Human kidney-derived tubular organoid, tubuloid, recapitulates cellular senescence, inflammation and fibrosis by repeated-cisplatin treatment

Yuki Nakao¹#, Yutaro Mori¹##*, Makiko Mori¹, Shintaro Mandai¹, Tamami Fujiki¹, Hiroaki Kikuchi¹, Fumiaki Ando¹, Koichiro Susa¹, Takayasu Mori¹, Yuma Waseda², Soichiro Yoshida², Yasuhisa Fujii², Eisei Sohara¹, Shinichi Uchida¹

¹Department of Nephrology and ²Department of Urology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8510, Japan.

#These authors contributed equally to this work.

Lead contact and Corresponding author:

Yutaro Mori, MD, PhD
Department of Nephrology
Graduate School of Medical and Dental Sciences
Tokyo Medical and Dental University
1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
Phone: +81-3-5803-5214; Fax: +81-3-5803-5215; Email: y-mori.kid@tmd.ac.jp
Abstract

Kidney organoids derived from human pluripotent stem cells have been an attracting pathophysiological model recapitulating the response of human kidney to drugs in recent years. Here, we have developed an alternative way to make more homogeneous epithelial-like structures called “tubuloid” based on primary human renal proximal tubular epithelial cells (hRPTECs) cultured from human resected kidneys and tested their efficacy by administering cisplatin at three concentrations of 0.2, 2.0, and 20.0 µg/mL. Tubuloids showed highly differentiated structures composed of proximal tubular epithelial cells with expression of LTL and LRP2/Megalin. Treatment of tubuloids with cisplatin increased γH2AX, a marker for DNA damage, in a dose-dependent manner. Kidney Injury Molecule-1 (KIM-1), a marker of kidney injury, and cleaved caspase-3, a marker for apoptotic signals were expressed due to cisplatin treatment. Repeated administration of cisplatin resulted in upregulation of the cellular senescence marker p16 and enhanced expression of inflammatory cytokines IL-1β and IL-6, indicating an induced senescence-associated secretory phenotype (SASP). Myofibroblast activation was also induced by the supernatant collected from cisplatin-treated tubuloids, which could reflect renal fibrosis. Thus, we succeeded in establishing a model of cisplatin-induced kidney injury based on tubuloids using hRPTECs. Tubuloids have the potential to serve as a novel pathological model and can be utilized to simulate the response of renal epithelial cells to toxins and therapeutic agents. Given its capability to replicate cellular senescence, SASP and the fibrosis, tubuloids could potentially serve as a pathophysiological model for chronic kidney disease (CKD), which is known for fibrosis as a final common pathological pathway.

Key words

organoid, cisplatin nephrotoxicity, fibrosis, chronic kidney disease (CKD)
Introduction

Chronic kidney disease (CKD) is an irreversible progressive condition characterized by the eventual sclerosis of glomeruli, and atrophy and collapse of tubules along with the infiltration of inflammatory cells and fibrosis in the interstitial tissue[1]. Currently, CKD has not been fully elucidated in terms of its pathogenic mechanisms, and a definitive cure is yet to be identified.

In recent years, a common mechanism underlying inflammation and fibrosis in CKD has been proposed, starting with DNA damage in tubular epithelial cells and progressing through a cascade involving DNA damage response, cell cycle arrest[2], cellular senescence[3, 4], and the emergence of the senescence-associated secretory phenotype (SASP)[5]. Various models, including cell and animal models, as well as kidney organoids derived from human induced pluripotent stem cells (iPSCs)[6] or human embryonic stem cells (ESCs), have been developed to mimic CKD pathology[7]. However, these models lack the incorporation of the aging process, particularly cellular senescence, observed in humans with a lifespan exceeding 80 years. Experimental animals such as mice, with a lifespan of only two years, does not perfectly replicate age-related diseases associated with cellular senescence. Additionally, kidney organoids derived from iPSCs or ESCs have yet to surpass the stage of reproducing fetal kidney development, remaining distant from faithfully recapitulating age-related diseases such as CKD.

In this context, “tubuloids”, first reported in 2019, are three-dimensional structures resembling renal tubules, established from adult primary human renal proximal tubular epithelial cells (hRPTECs)[8]. Schutgens et al. cultured primary hRPTECs from adult human kidney and urine, and succeeded to produce tubuloids which would recapitulate viral infection to proximal tubules and hereditary diseases[9]. We also developed tubuloids from human resected kidneys by using a more refined protocol[10] and presented response to a nephrotoxicant and a candidate
therapeutic agent. The establishment of a pathophysiological model for aging or senescence-
associated disease, however, has not progressed yet.

Cisplatin is used as a therapeutic agent for various malignancies, including lung cancer. As
an adverse effect, cisplatin-induced nephropathy is well known[11, 12], in which DNA damage is
induced in renal proximal tubules[13]. DNA damage response by the cells could lead cell cycle
arrest during repairing phase after cisplatin-induced injury, followed by cellular senescence and
SASP that are the final detrimental mechanisms, which could explain acute kidney injury (AKI)
to CKD transition[14, 15]. Thus, to recapitulate cisplatin-induced nephropathy is not only a simple
nephrotoxicant disease modeling, but also a potential trial mimicking a pattern of CKD.

Here, in this study, we attempted to assess the disease modeling capability by exposing
tubuloids to cisplatin, aiming to reproduce cisplatin-induced nephropathy. We also investigated
whether we could replicate cellular senescence and associated response beyond cisplatin
nephrotoxicity aiming to recapitulate AKI to CKD transition or CKD itself.

Results

Primary human renal proximal tubular epithelial cells (hRPTECs) form highly polarized
structure

To establish tubuloids, human renal proximal tubular epithelial cells (hRPTECs) were isolated
from the human kidney cortex, embedded in a basement membrane gel, and cultured in the
presence of various growth factors (Figure 1A). By finely mincing the cortex portion of the human
kidney and selectively culturing epithelial cells in a serum-free medium with Epidermal Growth
Factor (EGF), primary cultured cells, mainly proximal tubular epithelial cells, were successfully
established (Figure 1B and 1C). Subsequently, tubuloids were developed over approximately a
two-week protocol (Figure 1D). In detail, hRPTECs were seeded on an ultralow attachment plate (Figure 1E). Matrigel and media containing fetal bovine serum, EGF, Fibroblast Growth Factor 2 (FGF2), and Hepatocyte Growth Factor (HGF). Multiple tubuloids were formed within a single well, displaying the nearly uniform size. The epithelial cells formed tubular-like structures surrounding the basement membrane gel (Figure 1F). By moving the microscope in Z-axis direction, the three-dimensional architecture was confirmed (Figure 1G). The cells formed a monolayer structure resembling tubules or renal cysts, not spheroid-like structure. Tubuloids expressed differentiation markers for proximal tubular epithelial cells, such as lotus tetragonolobus lectin (LTL) and LDL Receptor Related Protein 2 (LRP2/Megalin), indicating that they constituted highly differentiated and polarized structure (Figure 1H)[16].

Cisplatin-treated tubuloids show collapse of tubular structure and various acute response as DNA damage response (DDR)

To assess their reactivity against a nephrotoxicant, tubuloids were exposed to cisplatin. Cisplatin is known to induce renal injury and elicit various physiological responses. Organic Cation Transporter 2 (OCT2) mediates the uptake of cisplatin into proximal tubular epithelial cells[17] and cisplatin causes DNA damage directly (Figure 2A). Upregulation of a DNA damage and response marker, γH2AX, was reported both in vivo and in vitro[18]. Initially, tubuloids were treated with cisplatin at three concentrations of 0.2, 2.0, and 20.0 µg/mL. The three-dimensional structure of tubuloids was collapsed due to treatment with high-dose cisplatin (Figure 2B), a marker for DNA damage, was increased in a dose-dependent manner (Figure 2C). Representing differentiation markers such as LRP2 and Na⁺/K⁺-ATPase were decreased by cisplatin treatment, indicating that cells are in a dedifferentiation process (Figure 2D and 2E).
Moreover, an upregulation in the expression of a renal injury marker, Kidney Injury Molecule-1 (KIM-1)[19], and an apoptosis marker, Cleaved Caspase-3, were also noted (Figure 2F, G and H), which is consistent with previous reports[20]. From these observations, we confirmed that tubuloids exhibit a sensitive response to cisplatin, displaying the acute responses as DNA damage response (DDR).

When high concentrations of cisplatin were administered, an increase in the expression of Vimentin, an intermediate filament specific to mesenchymal cells, was observed (Figure 2I and J). This suggests that proximal tubular epithelial cells may undergo epithelial-mesenchymal transition (EMT) for tissue repair[21, 22]. Vimentin activation after DDR is known[23] and we could also confirm following reaction in this study.

Tubuloids show cellular senescence and release inflammatory cytokines, following repeated cisplatin treatment

To assess the possibility of reproducing chronic responses in tubuloids, we treated them with cisplatin over an extended period. Initially, cisplatin was administered at concentrations of 0.2 and 2.0 µg/mL. Subsequently, the media was changed three times to minimize residual cisplatin, followed by regular culture in standard media for one day. This was considered as one cycle, and the following day, cisplatin was administered again at similar concentrations (Figure 3A). This process was repeated five times. As presented in Figure 2, treatment with 20.0 µg/mL cisplatin led to the disruption of tubuloids and cell death strongly. Accordingly, to confirm the long-term chronic response of tubuloids, this concentration was avoided in the experimental setup.

In the repeated cisplatin administration model, expression of p16, a marker for cellular senescence, was observed (Figure 3B, C and D) as reported previously[24]. Increased expression
of the inflammatory cytokine IL-1β was confirmed at 2.0 µg/mL as well by immunofluorescence (Figure 3D). Compared to controls, the group subjected to repeated administration of 2.0 µg/mL cisplatin showed a 50-100-fold increase in mRNA levels of both IL-1β and IL-6 by quantitative PCR (Figure 3E and F). These data suggest that repetitive DNA damage induced by cisplatin led to cellular senescence, resulting in the acquisition of a SASP.

Secretion released from cisplatin-treated tubuloids strongly promotes myofibroblast differentiation in vitro

We hypothesized that prolonged exposure of tubuloids to high concentrations of cisplatin might promote myofibroblast activation, potentially leading to tissue fibrosis through the secretion of paracrine factors from tubuloids as well as reported in vivo[25]. To test this hypothesis, we performed a fibrosis bioassay based on previous reports[10] (Figure 4A). Initially, tubuloids were divided into three groups: one receiving no cisplatin, one receiving 0.2 µg/mL cisplatin, and another receiving 2.0 µg/mL cisplatin. Each group was treated repeatedly. After cisplatin administrations, the medium was changed three times, and cisplatin was removed. The tubuloids were then left for 2 days in a serum-free condition to obtain conditioned media (CM) containing secreted paracrine factors. The collected CM were subsequently administered to fibroblasts established from mouse renal cortex (Figure 4B), and myofibroblast activation was evaluated using α-smooth muscle actin (α-SMA)[26]. We observed that CM obtained from tubuloids repeatedly treated with 2.0 µg/mL cisplatin promoted fibrosis most significantly (Figure 4C and D). This concentration of cisplatin, as indicated in Figure 3, corresponds to the maximal secretion levels of IL-1β and IL-6 from tubuloids, demonstrating consistency. Furthermore, direct administration of cisplatin to mouse fibroblasts did not promote myofibroblast differentiation at
all, decisively ruling out cisplatin as a direct fibrosis inducer on fibroblasts. Through the fibrosis bioassay, we confirmed that various paracrine factors secreted from tubuloids with repeated treatment of cisplatin have a fibrogenic effect on tissues.

Discussion

In this study, we confirmed that tubuloids experienced DNA damage induced by cisplatin, as evidenced by a dose-dependent increase in γH2AX expression. In response to DNA damage, tubuloids demonstrate a sensitive acute phase response, leading to elevated expression of the kidney injury marker, KIM-1, and the apoptosis marker, Cleaved Caspase-3, according to DDR. As a following reaction, Vimentin expression which is representing EMT was also observed. The well-maintained three-dimensional structure of tubuloids collapsed upon exposure to cisplatin, accompanied by dedifferentiation with reduced expression levels of Na⁺/K⁺-ATPase and LRP2/Megalin. Furthermore, repeated long-term administration of cisplatin induced an increase in the expression of the cellular senescence marker, p16. Tubuloids acquired senescence-associated secretory phenotype (SASP) and secreted inflammatory cytokines such as IL-1β and IL-6, thereby eliciting a chronic inflammatory response in the surrounding tissues. Secretions from tubuloids significantly promoted fibrosis in surrounding interstitial area, as verified by fibrosis bioassay (Figure 5).

Research on chronic kidney disease (CKD) is exceedingly challenging due to the diversity and complexity of its underlying conditions. One of the obstacles for investigating CKD is the lack of a faithful disease model. CKD is known for a disease based on aging and senescence. Currently, the predominant disease models are based on mice, which have a lifespan of approximately two years and represent a highly homogeneous population. Two years for mice do not precisely
recapitulate decades for humans in terms of chronic disease progression including CKD. Given the variability in CKD progression among humans based on factors such as gender, race, age, and environment, mouse models do not perfectly mimic human CKD, indicating a significant gap.

Recently, kidney organoids derived from induced pluripotent stem cells (iPSCs) or embryonic stem cells (ESCs) have garnered attention as promising disease models[27-29]. With current technology, however, these organoids mainly replicate the fetal kidneys, making it challenging to reproduce CKD with age-related features commonly observed in older individuals[30]. Additionally, from a simplicity standpoint, iPSC-derived kidney organoids require complex differentiation induction procedures and skilled techniques. Human resected kidney-derived primary cultured cells in two-dimensional condition do not fully replicate the cellular polarity and three-dimensional structures inherent to living tissues.

Conventional disease models for CKD including mouse models, iPSC/ESC kidney organoids, and two-dimensional primary cultured cells from human kidney do have some difficulties with respect to recapitulating aging, senescence, and simplicity of production. Human kidney-derived tubuloids we have developed overcome almost all the weakness of conventional pathological models for CKD. Tubuloids consist of already aged cells based on the patient from whom the cells were derived. They may have senescence to some extent as indicated in Figure 3B, C and D, the control condition without cisplatin treatment. Tubuloids can be formed in a very simple protocol, not requiring skilled techniques. They are cultured in 24-well plates, and as shown in Figure 1F, multiple tubuloids are formed within one well. When sampling tubuloids for western blotting, or qPCR and immunofluorescence, we harvested per every well as one independent condition, resulting in multiple tubuloids being included in one sample. This allows for homogenization of variability among individual tubuloids during sampling.
Should we produce tubuloids from multiple different patients, we may also be able to recapitulate individual differences in kidney response to various stimuli. Actually, our protocol to produce tubuloids is so stable that we could produce them from different original patients under the same conditions at one time (manuscript in preparation). These characteristics suggest the potential for becoming a novel candidate with advantages as a renal toxicity screening tool in drug discovery.

Tubuloids have highly differentiated three-dimensional structure[31] and recapitulate physiological responses to nephrotoxicants[32, 33]. According to previous reports, highly differentiated tubuloids are known to express various channels and transporters and possess more physiological functions compared to two-dimensional cultured cells[34]. These characteristics can contribute to the heightened sensitivity to cisplatin observed in this study, allowing for the recapitulation of cellular senescence and other responses. Tubuloids may replicate biological responses which were not observed in two-dimensional cultured cells.

In this study, we have focused on cisplatin-induced nephropathy. Our long-term vision is to create a faithful pathophysiological model for CKD based on human-kidney derived tubuloids. The mechanism of CKD after cisplatin chemotherapy is largely unknown, but treatment with low-dose cisplatin cause long-term renal pathologies with characteristics of CKD previously reported[35]. Cisplatin-induced nephropathy is caused by cisplatin taken up into proximal tubular epithelial cells via OCT2, which directly damages nuclear DNA. DNA damage triggers multiple DNA damage response (DDR) processes: the DDR causes some cells to die, including apoptosis, while some cells enter the cell cycle to compensate for the dead cells. When DNA damage is strong enough, it causes cell cycle arrest, especially in the G2/M phase[2], and further division becomes impossible, indicating cellular senescence. It has been reported that senescent cells secrete multiple
inflammatory and fibrotic cytokines through the SASP mechanism, inducing inflammation and fibrosis in the surrounding area, while being resistant to cell death. This mechanism of cellular senescence and SASP triggered by DNA damage has been reported as one of major mechanisms for renal fibrosis and can be considered as an aspect of the AKI to CKD transition and the pathophysiology of CKD itself, beyond cisplatin-induced nephropathy. In tubuloids, we could observe not only differentiated three-dimensional structure, but also pathophysiological responses to cisplatin, i.e., DDR, collapse of structure, dedifferentiation, cell death, epithelial-mesenchymal transition (EMT), cellular senescence, SASP, and fibrotic changes. Our data suggest that tubuloids could be a potential precise disease model for cisplatin-induced nephropathy which faithfully recapitulate most of pathological mechanisms, aiming to development of complete CKD model.

Moving forward, we plan to co-culture tubuloids with other cells such as vascular endothelial cells and fibroblasts and simulate urine flow on microfluidic devices to construct more advanced disease models that closely mimic the \textit{in vivo} environment[36].

Thus, we succeeded to develop the most precise disease model for cisplatin-induced nephropathy based on human kidney-derived tubuloids. By using tubuloids as a faithful kidney disease model, our understanding of various kidney diseases will be improved. Given its capability to replicate cellular senescence, SASP and the fibrosis, tubuloids could potentially serve as a pathophysiological model for chronic kidney disease (CKD), which is known for fibrosis as a final common pathological pathway.
Methods

Cell culture experiment. Human kidney samples were obtained from clinically indicated nephrectomy in Tokyo Medical and Dental University Hospital in Tokyo, Japan. The protocol was approved by the Institutional Review Board of the Ethics Committee of Tokyo Medical and Dental University (M2022-005). In detail, human renal proximal tubular epithelial cells (hRPTECs) were obtained from the uninvolved parts of kidneys removed by nephrectomy on the renal cell carcinoma or urinary tract malignancy patients by modifying a previously established protocol[37].

Briefly, human renal cortex was minced and digested in a solution of Collagenase type II (1.0 mg/mL) (Worthington Biochemical, NJ, USA). The enzyme reaction was terminated with fetal bovine serum (FBS). The samples were resuspended in hRPTECs culture medium (DMEM/F-122 (Nacalai Tesque, Kyoto, Japan) with BSA (Nacalai Tesque), Antibiotic-Antimycotic (ThermoFisher Scientific, MA, USA), hydrocortisone (ThermoFisher Scientific, MA, USA), ITS liquid media supplement (Sigma-Aldrich, MO, USA), and human recombinant epidermal growth factor (EGF) (ThermoFisher Scientific, MA, USA). The epithelial cells were cultured for 7 to 10 days (human) before being used for experiments.

For making mouse primary kidney fibroblasts (MPKFs), mouse kidney was minced and then digested in a solution of Collagenase type II (1.0 mg/mL). The enzyme reaction was terminated with FBS. The samples were resuspended in DMEM with 10% FBS and 5ng/ml FGF-basic (ThermoFisher Scientific) and Antibiotic-Antimycotic. The MPKFs were used after 3-5 passages.

All the cells were maintained in CO2 incubator (5% CO2) at 37o Celsius.
Human Renal Tubuloids. hRPTECs were seeded on ultra-low attachment plates at a density of 5.0×10^5 cells/well with Advanced RPMI 1640 medium (ThermoFisher Scientific) containing 5% FBS. After 2 days incubation, Matrigel (Corning, NY, USA) was added. Next day, media was changed to Advanced RPMI 1640 medium containing 5% FBS, EGF, FGF2 and HGF (tubuloids media). Media was changed once or twice a week. The tubuloids are ready for use after 1-2 weeks.

Fibrosis bioassay. The tubuloids were treated with or without cisplatin repeatedly. After 48 h exposure, the media were changed to serum-free DMEM for conditioning. 48 h later, the culture supernatants were collected as conditioned media. MPKFs were plated uniformly at a density of 2.0×10^4 cells/well in a 8-well chamber slide (Nunc Lab-Tek Chamber Slide system) (ThermoFisher Scientific) with 10% FBS-DMEM. Next day, conditioned media harvested from the tubuloids were added to MPKFs and incubated for 48 hours. MPKFs on the 8-well chamber slide were washed 2 times with PBS, and immunostained as below.

Immunofluorescence staining. Tubuloids were fixed with 4% paraformaldehyde (PFA) in PBS, and permeabilized with 0.1% Triton X-100 in PBS. After blocking with 3% BSA in PBS, tubuloids were incubated with primary antibodies for 1 hour. Then washed with PBS, tubuloids were incubated with secondary antibodies for 30 minutes and washed with PBS. Tubuloids were transferred onto glass slides, Prolong Glass Antifade Mountant with NucBlue Stain (ThermoFisher Scientific) was applied, and slides were cover-slipped.

As primary antibodies, rabbit anti-LRP2 / Megalin antibody (1:100) (ab236244, Abcam, MA, USA), rabbit anti-γH2AX antibody (1:200) (#9718, Cell Signaling Technology, MA, USA), mouse anti-Na⁺/K⁺-ATPase antibody (1:200) (05-369, Sigma-Aldrich), mouse anti-KIM-1
antibody (1:200) (AF1750, R&D systems, MN, USA), rabbit anti-caspase-3 antibody (1:200) (#9664, Cell Signaling Technology), rabbit anti-Vimentin antibody (1:200) (10366-1-AP, Proteintech, IL, USA), rabbit anti-p16-INK4A polyclonal antibody (1:200) (10883-1-AP, Proteintech), rabbit anti-IL-1β polyclonal antibody (1:200) (bs-0812R, Bioss, MA, USA) and rabbit anti-αSMA antibody conjugated with Cy3 (1:400) (C6198, Sigma-Aldrich) were used. To stain the brush border of the proximal tubular epithelium, LTL, Biotinylated (B-1325-2, Vector Laboratories, CA, USA) was used instead of primary antibodies (1:200). And then streptavidin, Alexa Fluor 633 conjugate (S21375, ThermoFisher Scientific) was used (1:500).

For immunofluorescence staining of fibrosis bioassay, MPKFs on an 8-well chamber slide were washed, then fixed with 4% PFA-PBS, and permeabilized with 0.1% Triton X-100 in PBS. After blocking with 3% BSA, cells were incubated with anti-α-SMA antibody (1:200) for 1 hour, washed with PBS, and mounted as described above.

All images were obtained by standard or confocal microscopy (Eclipse Ti2 from Nikon), and as operating system, the NIS-Elements Advanced Research microscope system was used. Quantification of stained area was performed by using ImageJ Fiji (https://imagej.net/software/fiji/downloads).

qRT-PCR. qRT-PCR analysis of human IL-1β, IL-6 and 18S mRNA was performed as previously described using the real time PCR detection system with Thermal Cycler Dice Real Time System Lite TP700 (Takara Bio, Shiga, Japan) and TB green Premix Ex Taq II (Takara Bio, Shiga, Japan) [38]. Total RNA was isolated from frozen kidney tubuloids stored at -80°C by using Sepasol-RNAI Super G (Nacalai Tesque, Kyoto, Japan). cDNA was generated with ReverTra Ace
(TOYOBO, Tokyo, Japan) from total RNA[39]. cDNA was amplified using 40 PCR cycles with following conditions: 95°C for 5 seconds, 60°C for 30 seconds.

As primers, nucleotides of followed sequence were used for qRT-PCR.

human 18S.

Forward: 5’-GCAGAATCCACGCCAGTACAAG-3’
Reverse: 5’-GCTTGTGTCCAGACCATTGGC-3’

human IL-1β.

Forward: 5’- CCACAGACCTTCCAGGAATG -3’
Reverse: 5’- GTGCAGTTCAGTGATCGTACAGG -3’

human IL-6.

Forward: 5’- AGACAGCCACTCACCCTCTTCAG -3’
Reverse: 5’- TTCTGCCAGTGCTCTTTGCTG -3’

Western blot analysis. The tubuloids were lysed and protein was purified. Bands were visualized by Western Blue (Promega, WI, USA). Rabbit anti-ERK2 (p44/42 MAPK) antibody (9102S, Cell Signaling Technology) (1:200) was used as a loading control. Rabbit anti-p16-INK4A polyclonal antibody (1:200) (Proteintech), mouse anti-KIM-1 antibody (1:200) (R&D systems), rabbit anti-caspase-3 antibody (1:200) (Cell Signaling Technology) and rabbit anti-Vimentin antibody (1:200) (Proteintech) were used as primary antibodies. Densitometry was performed by using Image J Fiji (https://imagej.net/software/fiji/downloads).

Quantification and Statistical Analysis
Number of samples assayed in each experiment is indicated in the Figure Legends. One-way ANOVA was used to determine a significant difference between each group. P < 0.05 was considered to represent a statistically significant difference. GraphPad Prism from GraphPad Software Inc. (San Diego, CA, USA) was used for all the statistical analyses.
Acknowledgement

We would like to thank the study participants who kindly allowed to give us the pieces of their resected kidneys.

Funding

This work was supported by Leading Initiative for Excellent Young Researchers (LEADER) from Ministry of Education, Culture, Sports, Science and Technology (to Y.M.), Grant-in-Aid for Research Activity Start-up from Japan Society for the Promotion of Science (to Y.M.), Innovation Idea Contest from Tokyo Medical and Dental University (TMDU) (in 2022 to Y.M. and in 2023 to Y.N.), Next Generation Researcher Training Unit from TMDU (to Y.M.) and Priority Research Areas Grant from TMDU (to Y.M.), Research Grant from Uehara Memorial Foundation (to Y.M.), Research Grant (Lifestyle-related diseases) from MSD Life Science Foundation (to Y.M.), Medical Research Grant from Takeda Science Foundation (to Y.M.), and Academic Support from Bayer Yakuhin, Ltd. (to Y.M.).

Data availability statements

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Yutaro Mori (y-mori.kid@tmd.ac.jp).

Author contributions

Y.N. and Y.M. performed the experiments, collected and analyzed data, and wrote the manuscript. Y.M. and M.M. established the hRPTECs and S.M. helped the procedure. T.F., H.K., F.A., K.S., T.M., E.S., and S.U. supported the data analysis. Y.W., S.Y. and Y.F. resected the patients’ kidneys.
as standard treatment for malignant diseases. Y.M. developed experimental strategy, supervised the project, and edited the manuscript. All authors discussed the results and implications and commented on the manuscript.

Disclosure

The authors declare that they have no conflicts of interest.
Figure Legends

Figure 1. Primary human renal proximal tubular epithelial cells (hRPTECs) form highly polarized structure, “tubuloids”.

(A) Outline of establishing tubuloids from hRPTECs derived from human adult kidney.

(B) Image of the human resected kidney utilized during the establishment of hRPTECs.

(C) Representative image of hRPTECs. Scale bar: 50 µm.

(D) Two-week protocol to establish tubuloids from 2D-cultured hRPTECs.

(E) Representative image of seeding hRPTECs on ultra-low attachment plate. Scale bar: 25 µm.

(F) Representative Images of tubuloids in each magnification (×10, ×40). Scale bars: 100 µm, 25 µm.

(G) Representative image of tubuloids in ×40 magnification with several layers of Z axis. Scale bars: 25 µm.

(H) Immunostaining of markers of renal proximal tubular epithelial cells (LRP2/Megalin and LTL). Scale bars: 25 µm.

Figure 2. Cisplatin-treated tubuloids show collapse of tubular structure, DNA damage response, loss of differentiation, cell death and epithelial-mesenchymal transition.

(A) Schematic diagram illustrating the pathway by which cisplatin induces DNA damage in proximal tubular epithelial cells.

(B) Representative images of tubuloids exposed to cisplatin (0.2, 2.0, 20.0 µg/mL) or control.

(C) Immunostaining of marker for DNA damage (γH2AX) in tubuloids exposed to cisplatin (0.2, 2.0, 20.0 µg/mL) or control. Scale bars: 100 µm.
(D) Immunostaining of a differentiation marker for epithelial cells, LRP2/Megalin in tubuloids exposed to cisplatin (20.0 µg/mL) or control. Scale bars: 25 µm.

(E) Immunostaining of a differentiation marker for epithelial cells, Na⁺/K⁺-ATPase in tubuloids exposed to cisplatin (20.0 µg/mL) or control. Scale bars: 25 µm.

(F) Immunostaining of an epithelial injury marker, Kidney Injury Molecule-1 (KIM-1) in tubuloids exposed to cisplatin (20.0 µg/mL) or control. Scale bars: 25 µm.

(G) Western blotting of KIM-1 in tubuloids exposed to cisplatin (0.2, 2.0 µg/mL) or control.

(H) Immunostaining of an apoptosis marker, Cleaved Caspase-3, in tubuloids exposed to cisplatin (20.0 µg/mL) or control. Scale bars: 25 µm.

(I) Immunostaining of intermediate filament, Vimentin, in tubuloids exposed to cisplatin (20.0 µg/mL) or control. Scale bars: 100 µm.

(J) Western blotting of Vimentin in tubuloids exposed to cisplatin (0.2, 2.0 µg/mL) or control.

Figure 3 Tubuloids show cellular senescence and release inflammatory cytokines following repeated cisplatin treatment.

(A) Experimental design for repeated cisplatin injury.

(B) Western blotting of p16 in tubuloids exposed to cisplatin (0.2, 2.0 µg/mL) repeatedly or control.

(C) Quantification of relative protein levels of p16 / ERK1/2. *P = 0.0233 (n = 4).

(D) Immunostaining of p16 in tubuloids exposed to cisplatin (2.0 µg/mL) repeatedly or control. Scale bars: 100 µm.

(E) Immunostaining of an inflammatory cytokine, IL-1β, in tubuloids exposed to cisplatin (2.0 µg/mL) repeatedly or control. Scale bars: 100 µm.
(F) Quantitative PCR of IL-1β and IL-6 in tubuloids exposed to cisplatin (0.2, 2.0 μg/mL) repeatedly or control. Statisical analysis was applied to delta-delta Ct value, not fold increase. *P = 0.0167 (n = 3), **P = 0.0011 (n = 3).

Figure 4. Secretion released from cisplatin-treated tubuloids strongly promotes fibrosis in vitro.

(A) Experimental design for fibrosis bioassay.

(B) A representative image of Mouse Primary Kidney Fibroblasts (MPKFs). Scale bar: 25 μm.

(C) Representative images of fibrosis bioassay on MPKFs cultured with Conditioned Media (CM) harvested from tubuloids exposed to cisplatin (0.2, 2.0 μg/mL) or control, or directly with cisplatin-containing media. Scale bars: 100 μm.

(D) Quantification of αSMA-positive area in MPKFs cultured with CM or directly with cisplatin-containing media measured by Image J. **P = 0.0021, ***P = 0.0001, ****P < 0.0001. (n = 8-10 each condition)
References

24. Li, S., et al., Tubular cell senescence promotes maladaptive kidney repair and chronic kidney disease after cisplatin nephrotoxicity. JCI Insight, 2023. 8(8).

Figure 1
Figure 2
A

No-Cisplatin (Control)

1 day rest → Change Culture Medium × 3 → 1 cycle

Cisplatin (0.2 µg/mL)

Cisplatin (2.0 µg/mL)

B

<table>
<thead>
<tr>
<th>Repeted (×5)</th>
<th>Control</th>
<th>Cisplatin (0.2 µg/mL)</th>
<th>Cisplatin (1.0 µg/mL)</th>
<th>Cisplatin (2.0 µg/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>16kDa</td>
<td>p16</td>
<td>ERK1/2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>37kDa</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

C

Graph showing fold change in p16/ERK1/2 ratio

D

Merge, p16, DAPI images

E

Merge, IL-1β, DAPI images

F

Bar graph showing IL-1β/18S mRNA fold change

G

Bar graph showing IL-6/18S mRNA fold change

Figure 3
Figure 4
Figure 5

DNA Damage

- DDR* Dedifferentiation
- Cellular Senescence
- SASP*
- Fibrosis

- Cisplatin
- γH2AX
- KIM-1 / Cleaved Caspase-3
- LRP2 / Na+ K+ ATPase
- p16
- IL-1β / IL-6
- EMT*
- Vimentin

DDR: DNA Damage Response
SASP: Senescence Associated Secretary Phenotype
EMT: Epithelial-Mesenchymal Transition