure?

- a. STIM-EXP, Baseline (n=81) ≠ STIM-EXP, Year 2 (n=81)
- b. STIM-NAIVE, Baseline (n=98) ≠ STIM-NAIVE, Year 2 (n=98)

Step 3: Are changes related to symptom improvement?

- STIM-EXP, Improver (n=19) ≠ STIM-EXP, Not Improver (n=62)

Final passing connections:
- Association between rs-FC change and stimulant exposure
- rs-FC change in stimulant-exposed group only
- Association between rs-FC change and symptom reduction

RESULTS

ADHD Symptom Change Over Time

An individual was classified as showing symptom improvement if their CBCL Attention Problems score at Y2 fell below T=60. By this criterion, 19 STIM-EXP improved and 62 did not, while 48 STIM-NAIVE improved and 50 did not. The 2X2 chi-squared test revealed a significant association between stimulant exposure and improvement ($\chi^2(1)=11.3$, $p<0.001$), indicating that stimulant exposure was less likely to be accompanied by symptom improvement. Using the more conservative RCI criterion, an individual was classified as showing reliable symptom change if the difference between their CBCL Attention Problems scores at Y2 and baseline was $T<=-11$. By this criterion, 11 STIM-EXP improved reliably and 70 did not, while 28 STIM-NAIVE improved reliably and 70 did not. The chi-squared test revealed a significant association between stimulant...
exposure and reliable improvement ($\chi^2(1)=5.0$, $p<0.05$), indicating that stimulant exposure was less likely to be accompanied by reliable symptom improvement. A breakdown of improvement and reliable change for OTHER-EXP and OTHER-NAIVE within the STIM-NAIVE group is presented in SM, indicating that other exposure was also less likely to be accompanied symptom improvement. An analysis of mean differences by stimulant group and time is also presented in SM for descriptive purposes, indicating that while ADHD symptoms improved for both groups, STIM-NAIVE improved to a greater extent than STIM-EXP (see SM Figure S1).

Stimulant Exposure and Change in Striatal rs-FC: Steps 1 and 2

Results from step 1 revealed strong evidence for associations between stimulant exposure and change in seven striatal-cortical functional connections (Figure 2a): left caudate and cingulo-opercular/salience network (Est.=5.19, sd=1.76, 95% CI=[1.86,8.75], ESS=25494, Rhat=1.00), left caudate and frontoparietal network (Est.=9.13, sd=2.55, 95% CI=[-14.35,-4.30], ESS=21819, Rhat=1.00), left putamen and cinguloparietal network (Est.=3.05, sd=1.08, 95% CI=[1.02,5.22], ESS=33876, Rhat=1.00), left putamen and frontoparietal network (Est.=3.52, sd=1.22, 95% CI=[-6.01,-1.21], ESS=22878, Rhat=1.00), left nucleus accumbens and dorsal attention network (Est.=5.04, sd=2.43, 95% CI=[-9.96,-0.35], ESS=29080, Rhat=1.00), right putamen and ventral attention network (Est.=3.01, sd=1.46, 95% CI=[0.18,5.92], ESS=22234, Rhat=1.00), and right putamen and visual network (Est.=3.08, sd=1.22, 95% CI=[-5.54,-0.75], ESS=23746, Rhat=1.00).

A different set of connections was modulated by exposure to non-stimulant medications. Results revealed strong evidence for associations between other psychotropic medication exposure and change in five striatal-cortical functional connections (Figure 2b): left caudate and dorsal attention network (Est.=6.55, sd=2.97, 95% CI=[-12.64,-0.98], ESS=23282, Rhat=1.00), left putamen and somatomotor network (Est.=9.22, sd=4.40, 95% CI=[-18.07,-0.87], ESS=17724, Rhat=1.00), right caudate and auditory network (Est.=5.88, sd=2.69, 95% CI=[0.82,11.32], ESS=23131, Rhat=1.00), right putamen and dorsal attention network.
(Est.=10.30, sd=4.13, 95% CI=[2.81,19.04], ESS=15623, Rhat=1.00), and right nucleus accumbens and ventral attention network (Est.=-9.38, sd=4.13, 95% CI=[-17.93,-1.80], ESS=26895, Rhat=1.00). Connections identified by the two sets of models did not overlap, suggesting that the seven connections sensitive to stimulant exposure were not also sensitive to general psychotropic medication.

In step 2, we further examined the selectivity of sensitivity to stimulant exposure of the seven connections identified in step 1. Results revealed two connections where there was evidence for the relationship between time and rs-FC differing between STIM-EXP and STIM-NAIVE: left putamen and frontoparietal network (Est.=-0.10, sd=0.04, 95% CI=[-0.17,-0.03], ESS=8531, Rhat=1.00) and right putamen and visual network (Est.=-0.09, sd=0.04, 95% CI=[-0.16,-0.02], ESS=8862, Rhat=1.00). Post hoc paired t-tests comparing baseline with Y2, for STIM-EXP and STIM-NAIVE separately, verified that for each connection, rs-FC significantly differed by time for STIM-EXP but not for STIM-NAIVE (Figure 3). Therefore, these two connections passed to step 3, to test for association with symptom improvement.
Figure 2

A

Associations Between Change in Striatal rs-FC and Stimulant Exposure

B

Associations Between Change in Striatal rs-FC and Other Psychotropic Medication Exposure, Excluding Stimulant Exposed Individuals
Associations with Symptom Improvement: Step 3

Of the two connections where change in rs-FC was driven by STIM-EXP, only rs-FC of left putamen-frontoparietal network showed strong evidence for an association between change and the likelihood of symptom improvement in STIM-EXP (Est. = 7.09, sd = 3.45, 95% CI = [1.03, 14.48], ESS = 15953, Rhat = 1.00) (Figure 4). When symptom improvement was classified based on RCI, there was no evidence for a relationship between left putamen-frontoparietal network rs-FC change and reliable symptom change (Est. = 3.07, sd = 5.89, 95% CI = [-9.37, 14.27], ESS = 2535, Rhat = 1.00). As secondary control analyses, we repeated the above analyses for STIM-NAIVE, reported in SM.
DISCUSSION

We examined change in rs-FC between striatal regions and canonical cortical functional networks which was associated with exposure to stimulant medication over a 2-year period in preadolescent children with ADHD in the ABCD dataset. Results revealed seven striatal-cortical functional networks where change in rs-FC was associated with exposure to stimulant medication, but not to other psychotropic medications. The identified connections were primarily between left hemisphere seeds and canonical executive networks, including left caudate and cingulopercular/salience network as well as frontoparietal network, left putamen and cinguloparietal network as well as frontoparietal network, and left nucleus accumbens and dorsal attention network. Two connections were identified with a right hemisphere seed, right putamen, one with a canonical executive network, ventral attention network, and another with a sensory network, visual network. Of these seven connections, left putamen-frontoparietal network and right putamen-visual network demonstrated rs-FC change over the 2 years only in children exposed to stimulant medication and not in those who were stimulant naive. Of these, change in rs-FC of only
one connection, left putamen-frontoparietal network, was associated with symptom improvement, defined as stimulant exposed children whose Y2 scores were below T=60 on the ADHD Problems scale of the CBCL. Together, these findings indicate widespread modulation of striatal functional connectivity over 2 years at the cusp of adolescence that distinguished stimulant exposure in children with ADHD, but only functional connectivity of the putamen and frontoparietal network was related to symptom improvement.

There are several factors to keep in mind for interpreting the current findings. First, the amount of medication exposure cannot be precisely measured as the dataset includes only the parent’s report at the time of the baseline and Y2 MRI scans and the year 1 interim visit, and no monitoring of medication status during the year. Classification of a participant as stimulant exposed was based on taking a stimulant at any of the three visits with the rationale that it approximated real-world treatment conditions, which are marked by variation in dose, lack of consistent medication compliance, and intermittent exposure. Exposure to other psychotropic medications followed the same rationale. Second, several factors that are relevant to functional brain variation were controlled by including as covariates, namely head motion/data quality (two measures, mean FD and the square root of the length of rs-FC data following removal of frames exceeding 0.2mm FD), socioeconomic status (composite defined by parental and partner education as well as combined family income), gender, IQ, presence of other psychotropic medications, and number of psychiatric comorbidities. As patterns of comorbidity are not stable across time and fluctuations in symptoms are not linear (42), the current results cannot be extrapolated to a later 2-year window in adolescence. Third, stimulant washout information for baseline and Y2 scanning sessions was missing for all subjects in the present sample and could not be controlled for. Nonetheless, recent work on the ABCD sample found that no differences in frontoparietal network rs-FC could be detected between stimulant washed out and recently stimulant exposed groups, assuaging concerns that this could be confounding (43). Fourth, an inherent limitation of large-scale rs-FC networks is that they represent averages across many
parcels resulting in lost information at the parcel-level. However, our sample of children with ADHD at the baseline timepoint was underpowered to look at relationships among several hundred parcels, making a focus on the whole network an efficient dimensionality reduction strategy. Further, it is an open question what functional unit or units are best for explaining variation in symptoms, or which would be sensitive to stimulant exposure. Moreover, there is high variation across brains such that a parcel-level analysis may be best suited for a precision or individualized approach. Fifth, as an additional dimensionality reduction step we averaged some functional networks (i.e., cingulo-opercular and salience networks; and somatomotor hand and somatomotor mouth networks) based on theoretical views that there may not be a meaningful distinction for the purposes of the present analysis (38).

ADHD symptom improvement was not selective to stimulant exposure. Symptom improvement was defined as no longer meeting diagnostic criteria for ADHD based on the DSM-oriented ADHD Problems Scale of the CBCL. Unfortunately, the ABCD protocol does not include a comprehensive clinical characterization at each timepoint. While our criterion may appear to be a conservative definition of symptom improvement, we wanted to capture change that was clinically meaningful, and a cut-off of T>60 is customarily considered to signal clinically significant symptom severity. Surprisingly, a greater proportion of children from STIM-NAIVE compared to STIM-EXP showed symptom improvement. On analysis of mean differences, while both groups had lower scores at Y2 than at baseline, STIM-NAIVE showed greater reduction. STIM-NAIVE was also more likely to demonstrate reliable symptom improvement when characterized with a more conservative metric of change, the reliable change index. The symptom improvement for STIM-NAIVE was not driven by exposure to other psychotropic medication because when the group was split between OTHER-EXP and OTHER-NAIVE, more children from OTHER-NAIVE than OTHER-EXP showed symptom improvement. This result could be theoretically explained by a bias in who is prescribed stimulant medications (i.e., a patient selection bias), as previous work has shown that ADHD symptom severity as well as residential disadvantage are predictors of
stimulant use (44). While such a bias may exist in the present sample, STIM-EXP and STIM-NAIVE did not differ on ADHD symptoms as well as SES at baseline, minimizing this possibility. Alternatively, the observation of less symptom improvement over time in STIM-EXP may potentially reflect maladaptive behaviors that were exacerbated by medication (e.g., irritability, mood disturbances), which are particularly noted in amphetamine-derived stimulants (45). Therefore, while core symptoms of ADHD were reduced by stimulant medication, other behaviors may have worsened, which the ADHD Problems Scale of the CBCL was likely not sufficiently sensitive to parse. Further, comprehensive characterization of ADHD symptoms was not part of the ABCD study design and therefore our conclusions are limited by that one CBCL scale. Generally, however, stimulant medication in childhood is indeed not found to be strongly linked to future reduction in symptom severity (46), and has only marginally been associated with improvements in adult outcomes, which include protection against later substance abuse (47) and school absenteeism (48) but with no strong link to long-term ADHD symptom outcomes. This may be due to the fact that many studies of symptom progression are prospective follow-up studies with higher potential for selection bias as compared to controlled trials, which generally show relatively greater symptom improvement across time for stimulant-treated individuals (49).

Imaging results indicated that rs-FC of circuitry supporting motor control, inhibition, and other cognitive functions implicated in ADHD was sensitive to long-term stimulant exposure. We observed widespread change in rs-FC between striatal seeds and canonical executive cortical networks (cingulo-opercular/salience, frontoparietal, cinguloparietal, and ventral and dorsal attention networks), circuitry that has been implicated in findings from studies of acute stimulant exposure (22). These findings extend work suggesting that large-scale dysfunction at the cortical network level may be better able to account for the complex patterns of impairment seen in ADHD as well as the mitigating effects of stimulant treatment compared to more fine-grained loci of dysfunction. For example, canonical executive networks, such as frontoparietal and salience networks, show atypical connectivity in ADHD in adults which is partially normalized by acute
stimulant exposure (50). Intervention studies in children have also demonstrated stimulant-mediated modulation of rs-FC at the network-level, such as rs-FC between left frontoparietal network and insula as well as right frontoparietal network and the reticular activating system in the brainstem after 12 weeks of methylphenidate treatment (51), and between the DMN and left putamen after 6 months of methylphenidate treatment (26). Complementing these controlled paradigms, we show that the average rs-FC of large-scale executive networks with striatal regions is sensitive to stimulant exposure in an observational design at the network-level. Rs-FC network function, in addition to theoretically being better able to capture the complex impairments of ADHD, may be especially therapeutically relevant. Targeted with transcranial magnetic stimulation (TMS), for instance, to a specific location in dorsolateral prefrontal cortex for ADHD (52), modulates the entire network, i.e., all other regions with which it is functionally and structurally connected (53). Therefore, the present findings of long-term stimulant-related executive network rs-FC change, specifically with striatal regions, may bolster novel neural therapeutic targets.

The integration of cortico-striatal functional circuits is crucial to carrying out cognitive and motor processes leading to purposeful action (54). Presently, for two network connections, left putamen-frontoparietal and right putamen-visual, change in rs-FC was observed exclusively in the stimulant exposed group, such that rs-FC became less positive for individuals exposed to stimulants. Higher putamen-visual network rs-FC has been linked to more severe symptoms of impulsivity and hyperactivity (55), so reduced rs-FC suggests a therapeutic and normalizing change. The visual network broadly has been associated with a wide range of behaviors relevant to ADHD pathology, including visual attention and inattentive symptoms (16,56), so its connectivity may link to stimulant treatment for this reason. However, this network connection was not associated with symptom improvement in the present sample. Only 23% (19/81) of stimulus-exposed children showed clinically meaningful improvement and they were distinguished from non-improvers by change in rs-FC of the left putamen with the frontoparietal network. As to the
direction of FC change, there appears to be high variability in the level of optimal FC as, apparent in Figure 4, both direction and magnitude of change were highly variable among improvers and non-improvers. Fewer improvers showed negative change. The significant association with symptom improvement was not observed using a more conservative standard for symptom change, the reliable change index, perhaps not surprisingly given that only 11 stimulant-exposed children met the criteria of a 11 point change on the symptom score. Striatal functional abnormalities have long been noted in ADHD (57) as well as aberrant frontostriatal and frontoparietal circuits mediated by dopamine function (58). The striatum is the main input of the basal ganglia, with putamen classically linked to motor control, and therefore therapeutic effects of FC modulation may relate to motor symptoms of ADHD such as hyperactivity and restlessness.

In sum, our results reveal that stimulant exposure under real-world conditions over two years modulates bilateral large-scale cortical network connectivity with the striatum widely in preadolescent children with ADHD. Its therapeutic significance, however, appears to be limited.

ACKNOWLEDGEMENTS

We would like to acknowledge and thank the ABCD study.

AUTHOR CONTRIBUTIONS

AK performed the analyses, BH compiled the medication data, and AK, HX and CJV wrote the paper.

FUNDING

AK is supported by TL1TR001431 and HX, BH, and CJV are supported by NICHDP50HD105328-01.

COMPETING INTERESTS
All authors report no competing interests or potential conflicts of interest.

REFERENCES

state network dysconnectivity in ADHD: A system-neuroscience-based meta-analysis.

Generation and Evaluation of a Cortical Area Parcellation from Resting-State Correlations.

Cereb Cortex 26: 288–303.

45. Stuckelman ZD, Mulqueen JM, Ferracioli-Oda E, Cohen SC, Coughlin CG, Leckman JF,

https://doi.org/10.1523/ENEURO.0076-19.2019

FIGURE LEGENDS

Table 1. Sample Characteristics of Study Participants and Group Differences. This table displays the means and standard deviations of STIM-EXP, STIM-NAIVE, OTHER-EXP, and OTHER-NAIVE across demographic variables.

Figure 1. Flowchart for the Three Analytic Steps. We measured rs-FC change between 6 striatal seeds and 10 functional cortical networks from the Gordon parcellation (upper left). First, we assessed evidence for a relationship between rs-FC change and stimulant exposure; second, we confirmed the specificity of rs-FC change to STIM-EXP; and third, we tested associations between rs-FC change and ADHD symptom improvement. Automatic segmentation (Aseg) subcortical atlas from Freesurfer and Gordon parcellation images adapted from
https://ggseg.github.io/ggsegExtra/articles/createaseg.html and https://balsa.wustl.edu/WK71 respectively. STIM-EXP, stimulant exposed; STIM-NAIVE, stimulant naive; OTHER-EXP, other psychotropic medication exposed and naive to stimulants; OTHER-NAIVE, completely naive of psychotropic medications.

Figure 2. Results of Bayesian Hierarchical Logistic Regression Models Estimating the Association Between rs-FC Change and *(a)* Stimulant Exposure and *(b)* Other Psychotropic Medication Exposure. This figure shows estimates on the y-axes of the relationships between change in rs-FC from baseline to year 2 and medication exposure, which is stimulant exposure in part a and other psychotropic medication exposure in part b, which excludes participants exposed to stimulants. Striatal seeds are shown in different colors and cortical functional networks are displayed along the x-axes. The bars span 99% of the estimates for each association and the tick marks reflect the 95% credible intervals. Associations where the 95% credible interval does not overlap with 0 are highlighted on the x-axes with red font for the implicated cortical functional network.

Figure 3. Rs-FC at Baseline and Year 2 Timepoints for Connections Passing Analysis Steps 1 and 2, Separately for Stimulant Exposure Groups. This figure shows rs-FC change for the connections where 1) there was strong evidence for an association between rs-FC change and stimulant exposure, and 2) there was strong evidence for a stimulant exposure X time X connection interaction. We verified that rs-FC change was driven by STIM-EXP with paired samples t-tests, displayed above the boxplots. Rs-FC decreased in STIM-EXP for both identified connections, such that positive rs-FC became less positive for STIM-EXP only. Boxplots show the median as well as the 25th and 75th percentiles. Individual participants’ rs-FC is reflected as dots which are connected across time.
Figure 4. Left Putamen-Frontoparietal Network rs-FC Change for Stimulant-exposed Improver and Non-improver Groups. A) rs-FC values at baseline and year 2, excluding stimulant-naive participants. Individual participants’ rs-FC values are reflected as dots connected across time. B) Predicted probabilities plot for rs-FC change (Y2 minus baseline) showing probability of being an improver, along with the 95% confidence interval.
Step 1: Are rs-FC changes related to stimulant exposure?

- STIM-EXP (n=81) ≠ STIM-NAIVE (n=98)
- OTHER-EXP (n=24) ≠ OTHER-NAIVE (n=74)

Step 2: Are changes specific to stimulant exposure?

- STIM-EXP, Baseline (n=81) ≠ STIM-EXP, Year 2 (n=81)
- STIM-NAIVE, Baseline (n=98) ≠ STIM-NAIVE, Year 2 (n=98)

Step 3: Are changes related to symptom improvement?

- STIM-EXP, Improver (n=19) ≠ STIM-EXP, Not Improver (n=62)

Final passing connections:
- Association between rs-FC change and stimulant exposure
- rs-FC change in stimulant-exposed group only
- Association between rs-FC change and symptom reduction
A
Left Putamen - Frontoparietal Network

![Graph A](image)

- **X-axis**: Baseline, Year 2
- **Y-axis**: Resting State Functional Connectivity
- **Legend**: Improver, Non-improver

B
Predicted Probabilities of ADHD Symptom Improvement

![Graph B](image)

- **X-axis**: Left Putamen - Frontoparietal Network rs-FC Change
- **Y-axis**: Improver