Aging-dependent Change in Th17 and Cytokine Response in Multiple Sclerosis

Wen Zhu, Shankar Revu, Chenyi Chen, Megan Dahl, Archna Ramkumar, Conor Kelly, Mandy McGeachy, Zongqi Xia

1 Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
2 Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
3 Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA

* Share co-senior authorship

Corresponding Author:

Zongqi Xia, MD, PhD
Department of Neurology, University of Pittsburgh
Biomedical Science Tower 3, Suite 10-044, 3501 5th Avenue, Pittsburgh, PA 15260
Phone: 412-383-5377; Fax: 412-648-7233; Email: zxia1@post.harvard.edu

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Abstract

Background: Multiple sclerosis (MS) is a chronic autoimmune disease damaging the central nervous system. Diminished inflammatory disease activities (DAs) as people with MS (pwMS) age justified randomized clinical trials assessing disease-modifying therapy (DMT) discontinuation in older pwMS given the concern for risk outweighing benefit.

Objective: This study aims to examine the effect of age on DAs and the peripheral production of Myelin Basic Protein (MBP)-driven cytokine response in pwMS.

Methods: We included the clinical data of 368 adult pwMS between 2017 and 2021 from a clinic-based registry. In a subset of 80 participants, we isolated fresh peripheral blood mononuclear cells (PBMCs) and cultured with 50µg/ml of MBP for 24 hours. We assayed cell culture supernatants for IL-17 and IFN-γ using Enzyme-Linked Immunosorbent Assay. We further analyzed a subset of the supernatant samples using the Luminex xMAP platform human cytokine/chemokine array. We examined associations between age and inflammatory DA [annualized relapse rate (ARR)] as well as age and MBP-stimulated cytokine production (by cultured PBMC) using covariate-adjusted linear regression. We determined the extent of the MBP-driven cytokine responses in driving the association between age and ARR using mediation analyses.

Results: Among the 386 pwMS (mean age 53.1±12.6 years, 79.9% women, 92.1% non-Hispanic White), ARR declined with age (β=-0.003, p<0.001). Among the 80 pwMS with cultured PBMC, MBP-driven IL-17 production declined with age in women (β=-0.27, p=0.04) but not men (β=-0.1, p=0.73). MBP-driven IL-17 response partially mediated the association between older age and lower ARR (24.7% in women, 15.3% in men). Further, older pwMS (≥50 years) had significantly lower (IL-4, MCP2, MCP3, PDGF.AA, PDGF.AB.BB) and higher (Fractalkine, MDC) concentrations of several cytokines when compared to younger pwMS (<50 years). These cytokines affected the association
between age and ARR in different ways, with some of them (MCP-2 and MDC) likely mediating the effect of age on ARR, while the others likely counteracting the effect of age on ARR.

Conclusion: This study suggests some of the potential biological mechanisms driving aging-dependent decline in MS inflammatory DA.

Key Words:

Multiple sclerosis, myelin basic protein, Th17, aging, relapse
Introduction

Multiple sclerosis (MS) is a chronic autoimmune disease that causes inflammatory demyelination and progressive neurodegeneration in the central nervous system (CNS). Aging is a key factor affecting MS disease progression.[1,2] Observational study of people with MS (pwMS) found that 45 years of age mark an inflection point when the relapse rate declines whereas the rate of disability accrual increases.[3] While the inflammatory disease activity diminishes with increasing age, the potential for a full recovery after a relapse also diminishes.[4] Both could be due to the decreasing ability of the CNS to restore function and the diminished “brain reserve” with aging.[2] These considerations motivate not only the basic science investigation of aging in the MS but also randomized clinical trials testing the safety of immune modulating therapy discontinuation in older pwMS with stable inflammatory disease activity.[5]

Interleukin-17 (IL-17) is a pro-inflammatory cytokine that increases blood-brain barrier permeability, activates microglia, and promotes pro-inflammatory signaling in astrocytes. Increased IL-17 expression is found at sites of active acute inflammation and chronic inflammation in pwMS.[6] Myelin-reactive CD4+ T helper (Th) cells, particularly Th17 cells that produce IL-17, are crucial in MS pathogenesis. Depletion of Th17 cells in a murine model of experimental autoimmune demyelination protects against the induction of MS-like pathology and phenotype.[7] Th17 cells are more abundant in the blood and cerebrospinal fluid of pwMS than healthy controls, and further expand during active MS relapses.[8–11] Th17 cells encompass subpopulations that differentially produce IL-17 alone or in combination with other proinflammatory cytokines. Double-positive IL-17+ IFNγ+ cells are the most common subpopulation of Th17 cells. Overall Th17 cell frequency is higher in both people with relapsing-remitting MS (RRMS) and secondary-progressive MS (SPMS) than in healthy controls,
while double-positive IL-17+ IFNγ+ Th17 cells are higher in the inflammation-predominant RRMS than the neurodegeneration-predominant SPMS.[12]

Immunosenescence and inflammaging potentially explain the aging-associated decline in MS disease activity. Immunosenescence describes dysregulated adaptive and innate immune responses that increase the risk of infection and malignancy as people age, while inflammaging refers to the low-grade chronic inflammation throughout the aging process that produces broad tissue damages and chronic conditions. The former may contribute to the decline in acute inflammatory demyelination events with aging, while the latter may contribute to the disability accrual and disease progression disease with aging.[13] Among the cells crucial in MS pathogenesis and progression, Th17 cells also play a significant role in mediating inflammaging.[14,15] In a study of 122 pwMS, aging and an inflammatory Th17 immune response profile were strongly associated with disability, while a higher composite Th17/Treg score (positively weighting IL-6 and IL-17 for Th17 and negatively weighting IL-10 for Treg) is one of the most important features predicting higher disability.[16]

Few studies to date have examined immune drivers of age-related decline in MS relapse, particularly the role of Th17 cells. Myelin basic protein (MBP) is an abundant protein in the CNS myelin and a putative MS auto-antigen, and cytokines released from MBP-stimulated peripheral immune cells isolated from pwMS represent an experimental paradigm to investigate MS-relevant mechanisms.[17–23] In this study, we examined the relationships between age and relapse in pwMS and whether MBP-induced Th17/IL-17 and other cytokine responses mediate the associations.
Methods

Study Design, Participants and Samples

This cross-sectional study included 368 participants (primary cohort) who enrolled in a clinic-based prospective cohort study (Prospective Investigation of Multiple Sclerosis in the Three Rivers Region, PROMOTE; Pittsburgh, PA) during 2017-2021 (Figure 1).[24–35] The study criteria included adults 18 years or older with a neurologist-confirmed diagnosis of MS according to the 2017 McDonald criteria. Given the clinical outcome of interest is relapse event, we included pwMS of relapsing remitting (RRMS) and secondary progressive (SPMS) type and excluded primary progressive type (PPMS). To collect blood sample for MBP-stimulation assays, we randomly selected a subset of 80 participants (Th17 cohort) to achieve a 1:2 men to women ratio and relatively balanced distribution across age groups from 25 to 75 years old. Participants donated venous blood samples for research during routine clinical appointments. The blood samples were immediately processed for the downstream experiments.

Ethics Approval

The institutional review boards of the University of Pittsburgh (STUDY19080007) approved the study protocols. All participants provided written informed consent.

Covariates

We collected demographic and clinical data, including age (at the time of relapse history annotation [primary cohort] or blood sample collection [Th17 cohort]), sex (men versus women), race/ethnicity (non-Hispanic white versus otherwise), disease duration and use of disease modifying therapy [DMT] (high-efficacy versus standard-efficacy versus no DMT) through review of the
electronic health records (EHR). Disease duration was defined as the time interval between MS diagnosis and the time of relapse history annotation (primary cohort) or blood sample collection (Th17 cohort). For DMT, we categorized natalizumab, ocrelizumab, and rituximab as higher-efficacy, while dimethyl fumarate, fingolimod, glatiramer acetate, interferon beta and teriflunomide as standard-efficacy.

Relapse

We annotated relapse events through EHR review. A relapse event could be a clinical and/or radiologic relapse. We define clinical relapses as having new or recurrent neurological symptoms (relevant to MS) lasting persistently for 24 hours or longer without fever or infection. We define radiological relapse as having either a new T1-enhancing lesion and/or a new or enlarging T2-fluid-attenuated inversion recovery (FLAIR) hyperintense lesion based on clinical radiology reports of routine brain, orbit, or spinal cord MRI studies. For the primary cohort, we calculated the annualized relapse rate (ARR), which is a commonly used MS relapse outcome, in the two years preceding the annotation of relapse history. For the Th17 cohort, we calculated the ARR encompassing the two years preceding and the two years after the blood sample collection.

MBP Stimulation Assay

Peripheral blood mononuclear cells (PBMCs) were isolated from freshly collected whole blood by Ficoll-plague (Sigma-Aldrich) density gradient centrifugation (400x g) for 30 min at room temperature with no brake. PBMCs were collected, washed twice with PBS at (200x g) for 15 min at 4°C, and then cultured at a density of 2x10⁶ cells per well in 24-well plate with or without 50 μg/mL of human MBP antigen (catalog #M0689, Sigma Aldrich) for 24 hours.
Analysis of MBP-driven Cytokines

We collected supernatants of cultured PBMCs after 24-hour MBP stimulation and performed enzyme-linked immunosorbent assay (ELISA) using the Ready-SET-Go kit for human IL-17 (catalog #88-7176-88) and IFN-γ (catalog #88-7316-88) (eBioscience) according to the manufacturer’s instructions. We performed ELISA assays of each supernatant sample in duplicates and calculated the mean concentrations of the duplicates. In addition, we analyzed a subset of supernatant samples using the Luminex xMAP platform human cytokine/chemokine array (Eve Technologies, Canada).

Statistical Analysis

To select the covariates in downstream analysis, we first examined the associations between potentially relevant clinical or demographic variables (sex, race/ethnicity, disease subtype and DMT efficacy) and MS relapse outcome (*i.e.*, ARR) using univariate linear regression. We then assessed the associations between age and ARR, age and (concentration of) cytokines, and cytokines and ARR using multi-variate linear regressions accounting for potential confounders deemed significant in the univariate analyses. We assessed the proportion of the association between age and ARR explained by the MBP-driven cytokine responses (Th17/IL-17 and other cytokines) using mediation test. The total effect of the exposure (*i.e.*, age) on the outcome (*i.e.*, ARR) encompasses both direct effect (of the exposure on the outcome) and indirect effect mediated through one or more intermediaries (*e.g.*, cytokine). A two-tailed p-value <0.05 was deemed statistically significant. We performed all analyses using R, version 4.0.2.
Results

Age is inversely associated with MS relapse rate

We included the clinical data of 368 adult pwMS (mean age 53.1±12.6 years, 79.9% women, 92.1% non-Hispanic White) who enrolled in the PROMOTE study between 2017 and 2021 (Table 1). Among these 368 participants (primary cohort), there was a significant inverse association between age and ARR, which remained significant after accounting for covariates selected by the univariate analyses (i.e., sex and race/ethnicity) (Table 2). In a subset of 80 participants (Th17 cohort) who donated venous blood for MBP-stimulation assays on cultured PBMCs, the inverse association between age and ARR remained significant. To reduce over-correction, we did not include disease duration as a covariate in the analyses because of its strong correlation with age.

MBP-driven IL-17 responses was inversely associated with age in women

To assess the association between age and MBP-driven Th17/IL-17 response, we considered age as either a continuous variable or a binary variable using ≥50 versus <50 years as the threshold. In the Th17 cohort, age was not significantly associated with MBP-driven IL-17 expression (Figure 2A and D). Notably, there was a significant inverse association between age and MBP-driven IL-17 response in women but not in men (Fig 2B and 2E versus Fig 2C and 2F). When assessing the association between the MBP-driven IL-17 response and ARR, we again found significantly inverse correlations in women but not men (Figure 3). With the caveat that there were fewer men than women analyzed (reflecting the typical ratio of men versus women in MS), these findings support further investigation of the sex differences in MBP-driven peripheral immune response in pwMS with larger sample size.
To assess the extent to which MBP-driven IL-17 response explains the association between age and ARR, we performed mediation analysis (Table 3). We estimated that 24.6% of the effect of older age on lower ARR was mediated by MBP-driven IL-17 response in women whereas 15.3% of the age effect on ARR was mediated by MBP-driven IL-17 response in men.

IFN-γ is produced by Th1 cells and inflammatory Th17 cells. As negative controls, we similarly assessed MBP-driven IFN-γ responses and found no statistically significant association between age and MBP-driven IFN-γ as well as MBP-driven IFN-γ and ARR in the Th17 cohort (full, women, men) (Supplementary Figure 1).

Age and MBP-driven cytokine responses

Given that other cytokines beyond IL-17 might change as pwMS age, we performed exploratory analysis of additional MBP-driven cytokine responses in 28 samples from the Th17 cohort (women=20, men=8) using the Luminex xMAP platform human cytokine/chemokine array. We did not stratify the samples by sex in these analyses due to the relatively modest sample size. We assayed 57 MBP-driven cytokine responses across the 28 samples and organized them in order of ascending age (Figure 4A). 7 cytokines showed significant associations with age (Figure 4B, Figure 5 and Supplementary Table 1). Fractalkine and MDC were inversely associated with age, while IL-4, MCP-2, MCP-3, PDGF-AA, and PDGF-AB-BB were positively associated with age (Figure 5). We further explored the extent to which these 7 MBP-driven cytokine responses mediated the association between older age and lower ARR. Two cytokines mediated the effect of age on ARR in similar proportions: MCP-2 (4.15%), MDC (4.53%). Interestingly, other cytokines (Fractalkine, IL-4, MCP-3, PDGF-AA, and PDGF-AB-BB) might counteract the effect of age on ARR in proportion of cytokine-
mediated counteraction on the effect of age on ARR ranging from 0.75% (PDGF-AB-BB) to 16.98% (IL-4) (Supplementary Table 2).

Discussion

In this clinic-based cohort study, we confirmed that the relapse frequency (ARR) declined with age in pwMS. As a potential mechanism to explain this important clinical observation, MBP-driven IL-17 production, but not IFN-γ production, declined with age in women but not men. MBP-driven IL-17 response partially mediated the effect of older age on lower ARR with differential proportion between women (24.7%) and men (15.3%). In an exploratory analysis of other MBP-driven cytokines, older pwMS (50 years and older) exhibited significantly lower concentrations of IL-4, MCP-2, MCP-3, PDGF-AA, PDGF-AB-BB while significantly higher concentrations Fractalkine and MDC when compared to pwMS below 50 years of age.

This study has several strengths. First, this is the first study to our knowledge using patient-derived PBMCs stimulated with MBP, an abundant CNS myelin protein and a putative auto-antigen, as an experimental paradigm to examine potential peripheral immune drivers of the associations between aging and decline in inflammatory disease activity in pwMS. This approach enables the investigation of potential change in MS-relevant autoimmune response and associated biomarkers of clinical relevance in aging pwMS. Second, this study examined the sex-difference in potential immune mechanism underlying aging in MS. Although sex difference in MS susceptibility is well recognized, little is known regarding the sex difference in peripheral immune responses in aging pwMS. We found that the extent to which MBP-driven Th17 response mediated aging-related decline in MS inflammatory disease activity (i.e., relapse rate) was greater in women than men. Finally, we explored a broader group of MBP-driven cytokine responses beyond Th17/IL-17. These findings collectively
generate hypotheses for future studies of the mechanisms of aging in MS and the identifications of age- and sex-specific biomarkers for MS disease progression.

Peripheral immune drivers of MS inflammatory disease activity are postulated to differ by sex and age, which may support the clinical observation that MS diagnosis is more common in women than men while men with MS is prone to develop progressive disease and greater disability progression than women.[36] The existing literature indicates at least two concurrent pathogenic processes across the MS disease stages.[37,38] First, acute inflammatory demyelination and relapse events are underscored by the migration of peripheral CD8+ and CD4+ T cells and CD20+ B cells into the CNS. Second, progressive neurodegeneration and disability accrual are driven by microglia and macrophage activation, oxidative injury, and mitochondrial damage that can occur concurrently in the early stages of the disease and involve the gradual accumulation of late-differentiated T and B cells in the meninges and periventricular spaces. There are likely sex differences in the development of these two processes in MS. A single-cell transcriptomic analysis examining the effects of sex and age on the peripheral immune cell landscape in the general human population reported higher percentage of plasma cells and over-representation of gene expression pathways relevant for the adaptive immune function (B and T cell activation) in women versus higher percentage of NK cells and higher expression of pro-inflammatory genes in men. Importantly, aging further amplified the observed sex differences.[39] Dysregulation of T-cell subtypes occurs with normal aging in the broader population, manifesting paradoxically as an aging-dependent increase in Th17/Treg ratio at baseline but reduced Th17/Treg ratio after stimulation (by phytohaemagglutinin, a potent stimulator of IL-17 response in PBMCs).[14] Menopause in women is a potential aging-related inflection point (around 40-50 years of age) in immune alteration, accompanied by an increase in Th17/Treg ratio.[40] Given the existing literature that adaptive immunity (e.g., B and T cell activation) is generally more robust in women than...
men while aging-dependent Th17/Treg dysregulation coincides with the perimenopausal period (a key point in female aging) and exposure to non-MS specific stimulant of IL-17 paradoxically reduced the aging-dependent Th17/Treg ratio, it is conceivable that the aging-dependent decline in MS relapse rate may be driven by the diminishing MBP-driven IL-17 responses to a greater extent in women than men, as reported in this study.

The main study limitations pertain to the sex imbalance in sample size, low racial and ethnic diversity, and a single center study. Given that the study population drew from a pragmatic real-world clinic-based cohort of pwMS, we are limited by the available research participants who are over-represented by women and non-Hispanic White individuals, largely reflecting the broader clinic population. Future studies that include a larger sample size of more men, greater proportion of historically under-represented racial and ethnic groups and external data sources would further enhance the robustness of our findings.

Conclusion

This study highlights the potential important role of MBP-driven Th17/IL-17 and potentially additional peripheral immune cytokine mediators in aging-dependent decline in MS inflammatory disease activity, particular in women.
Acknowledgment

We appreciate all research participants and the clinicians at the UPMC MS Center.

Conflict of Interest

The authors report no relevant conflict of interest.

Data Sharing

Code for analysis and figures is available at <https://github.com/xialab2016/AgeandTh17.git>. De-identified data are available upon request to the corresponding author and with permission from the participating institution.
Reference

<table>
<thead>
<tr>
<th></th>
<th>Primary Cohort</th>
<th></th>
<th>Th17 Cohort</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>All (n=368)</td>
<td>Women (n=294)</td>
<td>Men (n=74)</td>
<td>All (n=80)</td>
</tr>
<tr>
<td>Age (years, mean ± SD)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>53.1 (12.6)</td>
<td>53.2 (12.2)</td>
<td>52.7 (14.1)</td>
<td>47.15 (13.3)</td>
</tr>
<tr>
<td>Race/Ethnicity (% of cohort)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-Hispanic White</td>
<td>337 (92.1)</td>
<td>268 (91.8)</td>
<td>69 (93.2)</td>
<td>74 (86.0)</td>
</tr>
<tr>
<td>Other</td>
<td>31 (7.9)</td>
<td>26 (8.2)</td>
<td>5 (6.8)</td>
<td>12 (14.0)</td>
</tr>
<tr>
<td>Disease Duration (years, mean ± SD)</td>
<td>16.2 (10.0)</td>
<td>16.3 (9.6)</td>
<td>15.5 (11.4)</td>
<td>13.34 (10.15)</td>
</tr>
<tr>
<td>Disease Subtype (n, % of cohort)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RRMS</td>
<td>354 (96.2)</td>
<td>285 (96.9)</td>
<td>65 (87.8)</td>
<td>78 (97.5)</td>
</tr>
<tr>
<td>SPMS</td>
<td>18 (4.9)</td>
<td>9 (3.1)</td>
<td>9 (12.2)</td>
<td>2 (2.5)</td>
</tr>
<tr>
<td>DMT (n, % of cohort)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No DMT</td>
<td>13 (3.5)</td>
<td>8 (2.1)</td>
<td>5 (6.8)</td>
<td>13 (16.2)</td>
</tr>
<tr>
<td>On DMT</td>
<td>355 (96.5)</td>
<td>286 (97.9)</td>
<td>69 (93.2)</td>
<td>69 (83.8)</td>
</tr>
</tbody>
</table>

Abbreviations: SD = standard deviation, IQR = interquartile range, RRMS = relapse-remitting MS, SPMS = secondary progressive MS
Table 2. Age is inversely associated with annualized relapse rate (ARR) in pwMS

<table>
<thead>
<tr>
<th></th>
<th>Primary Cohort (n=368)</th>
<th>Th17 Cohort (n=80)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linear Regression</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ARR</td>
<td>Coefficient⁴</td>
<td>p-value</td>
</tr>
<tr>
<td></td>
<td>-0.003</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Adjusted Linear Regression</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ARR</td>
<td>Coefficient⁴</td>
<td>p-value</td>
</tr>
<tr>
<td></td>
<td>-0.007</td>
<td>< 0.001</td>
</tr>
</tbody>
</table>

1. Linear regression: ARR ~ age.
3. Annualized relapse rate (ARR): Primary cohort - ARR within 2 years prior to the relapse history annotation date; ARR within ± 2 years of sample collection.
4. Coefficient for age.
Table 3. MBP-driven IL-17 response as a mediator of the effect of age on ARR.

<table>
<thead>
<tr>
<th></th>
<th>All (n=80)</th>
<th>Women (n=56)</th>
<th>Men (n=24)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Coefficient (95%CI)</td>
<td>p-value</td>
<td>Coefficient (95%CI)</td>
</tr>
<tr>
<td>Total effect</td>
<td>-0.141 (-0.255, -0.048)</td>
<td>0.004</td>
<td>-0.150 (-0.262, -0.035)</td>
</tr>
<tr>
<td>Direct effect</td>
<td>-0.138 (-0.250, -0.041)</td>
<td>0.012</td>
<td>-0.113 (-0.230, -0.0003)</td>
</tr>
<tr>
<td>Indirect effect</td>
<td>-0.003 (-0.038, -0.010)</td>
<td>0.652</td>
<td>-0.037 (-0.105, -0.009)</td>
</tr>
</tbody>
</table>

Note: We conducted mediation analyses to assess the extent to which MBP-driven IL-17 response explains the association between age and ARR in pwMS. We compared ≥50 years to <50 years of age as the reference group. In each mediation analysis, independent variables of the total effect model\(^1\) are age and race/ethnicity. Independent variables of the direct effect model\(^2\) are age, race/ethnicity and MBP-driven IL-17. \(^3\)Indirect effect was calculated by subtracting direct effect from total effect. The proportion of the association between age and ARR mediated by MBP-driven IL-17 was 24.6% (-0.037/-0.150) in women, while 15.3% (-0.017/-0.111) in men.

Abbreviations: CI = confidence interval
Figure 1. Overall study design.

Figure 2. MBP-driven IL17 response was inversely associated with age in women but not in men. PBMCs from pwMS were stimulated with MBP for 24 hours. IL-17 concentration in the supernatant was measured using ELISA and plotted against age as a continuous variable (A-C) and as a binary variable (D-F) using the threshold of ≥50 years versus <50 years.

Figure 3. MBP-driven IL17 response was inversely associated with relapse outcome in women but not in men. MS PBMC were stimulated with MBP for 24 hours. Levels of IL-17 were measured by ELISA, and were plotted against annualized relapse rate (ARR) within ± 2 years of sample collection.

Figure 4. Levels of selected cytokines after MBP stimulation. MS PBMC were stimulated with MBP for 24 hours. Levels of 57 selected cytokines were measured by the Luminex xMAP platform human cytokine/chemokine array and Z-scored transformed (A), and levels of 7 cytokines were significantly associated with age (B).

Figure 5. Levels of cytokines were significantly associated with age after MBP stimulation. MS PBMC were stimulated with MBP for 24 hours. Levels of cytokines were measured by cytokines were measured by the Luminex xMAP platform human cytokine/chemokine array. Scatter plots: levels of cytokines were plotted against age as continuous variable. Violin plots: levels of cytokines were plotted against as binary variable with a cutoff as 50 years old.
A) $\beta = -0.21$
$p = 0.09$

B) $\beta = -0.27$
$p = 0.04$

C) $\beta = -0.1$
$p = 0.73$

D) $p = 0.304$

E) $p = 0.031$

F) $p = 0.508$

All rights reserved. No reuse allowed without permission.