Multicenter Randomized Controlled Trial of Exercise in Aortic Dissection Survivors: Rationale, Design, and Initial Hemodynamic Data

Yasmin A. Toy¹, Kayla N. House¹, Leslie M. Boyer², Jennifer L. McNamara³, Marion A. Hofmann-Bowman³, Kim A. Eagle³, Michelle S. Lim², Alan C. Braverman², Siddharth K. Prakash¹

¹McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA. ²Washington University School of Medicine, St. Louis, MO, USA. ³University of Michigan Medical School, Ann Arbor, MI, USA.

Correspondence to:
Siddharth K. Prakash, M.D., Ph.D. McGovern Medical School University of Texas Health Science Center at Houston 6431 Fannin Street, MSB 6.116 Houston, Texas 77030, USA Siddharth.K.Prakash@uth.tmc.edu ORCID: 0000-0001-6341-9624

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Abstract

There are currently no evidence-based guidelines for exercise after thoracic aortic dissection (TAD), leading to highly variable recommendations that frequently lead patients to restrict their physical activities. This multicenter randomized controlled trial was intended to evaluate the safety and efficacy of a moderate intensity guided exercise program for TAD survivors. Participants were eligible for the trial if they had a Type A or Type B dissection at least 90 days before enrollment and could attend two in-person study visits. The guided exercise circuit consisted of six aerobic, isotonic, or isometric exercises that participants continued at home with virtual follow up sessions. The primary endpoint is the change in the composite anxiety and depression PROMIS-29 T-score at 12 months. Secondary endpoints include changes in grip strength, weight, 24-hr ambulatory blood pressure, and arterial biomechanical properties measured by central arterial waveform analysis. Preliminary analysis of the first 81 enrolled participants demonstrated that the guided exercise circuit was completed safely and was not associated with severe exertional hypertension, injury, or adverse cardiovascular events. At enrollment, most participants had adverse central waveform or ABPM characteristics that are associated with increased cardiovascular mortality, such as increased arterial stiffness, nocturnal hypertension, elevated pulse pressure, or blunted nocturnal dipping. Follow up of enrolled participants with longitudinal hemodynamic data to evaluate the impact of the exercise program will conclude in October 2024.

Keywords: exercise, thoracic aortic dissection, thoracic aortic aneurysm, heritable thoracic aortic disease, ambulatory blood pressure monitoring, hypertension
INTRODUCTION

Thoracic aortic dissection (TAD) is a life-threatening medical emergency caused by an intimal tear in the thoracic aortic wall (1). Although advances in the surgical intervention, prophylaxis, and early recognition of TAD have improved long-term survival, many individuals with TAD face disabling, lifelong obstacles related to anxiety about sudden risk of death, re-dissection, aortic rupture, and other chronic complications (2, 3).

Observational studies have documented decreased quality of life in TAD survivors related to changes in daily activity levels and frequent anxiety or depression (3, 4). Case reports about acute aortic dissections that occurred during high intensity exercises such as weightlifting have provoked uncertainty about the safety of exercises (5-7). Weightlifting may induce extreme elevations in blood pressure due to potent pressor and Valsalva responses (8). Anxiety about dissection risk may lead TAD survivors to minimize physical activities, leading to additional deterioration of overall cardiovascular health and mental well-being (3). There is an urgent need clarify the safety and benefits of exercise (9). TAD survivors may also benefit from accessible, personalized interventions that address mental health issues (1).

Physical activities can provide synergistic benefits in combination with antihypertensive medications, reducing morbidity and mortality across a wide spectrum of cardiovascular diseases. Regular aerobic or isometric exercise is associated with a dose-dependent decrease in blood pressure, major cardiovascular outcomes, and mortality (10). On a weekly basis, at least 150 minutes of moderate aerobic exercise and 20 minutes of isometric exercise can reduce systolic blood pressure (11). Moderate aerobic activity decreased aortic medial degeneration and reduced aortic dilation in a Marfan syndrome mouse model (6). Abdominal aortic aneurysm expansion rates decreased in patients who engaged in moderate intensity exercise, especially when coupled with improved control of systolic hypertension (12). Cardiac rehabilitation proved to be safe and effective in post-surgical TAD patients, who demonstrated increased aerobic capacity and quality of life (12-14). However, only one quarter of eligible patients in the United States have access to cardiac rehabilitation programs due to social and economic barriers, depriving many patients of the proven benefits related to early guided exercise after surgery or dissection (15). Therefore, exercises that can be performed at home with inexpensive and portable equipment are needed to improve access to the benefits of cardiac rehabilitation.

Regular exercise may uniquely benefit TAD survivors by improving mental health, quality of life, and
functional capacity (3). The overall goal of this study is to determine if a guided exercise program
consisting of static and dynamic maneuvers that can be performed at home can decrease anxiety and
increase confidence to engage in physical activities while lowering systolic blood pressure, arterial
stiffness, and other cardiometabolic health measures (11). We demonstrate how this reproducible
protocol can be used to improve the mental and physical well-being of TAD patients.

METHODS

Inclusion Criteria and Enrollment

The study protocol was reviewed and approved by the Committee for the Protection of Human
Subjects at the University of Texas Health Science Center at Houston (UTHealth Houston),
University of Michigan, and Washington University School of Medicine. This study was designed to
proceed for 18 months: an anticipated 6 months to complete enrollment and 12 months of follow up
for each participant (Figure 1). Aortopathy clinics at UTHealth Houston, Washington University in
St. Louis, and the University of Michigan will recruit a total 126 patients (42 at each site), male and
female, through clinician referral, medical records, databases, and social media campaigns. Patients
who survived a thoracic aortic dissection (Type A or B) at least three months prior to study
enrollment were eligible for inclusion. All potential participants were required to complete the 2009
Behavioral Risk Factor Surveillance Survey (BRFSS) about weekly time engaged in moderate and
strenuous physical activities (Supplemental Text S1). Patients were excluded if any of the following
apply: routine participation in greater than 150 minutes per week of moderate intensity exercises (as
assessed by the BRFSS); unable to attend at least one exercise training session in person;
uncontrolled hypertension (mean SBP greater than 160 mmHg at rest); symptomatic aortic, coronary,
or vascular disease; unable to complete exercise program due to physical limitations, equipment or
space limitations, or time commitment; do not own a treadmill or stationary cycle or have regular
access to one at a gym. If patients are participating in cardiac rehabilitation, enrollment will be
delayed until after discharge from the rehabilitation program.

After confirmation of eligibility and consent, all participants completed a demographic survey (age,
sex, race, ethnicity), and the PROMIS-29 v2.0 profile questionnaire (Patient-Reported Outcomes
Measurement Information System), which is validated to assess seven health domains (physical
function, fatigue, pain, depressive symptoms, anxiety, ability to participate in social roles and
activities, and sleep disturbance) (Supplemental Text S2). At enrollment, all participants were fitted with ambulatory blood pressure monitors to wear for 24 hours (ABPM, OnTrak, Space Labs, Inc.) with the cuff on the non-dominant arm. We performed arterial pressure waveform and pulse wave velocity analysis (Sphygmocor, AtCor Medical, Inc.) and recorded one set of orthostatic vital signs (sitting x 3, supine, standing). We also obtained consent to extract additional outcome data from health records. Participants were randomly assigned in a 1:1 ratio to receive the guided exercise program or usual care. Participants in both study arms received all usual clinically indicated care, including diagnostic tests and medications. Recommendations for tests or interventions did not change based on the assigned study arm. At the concluding study visit 12 months after enrollment, all study participants will repeat blood pressure measurements and completed the same BRFSS activity and PROMIS-29 v2.0 questionnaires as at enrollment.

Figure 1. Clinical trial design and workflow for guided exercise and usual care groups. Guided exercise participants returned surveys about their routine activities and/or exercise diaries at each study visit.

Guided Exercise

At enrollment, participants who were randomized to the guided exercise arm completed a supervised exercise protocol that included two circuits of six moderate intensity exercises: bicep curls, wall sits,
hand grips, leg raises, stationary cycling and treadmill. Bicep curls were performed with the
dominant hand using 5-, 8-, or 10-pound weights. Wall sits were maintained with a ninety-degree
angle between the back and lower legs. Hand grip resistance level was calculated as 40% of maximal
exertion using the dominant hand. Leg raises were performed in a supine position with both heels
elevated six inches above ground level. Stationary cycling was performed at a target of 100 Watts.

The treadmill was performed once at 3 mph at a 14% grade incline. Cardiac rehabilitation facility
staff and trained study personnel supervised all exercises. Participants maintained exercises at
moderate intensity (50-80% of age-adjusted maximum heart rate) long enough to acquire one
brachial cuff reading (1-2 minutes). Blood pressure measurements during exercise were manually
triggered using the ABPMs and supervisors ensured that the measurement arm was immobilized
while the cuff inflated as recommended in the AHA scientific statement on blood pressure
measurement (16). All exercises were initiated for 15 seconds prior to triggering the ABPM and
maintained until the readings were completed. Post-exercise blood pressure measurements were taken
following each exercise. Exertional hypertension was defined as any systolic blood pressure >180
mmHg or diastolic blood pressure > 100 mmHg on more than 1 exercise. Exercises were promptly
terminated if any of the following occurred: persistent systolic pressure > 160 mmHg persisting after
3 minutes of recovery, any single systolic pressure > 210 mmHg, or any single diastolic blood
pressure > 120 mmHg; chest pain, dyspnea, or significant fatigue; or a request to stop. Perceived
exertion during each exercise was measured using the Borg CR-10 scale, with a score of one
representing minimal exertion and a score of ten indicating maximal exertion (17). Participants
received individualized instruction about how to implement the exercise program at home, with the
weekly target of 5 days or at least 150 total minutes of moderate-intensity exercise. They were also
counseled to record their activities in a monthly exercise diary and share fitness data recorded by
home blood pressure cuffs or wearable devices.

After enrollment, the study teams followed up with participants via video check-ins and surveys. All
participants completed BFRSS surveys about the intensity and frequency of their activities at 1, 3, and
9 months, and at the conclusion of the study. In the first month after enrollment, the study teams
conducted one video check-in with each participant to assess any changes in health status, obtain
information about clinic visits, track exercise progress, reinforce teaching about the exercise circuit,
and answer questions about exercise. During the check-in, the study team also observed and corrected
participants as they performed one exercise. Shorter video visits without exercise demonstrations were
repeated at 3 and 9 months after enrollment, in which participants were encouraged to share their
experiences with the exercise protocol and to troubleshoot potential obstacles to exercise. Participants
also transmitted home blood pressure or fitness data to UTHealth if they were available. The study
teams promoted the target of more than 150 minutes of moderate exercises per week at each interaction.

Usual Care

Participants who were randomized to usual care completed 24-hour ABPM but did not receive any teaching regarding exercise and did not participate in any in-person or virtual exercise sessions. Instead, they attended routine clinic visits and received standardized counseling about exercise, including a pamphlet with guidelines about living with aortic disease. Participants were not contacted by the study team after the initial enrollment visit.

Data Analysis

The primary outcome is a clinically significant change in the PROMIS-29 T score or the PROMIS mental health summary score, a subset of PROMIS questions that primarily assess emotional distress (anxiety and depressive symptoms). The general population mean of PROMIS T scores is standardized at 50 points with a standard deviation of 10 points. The minimum clinically important difference (CID) is 5 points. To detect a change in 5 T score points with beta=0.80 and alpha=0.05, target sample size is 63 patients per study arm (126 total).

ABPM outcomes included mean 24-hour, daytime, and nocturnal blood pressures. Pulse pressure, nocturnal dipping status, blood pressure variability, AASI, and peak systolic pressure were also included in the analysis because they have been identified as independent predictors of cardiovascular mortality (18, 19). Study thresholds were derived from published data on ABPM norms: mean 24-hour pressure > 125/75 mmHg, mean daytime pressure > 130/80 mmHg, mean nighttime pressure > 110/65 mmHg, ambulatory arterial stiffness index (AASI) ≥ 0.70, nocturnal dipping < 10%, peak daytime systolic pressure >180 mmHg, 24-hour pulse pressure > 53 mmHg, and increased blood pressure variability, defined as a coefficient of variation > 11.1. Postural orthostasis was defined as a > 20 mm Hg decrease in systolic blood pressure and/or a > 10 mm Hg decrease in diastolic blood pressure when sitting or standing from a supine position. ABP data was analyzed using Sentinel software (v11, Space Labs, Inc., Snoqualmie, WA). Multiple comparisons were assessed using one-way ANOVA with the Tukey method.

RESULTS
A total of 445 individuals were screened and 250 were found to be eligible for the study. The major reasons why individuals were excluded were: unable to attend in-person study visits (55), exercise equipment inaccessibility (49), unable physically to exercise (42). To date, a total of 81 trial participants were enrolled with complete study data (Table 1). Participants who had Type A dissections (n=51) received TEVAR (n = 2), had open repairs (n = 44), or had no interventions (n = 5). Participants who had Type B dissections (n=25) received TEVAR (n = 10), had open repairs (n = 5), or had no interventions (n = 10). Participants who had more than one dissection underwent only open repairs (n = 5).

Table 1. Demographic Characteristics

<table>
<thead>
<tr>
<th>Variable</th>
<th>All Participants (n = 81)</th>
<th>Guided Exercise (n = 38)</th>
<th>Usual Care (n = 43)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (y)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sex</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>22 (27)</td>
<td>11 (29)</td>
<td>11 (26)</td>
</tr>
<tr>
<td>Ethnicity</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hispanic or Latino</td>
<td>2 (2)</td>
<td>1 (3)</td>
<td>1 (2)</td>
</tr>
<tr>
<td>Race</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>American Indian/Alaska Native</td>
<td>2 (3)</td>
<td>0 (0)</td>
<td>2 (5)</td>
</tr>
<tr>
<td>Asian</td>
<td>5 (6)</td>
<td>2 (5)</td>
<td>3 (7)</td>
</tr>
<tr>
<td>Native Hawaiian/other Pacific Islander</td>
<td>1 (1)</td>
<td>0 (0)</td>
<td>1 (2)</td>
</tr>
<tr>
<td>Black or African American</td>
<td>9 (11)</td>
<td>4 (11)</td>
<td>5 (12)</td>
</tr>
<tr>
<td>White</td>
<td>61 (75)</td>
<td>32 (84)</td>
<td>29 (67)</td>
</tr>
<tr>
<td>Antihypertensive Medications</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beta blocker</td>
<td>2 (1)</td>
<td>3 (1)</td>
<td>2 (1)</td>
</tr>
<tr>
<td>ACEi/ARB</td>
<td>75 (93)</td>
<td>37 (97)</td>
<td>38 (88)</td>
</tr>
<tr>
<td>Diuretic</td>
<td>48 (59)</td>
<td>25 (66)</td>
<td>23 (53)</td>
</tr>
<tr>
<td>Calcium channel blocker</td>
<td>23 (28)</td>
<td>13 (34)</td>
<td>10 (23)</td>
</tr>
<tr>
<td>Calcium channel blocker</td>
<td>33 (40)</td>
<td>12 (32)</td>
<td>21 (48)</td>
</tr>
<tr>
<td>Dissection Data</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time since dissection (y)</td>
<td>3.5 (3)</td>
<td>4.0 (3)</td>
<td>3.1 (2)</td>
</tr>
<tr>
<td>Type A</td>
<td>51 (63)</td>
<td>25 (66)</td>
<td>26 (60)</td>
</tr>
<tr>
<td>Type B</td>
<td>25 (31)</td>
<td>10 (26)</td>
<td>15 (35)</td>
</tr>
<tr>
<td>Multiple dissections</td>
<td>5 (6)</td>
<td>3 (8)</td>
<td>2 (5)</td>
</tr>
</tbody>
</table>

Values are mean (interquartile range), n (%). ACEi: angiotensin-converting enzyme inhibitor. ARB: angiotensin II receptor blockers.

PROMIS Questionnaire

Evaluation of seven PROMIS domains found that mean T scores for anxiety (51 ± 9), pain (51 ± 7), and impairment of participation in social activities (54 ± 8) were increased. Scores for depression, fatigue, and sleep disturbance were within normal limits. There were no significant differences between PROMIS scores for participants with and without exertional hypertension, or between guided exercise and control groups.
Grip Strength

At baseline, the mean maximum grip strength was 64 lbs (IQR 12.9). At the first follow up visit, grip strength increased by a mean of 7.8 lb (IQR 6.9).

Orthostatic and Ambulatory Blood Pressure

At baseline, seven participants (9%) exhibited postural orthostasis. The most prevalent adverse ABPM characteristics were nocturnal hypertension (83%), blunted nocturnal dipping (40%), and elevated mean 24-hour pulse pressure (40%). Participants who developed significant exertional hypertension had higher peak blood pressure values and greater ambulatory blood pressure variability (Table 2). There was no association between postural orthostasis and exertional hypertension.

Table 2. ABPM Characteristics by Exertional Hypertension

<table>
<thead>
<tr>
<th>Variable</th>
<th>Total (n=71)</th>
<th>Exertional Hypertension (n=13)</th>
<th>No Exertional Hypertension (n=24)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean SBP</td>
<td>119 (16)</td>
<td>122 (16)</td>
<td>114 (13)</td>
<td>0.13</td>
</tr>
<tr>
<td>Mean DBP</td>
<td>67 (12)</td>
<td>70 (11)</td>
<td>64 (6)</td>
<td>0.06</td>
</tr>
<tr>
<td>Day SBP</td>
<td>123 (18)</td>
<td>127 (14)</td>
<td>119 (16)</td>
<td>0.3</td>
</tr>
<tr>
<td>Day DBP</td>
<td>70 (12)</td>
<td>74 (9)</td>
<td>67 (5)</td>
<td>0.05*</td>
</tr>
<tr>
<td>Night SBP</td>
<td>111 (16)</td>
<td>111 (19)</td>
<td>103 (17)</td>
<td>0.12</td>
</tr>
<tr>
<td>Night DBP</td>
<td>61 (14)</td>
<td>62 (11)</td>
<td>58 (14)</td>
<td>0.22</td>
</tr>
<tr>
<td>Peak daytime SBP</td>
<td>157 (28)</td>
<td>178 (34)</td>
<td>154 (22)</td>
<td>0.01*</td>
</tr>
<tr>
<td>Pulse Pressure</td>
<td>50 (12)</td>
<td>46 (10)</td>
<td>48 (17)</td>
<td>0.76</td>
</tr>
<tr>
<td>Daytime SBP COV</td>
<td>11 (4)</td>
<td>14 (4)</td>
<td>11 (4)</td>
<td>0.03*</td>
</tr>
<tr>
<td>Morning Surge Index (%)</td>
<td>16 (18)</td>
<td>18 (28)</td>
<td>18 (17)</td>
<td>0.78</td>
</tr>
<tr>
<td>Nocturnal Dipping (%)</td>
<td>12 (12)</td>
<td>17 (10)</td>
<td>14 (9)</td>
<td>0.10</td>
</tr>
<tr>
<td>AASI</td>
<td>0.53 (0.16)</td>
<td>0.48 (0.08)</td>
<td>0.52 (0.16)</td>
<td>0.51</td>
</tr>
</tbody>
</table>

Values are mean (interquartile range). SBP: systolic blood pressure; DBP: diastolic blood pressure; PP: pulse pressure; AASI: ambulatory arterial stiffness index; Exertional hypertension: SBP > 180 mmHg or DBP > 100 mmHg in >1 exercise; COV: coefficient of variation; *: ANOVA P < 0.05.

Safety of Exercise Protocol

All participants completed the study protocol. One in-person exercise session was temporarily delayed after a participant developed severe exertional hypertension (SBP >210), but they were able to complete the protocol after medication adjustment. Exercises that caused SBP to exceed 180 mmHg were: bicep curls (3/37, 8%), wall sits (7/35, 20%), hand grips (1/37, 3%), leg raise (1/37, 3%), stationary bicycling (4/32, 13%), and treadmill (3/36, 8%). Exercises that caused DBP to exceed 100 mmHg were: bicep curls (5/37, 14%), wall sits (11/35, 31%), hand grips (7/37, 19%), leg raise (6/37, 16%), stationary bicycling (1/32, 3%), and treadmill (3/36, 8%).
Participant Feedback

More than half of respondents (n=23) agreed that participating in the clinical trial improved their outlook on exercise (see Supplemental Text S3 for survey details). Participants expressed increased confidence to engage in physical activities and optimism about participating in exercise after attending an in-person clinical trial visit.

Technical Issues

Mean individual exercise completion rates from highest to lowest were bicep curls (100%), hand grip (100%), leg raise (100%), treadmill (97%), wall sit (95%), and cycle (87%). The rates for exercises with two readings per participant from highest to lowest were hand grip (92%), leg raise (92%), treadmill (87%), wall sit (84%), bicep curls (82%), and cycle (76%). The most frequent ABPM errors corresponded to excessive arm movement or vibration (Supplemental Table S1). Bracing the measurement arm successfully suppressed most of these errors [16]. We addressed the other major sources of error by changing ABPM cuff size or refitting cuffs according to manufacturer guidelines. To limit overexertion, we attempted ABPM blood pressure readings a maximum number of two times before switching to manual auscultation.

DISCUSSION

Anxiety and uncertainty about exercise may negatively impact the cardiovascular and mental health of TAD survivors by leading them to restrict their activities. In contrast to case reports that inform current guideline recommendations, this pilot study is the first randomized controlled trial of exercise in TAD survivors. The unique objectives of this study are to assess the effects of an at-home exercise program on hemodynamic and mental health outcomes. The primary outcome is a clinically significant change in the PROMIS-29 summary T-score or mental health summary score. Secondary outcomes include the change in the burden of ambulatory hypertension and nocturnal dipping as assessed by ambulatory blood pressure monitoring. The guided exercise program proved to be safe for trial participants, and we found that grip strength, a significant predictor of cardiovascular death, increased by 30% in the first three months of participation (20, 21). We also observed adverse ABPM characteristics in many participants that are associated with increased cardiovascular mortality, such as nocturnal hypertension, blunted nocturnal dipping, or elevated pulse pressure. Ambulatory peak blood pressure and blood pressure variability predicted significant exertional hypertension. These observations highlight the high cardiovascular risk of the trial cohort. While self-reported anxiety was
increased in trial participants, there was no correlation between initial PROMIS anxiety T-scores and
ambulatory or exertional hypertension.

As the study progressed, we made several adjustments to home exercise instructions and the virtual
visit protocol to account for the frailty and decreased physical strength of many TAD participants. The
exercise instructions were altered so that participants were able to maintain moderate intensity effort
without physical strain. Participants were instructed to scale up individual exercises incrementally, by
increasing repetitions in 15 second increments or by two repetitions per week. When starting home
exercises, we allowed participants to decrease the initial speed and incline settings of the treadmill, the
angle of the wall sit, and the target rate on the stationary bicycle. The virtual visit protocol was
amended to collect additional information about contacts with healthcare providers. We also provided
personalized counseling to individuals who developed exertional hypertension during the in-person
exercise training sessions to modify the intensity of specific exercises and to minimize Valsalva
maneuvers during isometric exercises. New participants in the guided exercise study arm received the
updated exercise instructions at the initial enrollment visit. Previously enrolled participants received
updated instructions and teaching at virtual follow up visits.

The principal limitations to study recruitment were the requirements for participants to have access to
exercise equipment at home and for in-person study visits. Technological barriers did limit timely
virtual follow up visits with some participants. We plan to address these obstacles in a larger and
longer trial that will be adequately powered to determine if guided exercise can reduce aortic events
and prevent deaths due to TAD. In such a trial, we will collect longitudinal data on aortic enlargement,
arterial stiffness, cardiac function, and serial changes in blood pressure responses to exercise over
time. To promote accessibility, we plan to mail portable exercise equipment directly to participants. In
the short term, we plan to adapt this protocol to create personalized exercise prescriptions for patients,
and in the long-term we hope that these studies may eventually be used to develop evidence-based
exercise guidelines.

DECLARATIONS

Acknowledgements
We are profoundly grateful to Bansari Rajani, Gabrielle Sutton, Jatin Khanna, Tara Johnson, Sue
Streeter, Cardiac and Pulmonary Rehabilitation Center staff at Memorial Hermann – Texas Medical
Center Hospital, and to all study participants for their time and effort. Dr. Braverman’s research is
sponsored by the Pam and Ron Rubin Fund at Washington University School of Medicine and the
Neidorff Aortopathy and Master Clinician in Cardiology Fellowship Program at Washington University School of Medicine. We would like to thank the staff of the cardiac rehabilitation program at Washington University School of Medicine, Barnes-Jewish Heart & Vascular Center, and the staff of the cardiac rehabilitation program at the Frankel Cardiovascular Center at University of Michigan.

Authors’ contributions
Toy Y: Data curation, Writing - Original draft preparation; House K: Supervision, Project administration, Writing - Reviewing and Editing; Boyer L: Supervision, Project administration; McNamara J: Supervision, Project administration; Hofman-Bowman M: Conceptualization, Methodology, Writing - Reviewing and Editing, Project administration; Eagle K: Conceptualization, Methodology, Writing - Reviewing and Editing, Project administration; Braverman A: Conceptualization, Methodology, Writing - Reviewing and Editing, Project administration; Prakash S: Conceptualization, Methodology, Writing - Reviewing and Editing, Project administration.

Availability of data and materials
Data will be published as supplementary information.

Financial support and sponsorship
This work was supported in part by a grant from the John Ritter Foundation for Aortic Health and a gift from Carmen David.

Conflicts of interest
All authors declared that there are no conflicts of interest.

Ethical approval and consent to participate
The study protocol was reviewed and approved by the Committee for the Protection of Human Subjects at the University of Texas Health Science Center at Houston (HSC-MS-22-0936). All subjects signed a written informed consent document prior to enrollment.

Consent for publication
Not applicable.

REFERENCES

Supplementary Table 1. Most frequently observed Space Labs ABPM error codes.

<table>
<thead>
<tr>
<th>Error Code</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>EC04</td>
<td>Occasional EC04 messages reflect excessive patient movement. Frequent EC04 messages indicate an improperly applied cuff or a monitor malfunction.</td>
</tr>
<tr>
<td>EC10, 70, 90</td>
<td>Excessive movement</td>
</tr>
<tr>
<td>EC11</td>
<td>Monitor did not pump above mean arterial level</td>
</tr>
<tr>
<td>EC40</td>
<td>Movement during systole</td>
</tr>
<tr>
<td>EC50, 58</td>
<td>Movement during diastole</td>
</tr>
<tr>
<td>EC52</td>
<td>Kinked tubing</td>
</tr>
<tr>
<td>EC62</td>
<td>Cuff applied too loosely</td>
</tr>
</tbody>
</table>
BRFSS Questionnaire: Physical Activity

When you are at work, which of the following best describes what you do?

- Mostly sitting or standing
- Mostly walking
- Mostly heavy labor or physically demanding work
- Don't know / Not sure (include all jobs)

If you have more than one job, consider all jobs in your answer.

We are interested in two types of physical activity: vigorous and moderate. Vigorous activities cause large increases in breathing or heart rate. Moderate activities cause small increases in breathing or heart rate.

Thinking about the moderate activities you do in a usual week, do you do moderate activities for at least 10 minutes at a time, such as brisk walking, bicycling, vacuuming, gardening, or anything else that causes a small increase in breathing or heart rate?

- Yes
- No
- Don't know / Not sure

How many days per week do you do these moderate activities for at least 10 minutes at a time?

On days when you do moderate activities for at least 10 minutes at a time, how much total time per day do you spend doing these activities? Answer to the nearest hour.

Now, thinking about the vigorous activities you do in a usual week, do you do vigorous activities for at least 10 minutes at a time, such as running, aerobics, heavy yard work, or anything else that causes large increases in breathing or heart rate?

- Yes
- No
- Don't know / Not sure

How many days per week do you do these vigorous activities for at least 10 minutes at a time?

On days when you do vigorous activities for at least 10 minutes at a time, how much total time per day do you spend doing these activities? Answer to the nearest hour.

For BRFSS Survey Questions

Atlanta, Georgia: U.S. Department of Health and Human Services, Centers for Disease Control and Prevention, 2009.
http://www.cdc.gov/brfss/suggestedcitation.htm
1) PROMIS - Physical Function

Please complete the survey below.

Thank you!

<table>
<thead>
<tr>
<th>FINAL RESULTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-score</td>
</tr>
<tr>
<td>____________________________</td>
</tr>
<tr>
<td>Standard Error</td>
</tr>
<tr>
<td>____________________________</td>
</tr>
</tbody>
</table>

PFA11

Are you able to do chores such as vacuuming or yard work?

- [] Without any difficulty
- [] With a little difficulty
- [] With some difficulty
- [] With much difficulty
- [] Unable to do

PFA21

Are you able to go up and down stairs at a normal pace?

- [] Without any difficulty
- [] With a little difficulty
- [] With some difficulty
- [] With much difficulty
- [] Unable to do

PFA23

Are you able to go for a walk of at least 15 minutes?

- [] Without any difficulty
- [] With a little difficulty
- [] With some difficulty
- [] With much difficulty
- [] Unable to do

PFA53

Are you able to run errands and shop?

- [] Without any difficulty
- [] With a little difficulty
- [] With some difficulty
- [] With much difficulty
- [] Unable to do

Acknowledgment: PROMIS Health Organization and Assessment Center™ View full acknowledgment
2) PROMIS - Anxiety

FINAL RESULTS

<table>
<thead>
<tr>
<th>T-score</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Standard Error</td>
</tr>
</tbody>
</table>

EDANX01

<table>
<thead>
<tr>
<th>In the past 7 days</th>
<th>Never</th>
<th>Rarely</th>
<th>Sometimes</th>
<th>Often</th>
<th>Always</th>
</tr>
</thead>
<tbody>
<tr>
<td>I felt fearful</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

EDANX40

<table>
<thead>
<tr>
<th>In the past 7 days</th>
<th>Never</th>
<th>Rarely</th>
<th>Sometimes</th>
<th>Often</th>
<th>Always</th>
</tr>
</thead>
<tbody>
<tr>
<td>I found it hard to focus on anything other than my anxiety</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

EDANX41

<table>
<thead>
<tr>
<th>In the past 7 days</th>
<th>Never</th>
<th>Rarely</th>
<th>Sometimes</th>
<th>Often</th>
<th>Always</th>
</tr>
</thead>
<tbody>
<tr>
<td>My worries overwhelmed me</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

EDANX53

<table>
<thead>
<tr>
<th>In the past 7 days</th>
<th>Never</th>
<th>Rarely</th>
<th>Sometimes</th>
<th>Often</th>
<th>Always</th>
</tr>
</thead>
<tbody>
<tr>
<td>I felt uneasy</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Acknowledgment: PROMIS Health Organization and Assessment Center™ View full acknowledgment
3) PROMIS - Depression

FINAL RESULTS

<table>
<thead>
<tr>
<th>T-score</th>
<th>Standard Error</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

EDDEP04

<table>
<thead>
<tr>
<th>In the past 7 days</th>
<th>Never</th>
<th>Rarely</th>
<th>Sometimes</th>
<th>Often</th>
<th>Always</th>
</tr>
</thead>
<tbody>
<tr>
<td>I felt worthless</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

EDDEP06

<table>
<thead>
<tr>
<th>In the past 7 days</th>
<th>Never</th>
<th>Rarely</th>
<th>Sometimes</th>
<th>Often</th>
<th>Always</th>
</tr>
</thead>
<tbody>
<tr>
<td>I felt helpless</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

EDDEP29

<table>
<thead>
<tr>
<th>In the past 7 days</th>
<th>Never</th>
<th>Rarely</th>
<th>Sometimes</th>
<th>Often</th>
<th>Always</th>
</tr>
</thead>
<tbody>
<tr>
<td>I felt depressed</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

EDDEP41

<table>
<thead>
<tr>
<th>In the past 7 days</th>
<th>Never</th>
<th>Rarely</th>
<th>Sometimes</th>
<th>Often</th>
<th>Always</th>
</tr>
</thead>
<tbody>
<tr>
<td>I felt hopeless</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Acknowledgment: PROMIS Health Organization and Assessment Center™ View full acknowledgment
FINAL RESULTS

<table>
<thead>
<tr>
<th>T-score</th>
<th>Standard Error</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

HI7

During the past 7 days:
- I feel fatigued
 - Not at all
 - A little bit
 - Somewhat
 - Quite a bit
 - Very much

FATEXP40

In the past 7 days
- How fatigued were you on average?
 - Not at all
 - A little bit
 - Somewhat
 - Quite a bit
 - Very much

FATEXP41

In the past 7 days
- How run-down did you feel on average?
 - Not at all
 - A little bit
 - Somewhat
 - Quite a bit
 - Very much

An3

During the past 7 days:
- I have trouble starting things because I am tired
 - Not at all
 - A little bit
 - Somewhat
 - Quite a bit
 - Very much

Acknowledgment: PROMIS Health Organization and Assessment Center™ View full acknowledgment
5) PROMIS - Sleep Disturbance

FINAL RESULTS

<table>
<thead>
<tr>
<th>T-score</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Standard Error</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

Sleep116

In the past 7 days
My sleep was refreshing.
- Not at all
- A little bit
- Somewhat
- Quite a bit
- Very much

Sleep20

In the past 7 days
I had a problem with my sleep.
- Not at all
- A little bit
- Somewhat
- Quite a bit
- Very much

Sleep44

In the past 7 days
I had difficulty falling asleep.
- Not at all
- A little bit
- Somewhat
- Quite a bit
- Very much

Sleep109

In the past 7 days
My sleep quality was...
- Very poor
- Poor
- Fair
- Good
- Very good

Acknowledgment: PROMIS Health Organization and Assessment Center™ View full acknowledgment
6) PROMIS - Ability to Participate Social

<table>
<thead>
<tr>
<th>FINAL RESULTS</th>
<th>T-score</th>
<th>Standard Error</th>
</tr>
</thead>
</table>

SRPPER11_CaP5
I have trouble doing all of my regular leisure activities with others

- Never
- Rarely
- Sometimes
- Usually
- Always

SRPPER18_CaP5
I have trouble doing all of the family activities that I want to do

- Never
- Rarely
- Sometimes
- Usually
- Always

SRPPER23_CaP5
I have trouble doing all of my usual work (include work at home)

- Never
- Rarely
- Sometimes
- Usually
- Always

SRPPER46_CaP5
I have trouble doing all of the activities with friends that I want to do

- Never
- Rarely
- Sometimes
- Usually
- Always

Acknowledgment: PROMIS Health Organization and Assessment Center™ View full acknowledgment
7) PROMIS - Pain Interference

FINAL RESULTS

<table>
<thead>
<tr>
<th>T-score</th>
<th>Standard Error</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PAININ9

In the past 7 days
How much did pain interfere with your day to day activities?

- Not at all
- A little bit
- Somewhat
- Quite a bit
- Very much

PAININ22

In the past 7 days
How much did pain interfere with work around the home?

- Not at all
- A little bit
- Somewhat
- Quite a bit
- Very much

PAININ31

In the past 7 days
How much did pain interfere with your ability to participate in social activities?

- Not at all
- A little bit
- Somewhat
- Quite a bit
- Very much

PAININ34

In the past 7 days
How much did pain interfere with your household chores?

- Not at all
- A little bit
- Somewhat
- Quite a bit
- Very much

Acknowledgment: PROMIS Health Organization and Assessment Center™ View full acknowledgment
Supplemental Text 3. Clinical Trial Evaluation Survey

Evaluation Survey

Please complete the survey below.

Thank you!

Directions: Please answer each question by using the slider to indicate which choice most accurately describes you. Read each question carefully.

Prompt: Before attending an in-person enrollment visit for the clinical trial...

1) How did you generally feel about engaging in moderate physical activity?
 - Confident
 - Neutral
 - Uneasy
 (Place a mark on the scale above)

2) How would you rate your confidence to engage in physical activity?
 - Moderate
 - High confidence
 - Low confidence
 (Place a mark on the scale above)

3) How would you rate your outlook on exercise post-dissection?
 - Excited
 - Neutral
 - Discouraged
 (Place a mark on the scale above)

Prompt: After attending an in-person study visit for the clinical trial...

4) How do you generally feel about engaging in moderate physical activity?
 - Confident
 - Neutral
 - Uneasy
 (Place a mark on the scale above)

5) How would you rate your confidence to engage in physical activity?
 - Moderate
 - High confidence
 - Low confidence
 (Place a mark on the scale above)

6) How would you rate your outlook on exercise post-dissection?
 - Excited
 - Neutral
 - Discouraged
 (Place a mark on the scale above)

Directions: please select the choice that most accurately describes you.

7) Participating in the clinical trial has positively changed my outlook on exercise post-dissection.
 - Strongly Disagree
 - Disagree
 - Neither agree nor disagree
 - Agree
 - Strongly Agree
<table>
<thead>
<tr>
<th></th>
<th>Participating in the clinical trial has not changed my outlook on exercise-on-exercise</th>
<th></th>
<th>Participating in the clinical trial has negatively changed my outlook on exercise-on-exercise</th>
</tr>
</thead>
<tbody>
<tr>
<td>8)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Strongly Disagree outlook on exercise-on-exercise</td>
<td>Neither agree nor disagree</td>
<td>Strongly Agree</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Strongly Disagree changed my outlook on exercise-on-exercise</td>
<td>Neither agree nor disagree</td>
<td>Strongly Agree</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10)</td>
<td>Please use this field to provide any feedback about your experiences with the clinical trial thus far.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>