Single-cell RNA sequencing unraveled the expression heterogeneity of hematopoietic stem and progenitor cells and immune cell development dysregulation in childhood asthma

Danying Zhu*1,2, Guang Li*,3, Lang Yuan*,1, Zeyu Zeng1,2, Na Dong1, Chao Wang1, Ming Chen1, Lijian Xie6, Guohui Ding*,4, Libing Shen*,4, Xiaoyan Dong*,1,2

1Department of Respiratory, Shanghai Children’s Hospital, School of medicine, Shanghai Jiao Tong University, Shanghai, China.
2Institute of Pediatric Infection, Immunity, and Critical Care Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
3Daozhi Precision Medicine Technology (Shanghai) Co., Ltd; Shanghai, China.
4Institute for Digital Health, International Human Phenome Institutes (Shanghai), Shanghai, China.
5Department of Pediatrics, Jinshan Hospital, Fudan University, Shanghai, 201508, China.

*These authors contributed equally: Danying Zhu, Guang Li, Lang Yuan

#Corresponding authors
Xiaoyan Dong, Ph.D.
Department of Respiratory, Shanghai Children’s Hospital, School of medicine, Shanghai Jiao Tong University, Shanghai, China.
Institute of Pediatric Infection, Immunity, and Critical Care Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
No.355, Luding Road, Shanghai 200062, China.
Tel: 18930734642
E-mail: dongxy@shchildren.com.cn

Libing Shen, Ph.D
Institute for Digital Health, International Human Phenome Institutes (Shanghai), Shanghai,
12/F, No.258 Guoxia Road, Yangpu District, Shanghai, China.
Tel: 13482391370
E-mail: shenlibing@ihup.org.cn

Guohui Ding, Ph.D.
Institute for Digital Health, International Human Phenome Institutes (Shanghai), Shanghai, China.
12/F, No.258 Guoxia Road, Yangpu District, Shanghai, China.
Tel:17721236391
Email: dingguohui@ihup.org.cn

Fundings:
This study was funded by Jinshan Distinct key medical specialty project (JSZK2023A04) and Institute of Pediatric Infection, Immunity, and Critical Care Medicine Cultivate Research Project.
Abstract

Here, using single-cell RNA sequencing, we profile peripheral blood mononuclear cells (PBMCs) from three patients with onset asthma and four age-matched healthy controls to investigate the cellular etiology of childhood asthma. We find that very few differentially expressed genes (DEGs) in hematopoietic stem and progenitor cells (HSPCs) are common among three asthma cases, but the common ones are functionally related to the S100A gene family. Furthermore, GO analyses show that the heterogeneous DEGs in HSPCs in three asthma cases can be categorized into the biological processes of immunity and immune responses, which indicates that different DEGs converge on a common pathological base. The overall cellular expression profiles demonstrate that pro-inflammatory mediators and immunoglobulin receptors have a high expression level and interferon alpha induced protein has a low expression level in mononuclear macrophages of acute asthma. The cell developmental trajectories in three asthma cases exhibit an abnormal immune cell development pattern compared to the developmental trajectory in health control. T-cell development in acute asthma is especially dysregulated for three cases with three different T-cell branching patterns. We also find that the innate lymphoid cells (ILCs) in three asthma cases have a low expression level in housekeeping genes. Our scRNA-seq analyses for three asthma patients reveal a complex cellular etiology for childhood asthma and provide a new research direction for the comprehensive and systematic study of effector cells and key molecular mechanisms of childhood asthma.
Introduction

Asthma, a persistent respiratory condition, is marked by inflammation of the airways, heightened bronchial responsiveness, and variable airway obstruction. This complex disease involves a multitude of cellular participants, including eosinophils, T and B lymphocytes, macrophages, neutrophils, and epithelial cells, which interact with environmental factors to induce chronic inflammation, reversible airflow limitations, and airway remodeling in patients\(^1\). The involvement of various cell types and their mediators is a key aspect of asthma's pathogenesis\(^2\). This diversity in asthma phenotypes and the intricacy of its pathogenesis are further complicated by the fact that respiratory infections and allergen exposures are known to trigger asthma exacerbations\(^1\). While asthma can affect individuals across all age groups, the manifestation, underlying pathophysiology, and response to treatment can vary significantly between children and adults. Recognizing the molecular and cellular distinctions between childhood and adult asthma is crucial for crafting age-tailored diagnostic and therapeutic approaches.

Childhood asthma, in particular, presents with distinct clinical and immunological characteristics compared to its adult counterpart. Asthma in children often manifests as allergic phenotypes with a higher incidence of eosinophilic inflammation, whereas adults may display a broader range of subtypes, including non-eosinophilic variants. The immature and plastic nature of the immune system in children can lead to unique cellular responses and immune dysregulation. Therefore, there are some differences in the treatment by unique age groups\(^3\). Single-cell sequencing offers a powerful tool to explore age-specific alterations in immune cell populations, their activation states, and functional attributes, providing a deeper understanding of the mechanisms driving childhood asthma.

Previous research has predominantly focused on the single-cell sequencing of adult asthma\(^4,5\), whereas this study applies single-cell technology to childhood asthma, aiming to uncover the role of immune abnormalities in the pathogenesis of asthma in children. Through single-cell sequencing, specific cell subpopulations can be identified, and their roles in the inflammatory responses of children with asthma can be understood, as well as their responses to current treatment methods. These findings may help explain why childhood asthma exhibits differences in clinical presentation and treatment response compared to adult asthma, and they provide new perspectives for future research and clinical practice.
Method

Patients

During the initial hospital stay, before any treatment, we collected three fresh peripheral blood samples from patients experiencing acute asthma. The diagnosis of asthma was confirmed using the criteria outlined in the 2023 Global Initiative for Asthma (GINA) report, which can be accessed at https://ginasthma.org/2023-gina-main-report/. Atopic status was determined by a total IgE level of 200 IU/ml or higher. For single-cell RNA sequencing (scRNA-seq), we enrolled four healthy individuals who were participating in routine physical examinations and had no recent history of fever, infection, or immunization. Data from three of these individuals have previously been published6. All participants were recruited from Shanghai Children's Hospital between December 2019 and February 2023. Exclusion criteria for the study included: Participants who were undergoing immunotherapy, such as anti-IgE treatment, or had received such therapy within the last three months. Individuals with significant abnormalities identified in their complete blood count. Those who had been treated with corticosteroids for any medical issue, including asthma exacerbations, within the preceding two weeks. Subjects who were currently enrolled in an asthma-related pharmaceutical or interventional study, or had been part of such a study within the last four weeks. Patients with concurrent medical conditions necessitate systemic corticosteroids or other immunomodulatory treatments. The study was approved by the Ethics Committee of Shanghai Children's Hospital (Protocol Numbers: 2019R081, 2022R029-F-01). Informed consent was obtained from all participants and their guardians.

Single-cell preparation and sequencing

A total of 2 milliliters of venous blood was drawn from each participant using tubes containing EDTA as an anticoagulant. These samples were kept chilled and processed within four hours to preserve cell integrity. Peripheral blood mononuclear cells (PBMCs) were separated from the collected blood using Ficoll-Paque medium and density gradient centrifugation, which effectively isolates PBMCs from other cellular components based on density. The viability of the isolated PBMCs was assessed using trypan blue staining, and only samples with more than 90% viable cells were selected for further analysis. A calculated volume of the cell suspension, estimated to contain around 12,000 cells per sample, was prepared to ensure an adequate cell count for
subsequent capture and sequencing processes. The Chromium Next GEM Single Cell V(D)J Reagent Kits v1.1 from 10x Genomics were utilized for capturing single cells and constructing the corresponding libraries. The cell suspension, along with barcoded gel beads and partitioning oil, were loaded onto the 10x Genomics Chromium Chip to create single-cell Gel Beads-in-Emulsion (GEMs). Inside each GEM, cells were lysed, and their transcripts were barcoded through reverse transcription. After reverse transcription, the cDNA, now carrying cell barcodes, underwent PCR amplification to ensure a sufficient quantity for sequencing. The construction of single-cell RNA sequencing (scRNA-seq) libraries was accomplished using the 5’ Library Kits, while single-cell B cell receptor (scBCR) sequencing and single-cell T cell receptor (scTCR) sequencing libraries were prepared using V(D)J Enrichment Kits specific to human B and T cells, respectively. These kits provide the necessary components and protocols for library preparation. Each sample was processed individually, without the use of cell hashing, which is a method for sample multiplexing that facilitates sample identification and demultiplexing during data analysis. The prepared libraries were sequenced on an Illumina NovaSeq platform, producing paired-end reads with a length of 2× 150 base pairs. This sequencing step generates the raw data necessary for subsequent data analysis.

scRNA-seq data analysis

The raw sequencing data, inclusive of unique cell barcodes, were demultiplexed to allocate reads to their corresponding samples. The demultiplexed reads were then aligned to the GRCh38 reference genome using the Cell Ranger software suite. This gene-barcode matrix was subsequently analyzed using Seurat version 3.0.2 for various analytical steps, including quality control, data normalization, dimensionality reduction, batch effect correction, clustering, and data visualization. The Harmony algorithm (version 1) was employed to correct for batch effects and integrate the merged object. The specific procedures carried out with Seurat included: Applying quality control criteria for the majority of samples, which involved ensuring a total UMI count ranging from 2,000 to 60,000 and limiting the percentages of mitochondrial, hemoglobin, and ribosome genes to below 15%, 0.1%, and 3%, respectively. Integrating samples collected during the initial phase of the study (A1–A3 and C1-C4) to eliminate batch effects using harmony. Scaling the integrated matrix and employing the top 12 principal
components derived from principal component analysis (PCA) for uniform manifold approximation and projection (UMAP). Utilizing UMAP to visualize cells in a two-dimensional space, which highlighted their gene expression pattern similarities. Conducting shared nearest neighbor graph-based clustering on the PCA-reduced data to identify the primary cell types within the PBMCs. Examining the expression of canonical marker genes to refine cell cluster annotations. Determining cell identities through multimodal reference mapping with the SeuratDisk package.

Differential expression, functional enrichment analysis, and pseudo-time analysis

Differential expression was performed with the FindMarkers function within the Seurat package. The marker genes for each cluster were calculated with the FindAllMarkers function within the Seurat package. The clusterProfiler package (version 3.16.0) was used for function over-representation analysis of the differentially expressed genes (DEGs) with a false discovery rate (FDR) threshold of <0.05. Gene Ontology (GO), KEGG pathways, and hallmark gene sets from the MSigDB database (version 7.1) were used as gene function databases to assess the enrichment of specific biological functions or pathways among the DEGs. Pseudo-time analysis of cell differentiation trajectories for each sample dataset were performed with R package Monocle 2\(^8\). The expression feature and inferred cell type for each sample dataset from the Seurat result was used to annotate the cell dataset for the Monocle analysis pipeline. We used the Monocle built-in approach named “dpFeature” to detect the variable genes that define a cell’s differentiation. Its advantages are needing no prior biological knowledge and discovering important ordering genes from the data itself. Dimension reduction was performed with 2 max components and “DDRTree” method.

Human serum resistin Enzyme-Linked Immunosorbent Assay (ELISA) analysis

EDTA-anticoagulated whole blood was transferred to the laboratory and processed immediately after collection. Centrifuge samples for 15 minutes at 1000 x g at 4 °C within 30 minutes of collection and stored at -80 °C. We followed a human resistin ELISA kit (Signalway Antibody, Maryland, USA, Catalog No: EK2351) protocol to analyze peripheral blood serums.

Results
Characteristics of the study subjects for asthma patients and health controls

In our single-cell RNA analysis study, we included a cohort of 7 childhood subjects, comprising 3 children experiencing asthma exacerbations and 4 healthy individuals without asthma. The mean age of the participants ranges from 1 to 9 years old. An additional group of 14 asthma patients and health controls ranging from 1 to 13 years old, were included in the study. Allergic testing in asthmatic children revealed sensitization to house dust mites.

Study design and single-cell RNA profiling of PBMCs

We collected the peripheral blood samples derived from 3 patients with onset asthma (A1-A3). The patients were diagnosed according to the GINA 2023 (https://ginasthma.org/2023-gina-main-report/). For each patient, the blood sample was taken on the first days before therapy. We also collected fresh peripheral blood samples from four age-matched healthy donors as controls (C1–C4, Supplementary Table 1).

We used the 10× Genomics platform for scRNA-seq of PBMCs isolated from the samples. PBMCs were loaded onto the platform and about 5000 - 14000 cells per sample could be recovered from the sequencing data. The total number of detected cells passing quality control was 34,354 for 3 asthma patients and 22,398 cells from healthy controls. Based on the scRNA-seq profiles, we clustered the cells across samples with Seurat 3.0 and visualized them in two-dimensional space (Fig. 1A). Total of 56,752 can be grouped into 39 clusters and the Asthma3 patient has the dominant number of cells in clusters 31 to 37 (Fig. 1A). The cell clusters were annotated with SeuratDisk and refined with an expression of canonical marker genes (Fig. 1B).

Expression heterogeneity in HSPCs for 3 asthma patients

Based on the multimodal reference mapping result and the examination of canonical marker genes, the cells in cluster 38 are identified as hematopoietic stem and progenitor cells (HSPCs). The number of HSPCs from 3 asthma patients is 13, 15, and 11, respectively. There are only 9 HSPCs identified in 4 healthy controls which are integrated as one sample. We compared the HSPC expression profile of each asthma patient to the healthy control sample and identified 179 upregulated differentially expressed genes (DEGs) in Ast1, 203 upregulated differentially expressed genes (DEGs) in Ast2, and 246 upregulated differentially expressed genes (DEGs) in Ast3. However,
there are only 30 common upregulated DEGs shared by 3 asthma patients’ HSPCs (Figure 2A). The GO analysis shows that 30 common upregulated HSPC DEGs share only one significant GO category of S100 protein binding (molecular function, GO:0044548–S100 protein binding, FDR = 0.02). AHNAK, ANXA2, and S100A11 are 3 shared upregulated genes involved in S100 protein binding. The GO analyses of 85, 113, and 53 upregulated HSPC DEGs only in each asthma patient shows that they share a major GO category of immunity, although the genes behind this biological process are various among 3 asthma patients (KW-0391–Immunity, FDR < 0.0001 in all 3 asthma patients, Figure 2B-D). Interestingly, the GO categories of cellular components are different for the upregulated HSPC DEGs only in each asthma patient, which is cell surface for Ast1, endoplasmic reticulum for Ast2, and extracellular exosome for Ast3. It indicates that cellular etiology is various in childhood asthma, but converges on the immunity process through S100 protein binding.

Pseudo-time analyses of PBMCs in health controls and 3 asthma patients

Pseudo-time analysis could help us reconstruct the cell developmental trajectory of PBMCs based on featured variable genes. We used HSPCs to set the root for the cell developmental trajectories in healthy controls and 3 asthma patients because they are known as the cell origin for all PBMCs. The pseudo-time analyses show that the PBMCs in healthy controls can be divided into 5 developmental states while the PBMCs in asthma patients have 7, 3, and 5 developmental states, differently (Figure 3A, 3C, 3E, and 3G). We further counted the major cell numbers in each state for healthy controls and 3 asthma patients according to the cell annotation results. Based on the major cell number, state 1 in healthy controls can be classified as B lineage, state 2 can be classified as monocyte lineage, state 3 is a mixed lineage (B and T), and states 4 and 5 can be classified as T lineage (Figure 3B). At least, myeloid lineage (monocytes) and two lymphoid lineages (B cells and T cells) are differentiated in the PBMCs of healthy controls. However, the clear cell development patterns disappear in 3 asthma patients. Each patient exhibits unique cell developmental patterns different from healthy controls. Ast1 patient has 7 states and 4 of them are T lineages according to the major cell numbers (state 1, 2, 3, and 6, Figure 3D). Ast2 patient has only 3 states and a part of B cells are mixed with T cells (state 1, Figure 3F). Ast3 patient has 5 states, but B cells are still mixed with T cells in state 3 (Figure 3H). Although different childhood asthma patient has a different cell developmental state, abnormal lymphoid
lineage development is observed in all 3 patients (multiple T lineage states or no clear B lineage state). It indicates that the hyperimmune HSPCs in children’s asthma would result in an abnormal lymphoid lineage development pattern for the patient while the abnormal lymphoid cell development pattern is not unified due to the expression heterogeneity in the patient’s HSPCs.

The expression features of innate lymphoid cells in three asthma cases

Innate lymphoid cells (ILCs) represent a class of immune cells known for their activation without the need for antigen specificity. While they do not engage in antigen-specific responses, ILCs exhibit similarities to T cells by possessing critical transcription factors and being capable of cytokine production. We detailly explored the ILCs from three asthma cases’ PBMCs and found that they didn’t differentiate into ILC1s, ILC2s and ILC3s according to the canonical markers (IL7R/KLRB1/PTPRC for ILC1s, IL7R/KLRB1/PTGDR2 for ILC2s, and IL7R/KLRB1/KIT for ILC3s). Thus, the ILCs in the peripheral blood of asthma patients remain a prototype status. We further compared the ILC expression profiles between healthy controls and asthma cases. The result shows that there are more downregulated genes in asthma ILCs than upregulated ones (Ast1: 24 vs. 197, Ast2: 115 vs. 234, Ast3: 85 vs. 153). The upregulated genes in asthma ILCs have no overlapped genes among three cases (Figure 4A) and their GO analysis results are similar to those from asthma HSPCs (data not shown). The downregulated genes in asthma ILCs share 20 common genes (Figure 4B) and GO analysis shows that they are mainly ribosomal proteins participating in transcription and translation functions (Figure 4C). This result shows that the downregulated genes in asthma ILCs are mostly housekeeping genes which are responsible for the maintenance of basic cellular functions.

The expression level of the S100 protein family and RETN in lymphoid lineage cells

The above results show that childhood asthma patients have an abnormal lymphoid cell development pattern and weak ILCs. We further compared the overall expression profiles between healthy controls and 3 asthma patients in order to detect the unwonted expression features associated with the disease. We find that S100B is downregulated in asthma patients while S100A8, S100A9, S100A12, and RETN are overexpressed in asthma cases. S100B is mainly expressed in CD8 naive, gdT, and NK cell clusters (Figure 1 and Figure 5). Both the feature plot and violin plot show it is
downregulated in asthma patients. S100A8, S100A9, and S100A12 are another set of members of the S100 protein family and they exhibit an overexpression pattern in all lymphoid lineage cell clusters including CD4 T, CD8 T, and B (Figure 5 and Figure 6). Furthermore, we notice that the RETN gene is overexpressed in childhood asthma cases as well. The feature plot shows that the RETN expression is not evenly distributed among different cell clusters (Figure 7A). Cluster 6 (CD14 mono), 13 (CD14 mono), 19 (CD14 mono mixed with a part of B cells), and 22 (dendritic cells) have an especially high expression level of RETN. The violin plot further shows that RETN expression level in these four clusters is always higher in 3 asthma cases than in healthy controls (Figure 7B). Notably, we observed a high RETN expression level in clusters 26, 29 to 37. These clusters are only found in Ast3 and they are mostly B cells (plasmablast) mixed a part of monocytes. The members of the S100 protein family and the RETN gene are closely related to immune-innate response. RETN encodes resistin, then we tested the level of resistin in plasma between children with asthma and healthy controls, we found that resistin in the serum increased significantly in the asthma group than in controls (Figure 7C). Thus, the abnormally high expression of S100A8, S100A9, S100A12, and RETN indicate an unnecessary immune-innate response in asthma cases.

Discussions

Hematopoietic stem/progenitor cells (HSPCs) are distinguished by their remarkable abilities to self-renew and differentiate into multiple lineages. HSPCs are not confined to a static existence within the bone marrow (BM) microenvironment; instead, a subset of HSPCs engages in a continuous migratory cycle between the BM and peripheral tissues. Stress, particularly in response to inflammation, there is an amplified production of blood cells in the bone marrow. This is succeeded by a substantial release of HSPCs, along with both mature and immature leukocytes, into the bloodstream. For instance, IL-33 has been shown to trigger the release of operational HSPCs which promptly reestablish the immune system upon engraftment into recipients who have undergone irradiation, thereby safeguarding the host from subsequent infections, such as those caused by the opportunistic pathogen Candida albicans. The expression analyses of the HSPCs from childhood asthma patients show that the genes related to S100A protein binding, immunity, and immune response are upregulated in them. It is a sign of hyperimmune tendency started from the cellular source in asthma cases. At the onset of the mobilization phase, cells within the bone
marrow that are part of the innate immune system, such as neutrophils and monocytes, emit danger-associated molecular patterns (DAMPs) including S100A9, reactive oxygen species (ROS), and enzymes with proteolytic and lipolytic activities. These elements coordinate the egress of HSPCs into the peripheral blood14. S100A9 has been shown to correlate with neutrophil activation. The serum levels of S100A9 were higher in neutrophilic asthma patients than in non-neutrophilic asthma patients. Peripheral blood neutrophils from asthmatic patients induced S100A9 production by airway epithelial cells, which further activated AECs via the ERK pathway, stimulated neutrophil extracellular trap formation, and induced M1 macrophage polarization15. In conditions like severe asthma, the S100 proteins S100A8, S100A9, and S100A12 have been shown to equally trigger the phosphorylation of ERK and the nuclear translocation of NF-κB/ cytosolic IκB degradation in airway epithelial cells through the TLR4 pathway, leading to the induction of MUC5AC production16. We also found that the expression of S100A8, S100A9, and S100A12 in peripheral blood in asthmatic children was higher than that in health.

Furthermore, the HSPCs of 3 asthma patients exhibit a heterogeneous DEG spectrum for sharing no common immune genes, although they converge on a common pathological base. It suggests that the genetic causes of asthma are various across different children or different allergens can trigger different immune genes in a child’s immune system. These two explanations are mutually inclusive. Future studies including bone marrow samples might give us much clearer views of this question since HSPCs are generated from bone marrow.

The intensity of inflammatory cues influences the ability of bone marrow-derived HSPCs to relocate and subsequently differentiate into ILCs at the site of inflammation11,12. Innate lymphoid cells (ILCs) are crucial in preserving the body's equilibrium. ILCs constitute a collection of cells within the innate immune system that do not possess the T cell receptor (TCR) or B cell receptor (BCR). They are capable of promptly releasing a diverse array of cytokines upon encountering stimulatory signals. Under the most recent classification system, ILCs are sorted into five distinct subsets, namely ILC1s, ILC2s, ILC3s, natural killer (NK) cells, and lymphoid tissue-inducer (LTi) cells17. The role of innate lymphoid cells (ILCs) in asthma is gaining increasing attention due to its significance and intricacy. Dhariwal and colleagues found that in asthmatic patients, a predominance of ILC2-driven inflammation in the airway was correlated with a more severe and prolonged course of rhinovirus infection in comparison to those without the
Upon activation by epithelial cell-derived alarmins, IL-25, IL-33, and thymic stromal lymphopoietin (TSLP), ILC2s are instrumental in driving type 2 (T2) inflammatory responses, characterized by the production of cytokines such as IL-4, IL-5, IL-9, and IL-13. Conversely, ILC1s play a role in countering viral infections and modulating immune responses through the secretion of interferon-gamma (IFN-\(\gamma\)).

Previous studies have shown that ILC2 is not only present in the lungs but also in the peripheral blood of healthy and asthmatic patients. However in peripheral blood, ILCs did not show an elevated trend, unlike in the lungs. Drake and colleagues found that upon stimulation with IL-33 or IL-25, peripheral blood mononuclear cells (PBMCs) from individuals with mild asthma generated higher levels of IL-5 and IL-13 compared to PBMCs from healthy individuals. Nonetheless, there was no notable difference in the counts or ratios of ILC2s between the two groups. Our results also found that the number of ILCs in asthma did not increase, and the down-regulated gene GO analysis showed that they were mainly ribosomal proteins involved in transcription and translation functions. It is suggested that the regulation function of ILCs is abnormal in the asthma group.

Conclusions

Our single-cell RNA sequencing (scRNA-seq) analysis of three pediatric asthma patients has uncovered a multifaceted cellular basis for the disease and has opened up a novel avenue for an in-depth and methodical investigation into the effector cells and pivotal molecular processes involved in childhood asthma.

References

Figures and figure legends

Figure 1. Single-cell profiling of PBMCs in six samples. A. The integration single-cell profiling analysis of six samples including 4 healthy controls, asthma patient 1, asthma patient 2, and asthma patient 3. B. The predicted cell types for single-cell profiling of PBMCs in seven samples.
Figure 2. The analysis of upregulated DEGs in asthma patients’ HSPCs. A. Venn gram of the upregulated DEGs in 3 asthma patients. B. GO term enrichment analysis of the specific upregulated DEGs in asthma patient 1 (Ast1). C. GO term enrichment analysis of the specific upregulated DEGs in asthma patient 2 (Ast2). D. GO term enrichment analysis of the specific upregulated DEGs in asthma patient 3 (Ast3).
Figure 3. Pseudo-time analysis of all cells in four sample groups. A. The differentiation trajectory of all cells in healthy controls by state. B. The proportion of major cell types in each state for healthy controls. C. The differentiation trajectory of all cells in asthma patient 1 (Ast1) by state. D. The proportion of major cell type in each state for asthma patient 1 (Ast1). E. The differentiation trajectory of all cells in asthma patient 2 (Ast2) by state. F. The proportion of major cell type in each state for asthma patient 2 (Ast2). G. The differentiation trajectory of all cells in asthma patient 3 (Ast3) by state. G. The proportion of major cell type in each state for asthma patient 3 (Ast3).
Figure 4. The analysis of DEGs in asthma patients’ ILCs. A. Venn gram of the upregulated ILC DEGs in 3 asthma patients. B. Venn gram of the downregulated ILC DEGs in 3 asthma patients. C. GO term enrichment analysis of the common downregulated DEGs in 3 asthma patients.
Figure 5. The expression of S100 genes in four sample groups. The feature plot for S100B, S100A9, S100A8, and S100A12 gene expression levels among four sample groups.
Figure 6. The violin plot of S100B, S100A9, S100A8, and S100A12 gene expression levels across 39 cell clusters among four sample groups.
Figure 7. The expression of RETN gene in four sample groups. A. The feature plot for RETN gene expression level among four sample groups. B. The violin plot of RETN gene expression level across 39 cell clusters among four sample groups. C. The level of serum resistin between asthma patients and health controls (n = 14) (***(p < 0.001).