Title: Glial activation mediates phenotypic effects of APOEε4 and sex in Alzheimer’s disease

Authors and Affiliations:

Roger M. Lane, MD[a]; Dan Li, PhD[a]; Taher Darreh-Shori[b]

[a]Ionis Pharmaceuticals Inc., Carlsbad, CA, USA
[b]Karolinska Institutet, Department of Neurobiology, Care Sciences and Society; Division of Clinical Geriatrics, Stockholm, Sweden

Corresponding Author: Roger M. Lane, MD, MPH,

Address: Ionis Pharmaceuticals, 2855 Gazelle Court, Carlsbad, CA 92010, USA

Email: rlane@ionisph.com

Declaration of Interest:

RML and DL are Employees of, and holders of stock/stock options in, Ionis Pharmaceuticals Inc.

TDS has no conflicts of interest.

Word Count

Abstract: 150/150

Introduction: 596/650

Discussion: 1420/1500
ABSTRACT

INTRODUCTION: This study examined the impact of apolipoprotein e4 (APOEε4) allele frequency and sex on the phenotype of Alzheimer’s disease (AD).

METHODS: The baseline characteristics, CSF, and neuroimaging biomarkers, and cognition scores collected from 45 patients aged 50-74 years with confirmed early AD from clinical trial NCT03186989 were evaluated in a post-hoc study.

RESULTS: A phenotypic spectrum was observed from a predominant amyloid and limbic- amnestic phenotype in male APOEε4 homozygotes to a predominantly tau, limbic-sparing, and multidomain cognitive impairment phenotype in female APOEε4 noncarriers. Amyloid pathology inversely correlated with tau pathophysiology, glial activation, and synaptic injury, with the strongest correlations observed in male APOEε4 carriers. Tau pathophysiology was correlated with glial activation, synaptic injury, and neuroaxonal damage, with the strongest correlation observed in female APOEε4 noncarriers.

DISCUSSION: Glial activation is influenced by apoE isoform and sex, which explains much of the phenotypic heterogeneity in early AD below age 75 years.

KEYWORDS: Apolipoprotein E, sex, glial activation, amyloid, tau, synaptic injury
HIGHLIGHTS

- **APOEɛ4** homozygotes displayed a predominantly amyloid and limbic-amnestic phenotype.

- Female **APOEɛ4** noncarriers displayed a predominantly tau, limbic-sparing, and multidomain cognitive impairment phenotype.

- In male **APOEɛ4** carriers, amyloid pathology was inversely correlated with tau pathophysiology, synaptic injury, and glial activation.

- Females displayed a non-**APOEɛ4** allele frequency-dependent increase in glial activation and synaptic injury.

- In female **APOEɛ4** noncarriers, tau pathophysiology was strongly correlated with glial activation, synaptic injury, and neuroaxonal damage.
RESEARCH IN CONTEXT

Systematic review: The impact of APOEɛ4 alleles and sex on phenotypic features was examined in 45 patients, aged 50-74 years, with early AD.

Interpretation: Findings were consistent with prior reports and suggest that glial activation, influenced by apoE isoform and sex, explains much of the phenotypic heterogeneity in early AD below age 75 years. Lower glial activation in APOEɛ4 homozygotes associated with the highest levels of amyloid and the lowest levels of tau pathology, and a limbic-amnestic phenotype, suggesting degeneration of basal forebrain cholinergic neurons. Higher glial activation in female APOEɛ4 noncarriers was associated with the highest tau pathology and synaptic injury, the lowest amyloid pathology, greater ventricular expansion, and multi-domain cognitive deficits.

Future directions: This work defined a combined sex, genotype, and age framework that delineates multiple pathways to end-stage AD. Confirmation is required, followed by optimization of therapeutic approaches to amyloid, tau, and glial activation pathologies along the disease stage continuum.
1. BACKGROUND

The APOEɛ4 polymorphism is the major genetic risk factor for sporadic AD, mainly exerting its pathogenic effects via altered glial activation and amyloid pathology accumulation (1, 2). Functional levels of glial activation may balance the cellular needs to stimulate amyloid-beta (Aβ) clearance and limit both synaptic engulfment and the spread of tau pathology (3-6). Glial activation is associated with the spread of tau and synaptic pathology (5, 7, 8). In APOEɛ4 noncarriers, females have higher levels of CSF tau pathology in both prodromal disease and mild AD compared to males (9). Female noncarriers are also more likely to develop overactivated microglia with age (10). In females with AD, glial activation is generally higher (11) and cortical microglial activation is more important for AD progression (12). In contrast, glial responses in APOEɛ4 carriers are deficient and favor the accumulation of amyloid pathology (13). This deficiency implicates altered lipid dynamics, altered cholinergic and checkpoint signaling, and may also be a consequence of Aβ accumulation.

Poor lipidation of apoE4 impairs its ability to opsonize extracellular debris such as fibrillar Aβ42 and myelin breakdown products, which impairs microglial recognition and clearance responses (14, 15). Rather than clear debris effectively, APOEɛ4 microglia show phagocytic and endolysosomal dysfunction, become senescent, upregulate pro-inflammatory response genes, and downregulate genes responsible for migration and phagocytosis (16, 17). Like overactive glia, these functionally underactive glia produce proinflammatory cytokines (18), and therefore, it is critical that biomarkers of glial activation represent functional activation of glia and not inflammation (19).

ApoE4 is associated with decreased intracellular exchange of fatty acids and cholesterol between neurons and astrocytes with reduced fatty acid β-oxidation, lipid droplet accumulation,
increased neuronal cholesterol synthesis, and impaired abilities to maintain myelin and cell membranes (20). Fatty-acid fueled bioenergetics improve microglial migration, phagocytic ability, and lysosomal degradation (21, 22), whereas the loss of these functions is associated with lipid droplet formation that is markedly exacerbated in APOEε4 carriers and by proximity to Aβ plaques (23). Altered lipid composition and fluidity of the cell membrane alters the stability and function of membrane receptors, including alpha 7 nicotinic acetylcholine (ACh) receptors (α7-nAChRs)(24, 25).

The cholinergic system acts to control glial reactivity and function via rapid focal synaptic signaling and slow diffuse extracellular signaling through α7-nAChRs (26). In a concentration and aggregation-dependent manner, Aβ signals through α7-nAChRs and also influences the extracellular fluid equilibrium between the breakdown and synthesis of ACh via effects on ACh-hydrolyzing capacity of cholinesterases (27) and choline acetyltransferase (ChAT) activity (28). ApoE forms soluble and highly stable complexes with cholinesterase enzymes and Aβ, that can oscillate between slow and ultrafast ACh hydrolysis, depending on Aβ availability (29). Reduced cholinesterase activity and lowering of glial activation markers are seen in APOEε4 carriers, particularly in individuals with polymorphic variants of genes encoding cholinesterase enzymes with lower activity (29, 30). These individuals accumulate Aβ earlier with a younger age-of-onset of AD (31). Amnestic symptoms parallel the progressive denervation of basal forebrain corticolimbic cholinergic neuronal projections that remove the cholinergic ‘brake’ on glial activation in the medial temporal lobe (MTL) and other cortical regions, permitting the spread of tau and neurodegenerative pathology, and transitioning these individuals into AD (31, 32).
This study sought to examine the early AD phenotypic spectrum with respect to APOE\textsuperscript{ɛ}4 genotype. The study analyzed cross-sectional demographic, CSF biomarker, neuroimaging and cognitive domain assessments from patients below 75 years of age who were diagnosed with early AD. The younger age of participants limited the likelihood of other age-related pathologies, which likely allowed for a clearer examination of the influence of genotype on early AD.

2. METHODS

2.1 Clinical Trial

Baseline samples obtained from Clinical Trial NCT03186989 were assessed for biomarkers in a retrospective study. The trial was conducted at 12 centers in Canada, Finland, Germany, the Netherlands, Sweden, and the UK between August 2017 and February 2020. The trial was conducted in accordance with Good Clinical Practice Guidelines of the International Council for Harmonisation, and according to the ethical principles outlined in the Declaration of Helsinki. The complete study (33) was approved by relevant ethics committees (Table S1).

Written informed consent was provided by the participants.

2.2 Study Eligibility

Eligible study participants were between the ages of 50 and 74; had probable early AD (amnestic or non-amnestic), defined by a Mini-Mental State Examination score (MMSE) (34) of 20-27, inclusive, and either a Clinical Dementia Rating (35) Overall Global Score of 1, or a Global Score of 0.5 with a Memory Score of 1; a CSF pattern of low Aβ\textsubscript{1-42} (\(\leq\) 1200 pg/ml), elevated total-tau (\(>\) 200 pg/ml) and p-tau (\(>\) 18 pg/ml), and a total-tau to Aβ\textsubscript{1-42} ratio > 0.28; and
a diagnosis of probable AD based on National Institute of Aging-Alzheimer’s Association (NIA-AA) criteria (36).

2.3 Data Collection and Processing

CSF collected from participants at the baseline of an interventional study was analyzed for markers of amyloid accumulation (inversely indexed by Aβ42), tau pathophysiology (p-tau181), neuroaxonal degeneration (NfL), synaptic injury (Ng), glial activation (YKL-40) (Table S2). Patients were characterized for common variants of APOE (ie, APOEe4, APOEe3, and APOEe2), and butyrylcholinesterase (BCHE) (ie, BCHE-K).

The study required 3-dimensional T1-weighted structural magnetic resonance imaging (MRI) scans of the head with volumetric analyses calculated using VivoQuant™, which includes preprocessing and multi-atlas segmentation modules, followed by visual inspection and manual editing if needed (37). The mean baseline ventricular volume and hippocampal volume were expressed as a percentage of the total intracranial volume (% ICV). Baseline Mini-Mental State Examination (MMSE) and Repeatable Battery for the Assessment of Neurological Status (RBANS) scores were also reported.

2.4 Statistical analysis

Quantitative assessments were summarized using descriptive statistics, including number of patients, mean, and standard deviation. Qualitative assessments were summarized using frequency counts and percentages. The exact test was used to examine the Hardy-Weinberg equilibrium (HWE) in the distribution of APOEe4 alleles in the study population. All exact tests were performed using the R package “Hardy Weinberg” (38).
Analysis of variance (ANOVA) and analysis of covariance (ANCOVA) were used to test whether the burden of amyloid pathology differed across APOEε4 homozygotes, heterozygotes, and noncarriers. When the ANCOVA model was applied, the model included BCHE-K carrier status and sex as factors and the baseline MMSE total score as a covariate. Prior to performing ANOVA and ANCOVA, the normality assumption of residuals was tested using the Kolmogorov-Smirnov test. If significant departures from normality were observed, the Wilcoxon Rank Sum test was applied. Both ANOVA and ANCOVA were applied to test baseline CSF markers across two or more genotype groups. When ANCOVA was applied, age-at-baseline was included as an additional covariate in the model. If the normality assumption was not satisfied, both ANOVA and ANCOVA models were fitted to the log-transformed data. Box plots were used to visualize data by group.

Relationships between CSF Aβ42, CSF p-tau181, and other CSF biomarkers, and brain volumes were explored in the overall population and in each genotype group in a simple linear correlation analysis with a Pearson correlation coefficient. The squared Pearson correlation coefficient ($R^2$) and $P$ value were provided in the correlation analysis. Correlation coefficients were defined as: $0.81 \leq R^2 < 1$ as strong; $0.49 \leq R^2 < 0.81$ as moderately strong; $0.25 \leq R^2 < 0.49$ as moderate; $0.09 \leq R^2 < 0.25$ as weak; and $R^2 < 0.09$ as negligible. Scatterplots with a simple linear regression line were produced to depict the relationships between two quantitative variables.

Multiple regression analysis was also utilized to assess the functional relationships between biomarkers of interest. This model was applied with CSF Aβ42 or CSF p-tau181 as the response variable, and APOEε4, sex, and the biomarker of interest (ie, CSF p-tau181 or Aβ42, NfL, Ng, YKL-40; hippocampal volume, ventricular volume) as independent variables. This
determined the strength of association of CSF Aβ42 or CSF p-tau with parameters of interest, in conjunction with the other independent variables included in the model.

3. RESULTS

3.1 Patient cohort

A total of 102 participants were assessed for eligibility, 56 were excluded, and one enrolled participant did not provide genetic test results. The study sample comprised 45 participants with a mean age of 65.8 years and a mean baseline MMSE total score of 23.6 (Table S3). The APOEε4 allele was carried by 33 (73%) participants; 10 (22%) were homozygotes and 23 (51%) were heterozygotes (Table S3). All APOEε4 noncarriers were homozygous for APOEε3, except for one that was APOEε2/ε3. The distribution of APOE genotypes (HWE exact P value = 1) was consistent with Hardy-Weinberg equilibrium. Participant baseline characteristics were summarized according to APOEε4 genotype and sex (Tables S3-4) and have also been described previously (33). The impact of BCHE-K allelic status on the phenotype of early AD in APOEε4 carriers was also assessed and reported (31).

3.1 Age at diagnosis and APOEε4 allele status

APOEε4 allele frequency-dependent effects on the risk-of-onset of AD are highest in the seventh decade, wane over 70 years of age, and are particularly reduced after 80 years of age (39-41). Therefore, in this sample of early AD patients aged less than 75 years, the effects of APOEε4 on the AD phenotype may be maximal. In the overall population, the mean age-at-diagnosis of AD was 63.3 years in males and 65.7 years in females. This contrasted with female APOEε4 noncarriers whose mean age-at-diagnosis was 10.7 years later than male APOEε4 noncarriers (Figure 1A; 70.4 years in females vs 59.7 years in males, P = .009, ANOVA) and
1 nearly 5-fold less time from age-at-diagnosis of AD to study baseline (Figure 1B; 4.8 months in females vs 21.6 months in males). The restricted age range for study entry may have been at least partly responsible for the lack of any significant APOEɛ4 allele frequency-dependent reductions of age-at-diagnosis of AD or age-at-baseline in the overall population, although a trend was observed in females between increasing allele frequency and decreased age (Figure 1A).

Additionally, female APOEɛ4 carriers spent a mean of 0.8 years between AD diagnosis and study baseline, whereas male carriers spent 2.0 years (Figure 1B), which is consistent with prior studies showing that female APOEɛ4 carriers less than 75 years of age have a greater risk for AD and a more rapid transition from MCI to AD, especially in heterozygotes (42-44). In APOEɛ4 homozygotes less than 75 years, the risk for AD may be similar between males and females (45).

**Figure 1: Age at diagnosis and time since diagnosis by APOEɛ4 status and sex.**

The mean (± SEM) was calculated for the age-at-diagnosis (A) and time since diagnosis (B) for all subgroups. Subgroups included the overall population, females, and males, subdivided according to APOEɛ4 genotype (blue, APOEɛ4 noncarriers; light blue, APOEɛ4 heterozygotes; green, APOEɛ4 homozygotes). Subgroups and their labels are consistent throughout all figures. Female participants of all genotypes displayed a shorter time since diagnosis than males. See Tables S3 and S4 for more details.

3.2 APOEɛ4 allele frequency-dependent changes on CSF markers

APOEɛ4 allele frequency-dependent increases in amyloid pathology were observed, indexed inversely by CSF Aβ42 (Figure 2A). The level of amyloid pathology was significantly
different across APOEɛ4 noncarriers, heterozygotes, and homozygotes (Figure 2A; CSF Aβ42 of 799.2 pg/mL vs 700.2 pg/mL vs 580.7 pg/mL, respectively; P = .018 ANOVA, P = .024 ANCOVA). The APOEɛ4 allele frequency-dependent increase in amyloid pathology followed the same trend in males and females but did not reach significance. Male and female APOEɛ4 homozygotes showed similar levels of amyloid pathology (CSF Aβ42 582.1 vs 579.7 pg/mL, respectively). Higher levels of amyloid pathology are compatible with accumulation beginning at an earlier age in association with APOEɛ4 allele frequency, with higher levels of amyloid accumulation required in APOEɛ4/ɛ4 > APOEɛ3/ɛ4 > APOEɛ3/ɛ3 to induce symptoms (46).
Figure 2. Levels of amyloid pathology, tau pathophysiology, glial activation, and synaptic injury by APOEε4 allele frequency and sex. The mean and standard error of the mean for CSF Aβ$_{42}$ (A) CSF p-tau$_{181}$ (B) CSF Ng (C) CSF NfL (D) and CSF YKL-40 (E). Females showed significant APOEε4 allele frequency-dependent relationships for synaptic injury (CSF Ng) and glial activation (CSF YKL-40), and CSF Aβ$_{42}$ and CSF p-tau$_{181}$ showed a trend towards significance. See Tables S3 and S4 for more details.
No significant differences were observed between groups for p-tau_{181}. However, APOE\textit{\v{e}}4 homozygotes showed the lowest levels of tau pathology, and in female APOE\textit{\v{e}}4 homozygotes this was most pronounced when compared to female APOE\textit{\v{e}}4 noncarriers (Figure 2B; CSF p-tau_{181} of 34.4 pg/mL vs 53.3 pg/mL). Synaptic injury was lowest in APOE\textit{\v{e}}4 homozygotes, and significantly different across female noncarriers, heterozygotes, and homozygotes (Figure 2C; CSF Ng of 737.3 pg/mL vs 536.3 pg/mL vs 460.5 pg/mL, respectively; \textit{P} = .101 ANOVA, \textit{P} = .040 ANCOVA). Males showed the opposite trend, where noncarriers exhibited the lowest levels of synaptic injury. Neuroaxonal injury was also significantly different across noncarriers, heterozygotes, and homozygotes (Figure 2D; CSF NfL of 1398.9 pg/mL vs 1383.1 pg/mL vs 1038.5 pg/mL, respectively; \textit{P} = .047 ANOVA, \textit{P} = .103 ANCOVA) and followed the same trend in males and females.

Glial activation was highest in noncarriers and lowest in APOE\textit{\v{e}}4 homozygotes (Figure 2E). This was especially pronounced in females that showed significant differences across noncarriers, heterozygotes, and homozygotes (CSF YKL-40 of 433.2 ng/mL vs 273.3 ng/mL vs 187.9 ng/mL, respectively; \textit{P} = .042 ANOVA, \textit{P} = .085 ANCOVA).

Overall, APOE\textit{\v{e}}4 homozygotes had the highest levels of amyloid pathology and the lowest levels of tau pathophysiology, neuroaxonal damage, postsynaptic injury, and glial activation (Figure 2). This finding was most pronounced in female APOE\textit{\v{e}}4 homozygotes.

3.3 Amyloid accumulation, hypofunctional glia mediated clearance, and neurodegenerative pathology

Multiple regression analyses of the overall population identified that amyloid accumulation (inversely indexed by CSF A\text{\textbeta}_{42}) was associated with APOE\textit{\v{e}}4 carrier status (\textit{P} <
.029), a larger total brain ventricle volume ($P < .021$), less synaptic injury (CSF Ng, $P < .001$), and less tau pathophysiology (CSF p-tau$_{181}$, $P = .005$). There was also a trend towards less glial activation (CSF YKL-40, $P = .097$). In simple linear correlation analyses in the overall population, amyloid pathology showed weak to moderate inverse correlations with tau pathophysiology ($R^2 = 0.18$, $P = .004$), synaptic injury ($R^2 = 0.26$, $P < .001$), and glial activation ($R^2 = 0.11$, $P = .028$) (Figure 3A-C). These inverse correlations were absent in APOE$\varepsilon 4$ noncarriers, but were strengthened in APOE$\varepsilon 4$ carriers and in males, and in male APOE$\varepsilon 4$ carriers they were moderate (Figure 3A-C). Synaptic injury and amyloid pathology also had a weak inverse correlation in females ($R^2 = 0.24$, $P = .020$), which strengthened to a moderate inverse correlation with in female APOE$\varepsilon 4$ carriers ($R^2 = 0.33$, $P = .013$) (Figure 3B). Amyloid pathology and neuroaxonal damage were not significantly correlated in any subgrouping (Figure 3D).
Figure 3. Linear relationships between levels of CSF Aβ42 and other CSF markers.

Multiple regression identified an association between CSF Aβ42 and CSF levels of p-tau181, CSF Ng, CSF NfL, and CSF YKL-40. These associations were fit to simple linear regressions to obtain R-squared and P values. (A) CSF Aβ42 (lower levels indicate more amyloid pathology) showed a positive correlation with CSF p-tau181 (higher levels indicate more tau pathophysiology) in the overall population, especially in APOEε4 carriers. When stratified by sex, male APOEε4 carriers showed the strongest correlation indicating that higher levels of amyloid pathology were associated with less tau pathology. (B) CSF Aβ42
showed a positive correlation with Ng (higher levels indicate more synaptic injury) in the overall population, especially in APOEε4 carriers. When stratified by sex, both male and female APOEε4 carriers exhibited a strong correlation. (C) CSF Aβ42 showed a positive correlation with YKL-40 (higher levels indicate more glial activation) in the overall population, especially in APOEε4 carriers. When further stratified by sex, male APOEε4 carriers exhibited the strongest correlation indicating that lower levels of glial activation were associated with more amyloid pathology. (D) CSF Aβ42 showed no correlations with NfL (higher levels indicate more axonal injury).

3.4 Tau pathophysiology, neurodegenerative pathology, and glial activation

In multiple regression analysis, tau pathophysiology was associated with greater neuroaxonal damage (CSF NfL, \(P = .002\)), more synaptic injury (CSF Ng, \(P < .001\)), and higher levels of glial activation (CSF YKL-40, \(P = .01\)). In simple linear regressions, tau pathophysiology was moderately correlated with neuroaxonal damage in the overall population \((R^2 = 0.27, P < .001)\) and in APOEε4 carriers \((R^2 = 0.34, P < .001)\) (Figure 4A). In nearly all subgroups, tau pathophysiology showed moderately strong and strong correlations with synaptic injury (Figure 4B). Tau pathophysiology was weakly correlated with glial activation in the overall population \((R^2 = 0.18, P = .004)\) and moderately correlated in APOEε4 noncarriers \((R^2 = 0.37, P = .035)\) (Figure 4C).

Tau pathophysiology and neuroaxonal damage showed a weak correlation in males \((R^2 = 0.19, P = .039)\) and a moderate correlation in females \((R^2 = 0.38, P = .002)\) (Figure 4A). Tau pathophysiology showed a moderately strong correlation with synaptic injury in both males \((R^2 = 0.76, P = .001)\) and females \((R^2 = 0.54, P < .001)\) (Figure 4B) and a weak correlation with glial activation in females \((R^2 = 0.23, P = .025)\) (Figure 4C). Notably, correlation of neuroaxonal damage with synaptic injury was significant, but weak in the overall population \((R^2 = 0.13, P = .016)\), as well as in APOEε4 carriers \((R^2 = 0.14, P = .033)\) (Data not shown). In female APOEε4 noncarriers, correlations between tau and glial activation were significant and strong \((R^2 = 0.95, P = .023)\), and correlations between tau and neuroaxonal damage or synaptic injury were strong,
but did not achieve significance. Whereas, in male APOE4 noncarriers, correlations of tau with
glial activation and neuroaxonal damage were absent (Figure 4A,C), and synaptic injury was
strong but lacked statistical significance (Figure 4B). In female APOE4 carriers, correlations
with tau pathophysiology were absent for glial activation (Figure 4C), and moderate for
neuroaxonal damage ($R^2 = 0.36, P = .009$) and synaptic injury ($R^2 = 0.43, P = .003$) (Figure 4A,B). In male APOE4 carriers, tau pathophysiology was moderately correlated with glial
activation ($R^2 = 0.35, P = .021$) and neuroaxonal damage ($R^2 = 0.33, P = .026$) (Figure 4A,C),
and showed moderately strong correlations with synaptic injury ($R^2 = 0.76, P < .001$) (Figure 4B).

The most compelling associations of tau pathophysiology with glial activation and
neurodegenerative pathology were in female APOE4 noncarriers and male APOE4 carriers.
Higher CSF p-tau$_{181}$ levels are typically seen in female APOE4 carriers with preclinical and
prodromal AD but not in mild or later dementia stages (9). In APOE4 heterozygotes, females
may be able to leverage a non-APOE4 allele to achieve higher levels of glial activation and
increased tau pathology. Whereas increasing levels of tau pathophysiology in male APOE4
carriers with early AD may reflect more advanced degeneration of the basal forebrain
corticolimbic cholinergic neurons, which is indexed by greater limbic-amnestic features and is
associated with removal of the cholinergic ‘brake’ on glial function in the MTL followed by
wider spread of cortical tau and synaptic pathology. In early AD, spreading cholinergic
denervation-induced cortical glial activation-mediated tau and neurodegenerative pathology may
be most evident in male APOE4 homozygotes (32).
Multiple regression identified an association between CSF p-tau\textsubscript{181} and CSF levels of neurofilament light chain (NfL), Ng, and YKL-40. These associations were fit to simple linear regressions to obtain $R^2$ and $P$ values. (A) CSF p-tau\textsubscript{181} showed a positive correlation with CSF NfL (higher levels indicate more neuroaxonal injury) in the overall population, which was driven by APOE\textalpha{}4 carriers. When stratified by sex, both male and female APOE\textalpha{}4 carriers showed a positive correlation. (B) CSF p-tau\textsubscript{181} showed a positive correlation with Ng (higher levels indicate more synaptic injury) that was moderately strong in the overall population and in APOE\textalpha{}4 noncarriers and strong in APOE\textalpha{}4 carriers. This relationship was evident in both males and females, independent of APOE\textalpha{}4 status. (C) CSF p-tau\textsubscript{181} showed a positive correlation with YKL-40 (higher levels indicate more glial activation) in the overall population that was stronger in APOE\textalpha{}4 noncarriers than carriers. When stratified by sex, a positive correlation was present in male APOE\textalpha{}4 carriers and in female APOE\textalpha{}4 noncarriers.
3.5 Sex and APOEε4 allele influences on cognition

Overall, APOEε4 carriers had a more temporo-limbic (hippocampal atrophy > ventricular expansion) and amnestic (memory > visuospatial impairment) phenotype relative to APOEε4 noncarriers (Figures 5 and 6), as described previously (47, 48). In APOEε4 homozygotes, male participants exhibited more of a limbic-amnestic phenotype than females, as evidenced by slightly greater amnestic deficits (Figure 5B, E; MMSE memory 4.0 vs 4.2; RBANS delayed memory 48 vs 56; for males vs females) and hippocampal atrophy (Figure 6A; 0.22 vs 0.26 %ICV; for males vs females). In APOEε4 heterozygotes, numerically greater amnestic deficits were also observed in male participants (Figure 5B, E; MMSE memory 3.8 vs 4.3; RBANS delayed memory 46.9 vs 49.0). These apparent sex differences in APOEε4 heterozygotes were not reflected in amyloid accumulation (Figure 2A), tau pathophysiology (Figure 2B), hippocampal volumes (Figure 6A), or in the mean age-at-diagnosis of AD (65.5 years vs 65.0 years, respectively) (Figure 1A).
Figure 5: Baseline cognition test scores by APOEε4 status and sex.
The mean and standard error of the mean for baseline cognition tests and two of their individual components: For the MMSE Total (A), Memory (B), and Visual Construction (C); For the RBANS Total (D), Delayed memory (E), and Visuospatial/Constructional (F). Both tests followed the same trends between genotypes with the least overall cognitive and visuospatial deficits in APOEε4 homozygotes and the greatest amnestic deficits in APOEε4 carriers. See Tables S3 and S4 for more details.

Overall, the limbic-amnestic phenotype was more prominent in male APOEε4 carriers (Figures 5,6), suggesting greater and earlier degeneration of the basal forebrain corticolimbic cholinergic projection system in males. Thus, in early-stage AD, male APOEε4 homozygotes may have developed slightly higher levels of glial activation and tau pathophysiology than females because of greater removal of the corticolimbic cholinergic “brake” on glial activation in the MTL and other cortical areas. In male APOEε4 carriers, tau pathophysiology correlated moderately with glial activation (R² = 0.35, P = .021), but this correlation was absent in females (Figure 4C). This could indicate that in male APOEε4 carriers with early AD below the age of 75 years, increases in tau pathology are more dependent on limbic and cortical glial activation due to corticolimbic cholinergic denervation. Thus, in early AD, APOEε4 homozygotes may still have the lowest levels of tau pathophysiology, and males and females may be on slightly different journeys to end stage disease where APOEε4 homozygotes will rapidly evolve the greatest burden of tau pathology as they progress through the dementia disease stage continuum (49).

3.6 Brain volumes in APOEε4 noncarriers

Neither amyloid nor tau were associated with hippocampal volume. However, total hippocampal volume showed a weak association with glial activation in simple linear correlation analysis (Figure 6B): lower glial activation correlated with more hippocampal atrophy. This association was moderate in APOEε4 noncarriers (R² = 0.38, P = .032) and was absent in APOEε4 carriers (Figure 6B). This finding aligns with the putative role of glial activation in...
APOE\textsuperscript{ε4} noncarriers in limiting the accumulation of amyloid pathology and more intact basal forebrain corticolimbic cholinergic projections. Thus, in early AD aged less than 75 years, the absence of apoE4 results in less tau and neurodegenerative pathology in the MTL (48).

Total brain ventricle size showed a weak positive association with amyloid burden in both multiple and simple linear ($R^2 = 0.11$, $P = .024$) correlation analyses (Figure 6D). This aligns with weak or equivocal associations between amyloid burden and ventricular expansion or whole brain atrophy in previous studies (50). The association between ventricle size and amyloid burden was moderate in APOE\textsuperscript{ε4} noncarriers ($R^2 = 0.39$, $P = .029$) and was absent in APOE\textsuperscript{ε4} carriers. This suggests that tau and neurodegenerative pathology may be more dependent on levels of amyloid pathology in APOE\textsuperscript{ε4} noncarriers than in carriers. Tau pathophysiology was not correlated with ventricular size.

**Figure 6. Observations for hippocampal and ventricular volume by APOE\textsuperscript{ε4} status.**

The mean and standard error of the mean for hippocampal volume (A) or ventricular volume (C) (as a percentage of total intracranial volume [%ICV]). $R^2$ and $P$ values were obtained by fitting simple linear regressions (B,D). CSF YKL-40 correlated with hippocampal volume in the overall population and APOE\textsuperscript{ε4} noncarriers (B). CSF A\textsubscript{β42} correlated with ventricular volume in the overall population and in APOE\textsuperscript{ε4} noncarriers (D). See Tables S3 and S4 for more details.
3.7 $APOE\varepsilon_4$ heterozygotes exhibit influences of both alleles

Relative to homozygotes, $APOE\varepsilon_4$ heterozygotes had a less extreme limbic-amnestic phenotype, less amyloid, more tau and neurodegenerative pathology, more widespread brain atrophy changes, and higher levels of glial activation (Figures 2-6). Relative to noncarriers, heterozygotes also had more amyloid, similar levels of tau and neurodegenerative pathology, and less glial activation. Thus, $APOE\varepsilon_4$ heterozygotes demonstrate clear influences of both the $APOE\varepsilon_4$ allele on amyloid accumulation and the non-$APOE\varepsilon_4$ allele on a more permissive environment for tau spreading. With respect to the limbic-amnestic phenotype, male heterozygotes appear slightly closer to that of all $APOE\varepsilon_4$ homozygotes, whereas the phenotype of female heterozygotes is slightly closer to all $APOE\varepsilon_4$ noncarriers.

3.8 Hyperfunctional glia in female $APOE\varepsilon_4$ noncarriers

Post-hoc analysis of $APOE\varepsilon_4$ noncarriers requires cautious interpretation because of the small number of participants and the preponderance of male ($n = 8$) relative to female ($n = 4$) participants. Confirmation is required in prospective analyses of larger populations; however, the subsequent results align well with those of a prodromal AD cohort (32, 44).

Despite the highest burdens of glial activation, tau pathophysiology and synaptic injury (Figure 2), female relative to male $APOE\varepsilon_4$ noncarriers exhibited a later mean age-at-diagnosis of AD of 10.7 years (Figure 1) and 5-fold less time from age-at-diagnosis of AD to study baseline. Male $APOE\varepsilon_4$ noncarriers had slightly greater amyloid accumulation at baseline but their levels of glial activation, tau pathophysiology, and synaptic injury were markedly lower than in female noncarriers and do not explain their younger age-at-diagnosis of AD.

Interestingly, in a 3-4 year study of individuals with prodromal AD, male $APOE\varepsilon_4$ noncarriers...
exhibited the lowest decline in brain volumes and the lowest rate of transition to dementia (44).

Overall, cognitive impairment in APOEε4 noncarriers was similar in male and female participants, and both had relatively low amnestic deficits. However, males had more dysexecutive clinical features than females, demonstrated by greater deficits in visuospatial/constructional (Figure 5C,F; MMSE Visual Construction, 0.3 vs 1.0; RBANS Visuospatial/Constructional, 70.9 vs 98.0) and attentional (MMSE Attention/Calculation, 2.8 and 3.8; RBANS Attention, 71.4 and 81.0, respectively) assessments. Thus, both sexes had relatively non-amnestic cognitive deficits, but female participants exhibited less visuospatial/constructional and attentional impairment, had delayed AD onset (a decade later), and spent less time in the mild AD stage since diagnosis.

In the current study, levels of glial activation and synaptic injury were inversely related to APOEε4 allele frequency in female participants, but this relationship was not seen in male participants (Figure 2C,E). The highest levels of glial activation, tau pathophysiology, and synaptic injury were seen in female APOEε4 noncarriers (Figure 2B,C,E). Furthermore, correlations of glial activation with tau pathophysiology were weak in the overall population ($R^2 = 0.18$, $P = .004$) and strong in female APOEε4 noncarriers ($R^2 = 0.95$, $P = .023$) (Figure 4C). Correlations of synaptic injury with tau pathophysiology were moderately strong in the overall population ($R^2 = 0.62$, $P < .001$) and strong in female APOEε4 noncarriers ($R^2 = 0.86$, $P = .075$) (Figure 4B). Correlations of neuroaxonal injury with tau pathophysiology were moderately strong in the overall population ($R^2 = 0.27$, $P < .001$) and strong in female APOEε4 noncarriers ($R^2 = 0.84$, $P = .085$) (Figure 4A).

Progression to AD in female APOEε4 noncarriers may only occur after amyloid accumulation eventually reaches the minimum “threshold” to engage the secondary effector...
The substantially greater burden of p-tau\textsubscript{181} in female \textit{APOE}\textit{ɛ}4 noncarriers likely reflects a more diffuse distribution of neocortical tau pathology facilitated by an interaction between sufficient accumulated toxic species of Aβ and a permissive state of glial activation (Figure 2-4)(7, 8). In summary, the rapid spread/replication of tau in the cerebral cortex of female \textit{APOE}\textit{ɛ}4 noncarriers is strongly associated with higher levels of glial activation, synaptic and neuroaxonal degeneration, and an early AD phenotype of multidomain cognitive impairment with relative preservation of corticolimbic cholinergic innervation, hippocampal volume, and memory function. Female \textit{APOE}\textit{ɛ}4 noncarriers in the current study align with a subtype found in 30% of AD patients in a large-scale CSF mass spectrometry proteomic analysis that was characterized by overactive glia (52). This subtype was characterized by increased CSF t-tau and p-tau\textsubscript{181}; relatively widespread cortical atrophy; and increased specific microglial proteins involved in detecting and engulfing amyloid plaque and in innate immune activation, including ApoE and complement complex proteins such as complement component C1q.

Although AD may affect females with more intensity, more rapid brain atrophy, and faster cognitive decline than in males, it does not appear to do so earlier (53, 54). The higher prevalence of AD in females is mostly driven by a divergence of prevalence rates in males and females with increasing age (55, 56). There is an inflection point near 75 years of age where it is difficult to detect significant differences by sex below 75 years, and incidence rates get more divergent above 75 years (57). Most AD below the age of 75 years may be in \textit{APOE}\textit{ɛ}4 carriers, with a moderately increased risk in female \textit{APOE}\textit{ɛ}4 heterozygotes (45). Interestingly, in \textit{APOE}4 carriers, the risk for AD below the age of 75 years is greater in females, but over the age of 75 years the risk for AD is greater in males (39). However, in \textit{APOE}\textit{ɛ}4 noncarriers over the age of
75 years, the overall prevalence rates for AD may be substantially higher in females than in males (44). Cortical microglial activation may be higher with age and disproportionately more important for AD progression in females (12). For example, a prior study using neuropathological indicators in human tissue identified that microglial activation in females was associated with both amyloid-mediated increases in tau pathology (~50%) and direct induction of tau pathology (~50%), whereas in males, microglial activation was predominantly associated with direct induction of tau pathology (~74%)(12). In APOE4 noncarriers, greater CSF tau pathology emerges in females relative to males in prodromal disease and this difference is also present in mild AD (9). In the current study in patients with early AD, tau pathophysiology was substantially greater in female APOE4 noncarriers (Figure 2B).
4. DISCUSSION

Genetic variation has a clear influence on the phenotype of early AD in people below the age of 75 years, which was likely made apparent by a decreased likelihood of other age-related pathologies. Amyloid or tau pathology on their own may not pose a substantial risk for neurodegenerative brain pathology, but their co-occurrence may index major risk (58, 59). In APOEɛ4 homozygotes, deficient glial clearance mechanisms result in early amyloid pathology, however, substantial neurodegeneration and symptoms only begin when tau pathology spreads. In contrast, in female APOEɛ4 noncarriers, functionally active glia initially limit amyloid pathology, but amyloid accumulation eventually reaches a minimum threshold to trigger tau pathology, resulting in accelerated replication and spread of tau and synaptic pathology. When viewed together, end-stage AD pathology looks similar and may not reflect the divergent pathways taken to get there (49). Through the examination of a younger age group, this study demonstrates that genotype and sex can differentiate phenotypic extremes in early AD.

The amyloid cascade hypothesis of AD implies that parenchymal amyloid positivity at an earlier age should drive secondary effector tau and synaptic pathology, and present with an earlier age-at-onset of AD (51). Although synaptic loss may be necessary to produce clinical impairments, in APOEɛ4 carriers in the current study, and particularly in males, amyloid pathology was inversely correlated with tau pathophysiology, glial activation and synaptic injury (Figure 3). APOEɛ4 allele frequency-dependent reductions of glial activation were associated with lower Aβ clearance and accumulations of amyloid pathology, but also limited tau pathophysiology and synaptic engulfment (Figure 7A). APOEɛ4 homozygotes had the highest amyloid and the lowest tau and neurodegenerative pathology (Figure 2). Tau and neurodegenerative pathology localized in the MTL transition APOEɛ4 homozygotes from
preclinical to clinical AD at an earlier age with less global brain tau and neurodegenerative pathology (Figure 2) (48, 60). In younger APOEε4 carriers with global amyloid pathology, tau-PET imaging indicates that tau pathology is more severe with a focal MTL distribution (48, 61). This is associated with more hippocampal atrophy and less global cerebral atrophy.

Figure 7. Glial activation differentiates APOEε4 homozygotes from APOEε4 noncarriers in early AD. (A) In APOEε4 homozygotes aged < 75 years, ApoE4 locks glia in a homeostatic state with decreased responsiveness to, and phagocytosis of, extracellular debris including Aβ fibrils (1). “Functionally underactive” glia mean earlier and greater amyloid accumulation, but limited synaptic engulfment and loss (2), Aβ accumulates to high levels and along with ApoE4 induces degeneration of basal forebrain corticolimbic cholinergic neurons (3). In prodromal AD, limbic cholinergic denervation removes the cholinergic “brake” on glia to increase glial activation, tau and neurodegenerative pathology in the MTL. This is followed by spread of tau and neurodegenerative pathology beyond the MTL as cholinergic denervation and glial activation progresses to other cortical regions (4) and paralleled by the emergence of a rapidly progressing limbic-amnestic phenotype (5). As corticolimbic cholinergic denervation, glial activation, tau pathology and neurodegeneration spread there is rapid progression from prodromal to dementia stages of AD with an uncharacteristically good response to AChE-Is in moderate to severe AD. (B) In contrast, female APOE4 noncarriers usually aged > 75 years have higher levels of glial activation, with induction of microglia response genes that include APOE (1). This results in chronically “functionally over-active” glia with increased phagocytic and degradative functions that limit Aβ pathology (2). Higher levels of glial activation result in lower levels of amyloid accumulation, but once sufficient Aβ fibrils are present, tau pathology and synaptic engulfment accelerate, and these pathologies spread...
across the neocortex (3). Generalized cortical tau pathology and synaptic injury index glia tilting through balanced-functionality thresholds to initiate excessive inflammatory and complement system cascades. The lack of focal MTL tau and neurodegenerative pathology means relative sparing of amnestic deficits and hippocampal atrophy, and cortical atrophy changes are more global (4). Multidomain cognitive deficits rapidly transition patients from prodromal to mild stage AD (5). Corticobasal cholinergic denervation only becomes apparent in the moderate and severe stages of AD where robust AChE-I treatment effects are also observed (6).

Parenchymal amyloid pathology may accumulate to high levels in APOEε4 homozygotes less than 75 years of age before the combined effects of apoE4 and Aβ induce sufficient degeneration of basal forebrain corticolimbic cholinergic neurons to release the ‘brake’ on glial activation. Glial activation, tau, and neurodegenerative pathology first appear in the MTL and then spread to involve other cortical areas as cholinergic denervation becomes more widespread (Figure 7A). Across the aging and AD spectrum, APOEε4 carriers present increased microglial activation in early Braak stage regions within the MTL compared to noncarriers, which mediates Aβ-independent effects of APOEε4 on tau accumulation (62). The rapidly progressing limbic-amnestic phenotype indexes the spreading of pathology that is responsible for ushering APOEε4 carriers through prodromal stages of disease and over the dementia threshold, with a response to acetylcholinesterase-inhibitors (AChE-Is) that is apparent in the mild stage of AD (63). Requirements for corticobasal cholinergic denervation may include apoE4 and low levels of glial activation that induce high levels of accumulated Aβ. However, in most APOEε4 carriers and across the spectrum of AD, an accumulated high amyloid burden inducing cholinergic denervation may not be necessary to induce glial activation if levels of glial activation are already higher for other reasons, such as in APOEε4 heterozygotes and noncarriers, in females, and in patients over the age of about 75 years.

Preclinical APOEε4 carriers exhibit the greatest loss of basal forebrain volume (64).

Degeneration of basal forebrain cholinergic neurons that project to the MTL and other cortical
structures, precedes and predicts longitudinal MTL degeneration (65). The ascending neuronal projections of the basal forebrain cholinergic system may be particularly vulnerable to the combination of apoE4-mediated glial hypofunction and deficient lipid delivery with high levels of Aβ and tau pathology (66-68). Corticolimbic cholinergic denervation may be evident at early stages of AD (69), and failure of this circuitry is inextricably linked with amnestic deficits (70). Aβ and apoE4 also influence synaptic and extracellular ACh levels (30, 71).

Further lowering of glial activation in APOE4 carriers, such as in the presence of K variant BCHE alleles, induces amyloid accumulation at even younger ages, lowers the age-of-onset of AD, and hastens progression from prodromal to dementia AD, especially in those below the age of 75 years (31, 32, 72, 73). Therefore, factors that increase glial activation, such as aging, may explain why APOE4 effects on risk for AD may be maximal below the age of 70 years and largely absent above the age of 85 years (39-41). APOE4 carriers with early AD and a mean age of 70 years show APOE4 allele frequency-dependent accelerated progression of hippocampal atrophy and decreased global cerebral atrophy, but in individuals more advanced in age or disease progression, brain volume atrophy does not differ by genotype (74-76). In younger APOE4 homozygotes disseminated neocortical tau pathology and widespread synaptic injury may be initially limited (Figure 7A), but as corticolimbic denervation progresses from MTL structures to involve other cortical regions, the spread of tau pathology and synaptic degeneration is facilitated and may be more rapid than in APOE4 noncarriers. In the current study, tau pathophysiology in APOE4 carriers had a moderately strong correlation with synaptic injury and moderate correlation with neuroaxonal injury, suggesting that once tau pathology is triggered, it is associated with neurodegeneration (Figure 4). In male APOE4 carriers, moderate to moderately strong correlations of tau pathophysiology with glial activation, synaptic injury,
and neuroaxonal damage suggest that increases in glial activation are particularly associated with tau and neurodegenerative pathology in male APOE ε4 carriers (Figure 4).

In contrast, female APOE ε4 noncarriers have high levels of functional glial activation (Figure 2E). More effective clearance of Aβ limits amyloid pathology and avoids the substantial accumulation of amyloid at younger ages, however, noncarriers are at increasing risk of developing dementia as they age (32). However, noncarriers are vulnerable because even relatively low levels of amyloid pathology can trigger tau and synaptic pathology to spread rapidly (Figure 7B). In the current study, APOE ε4 noncarriers with early AD exhibited multi-domain cognitive impairment and global brain atrophy but lacked marked amnestic deficits or hippocampal atrophy. In APOE ε4 noncarriers, a significant response to AChE-Is is generally only seen in moderate and severe stages of AD (Figure 7B) (32, 63).

APOE ε4 allele frequency-dependent reduction of functional glial activation is most evident below the age of 75 years, which contrasts with over-activation of glia in female noncarriers that is most evident greater than 75 years (32). In APOE ε4 noncarriers from the current study, tau pathophysiology was strongly correlated with synaptic pathology in both males and females, but correlations with glial activation and neuroaxonal damage were only strong in females and absent in males (Figure 4A-C). In addition, females, but not males, showed an inverse APOE ε4 allele frequency-dependent relationships with glial activation, tau pathophysiology and synaptic injury (Figure 2). The highest levels of glial activation, tau and synaptic pathology, and the lowest levels of amyloid pathology were evidenced in female APOE ε4 noncarriers (Figure 2). In APOE ε4 noncarriers, sex had a major effect on age-of-diagnosis of AD, with a significantly earlier mean age in male relative to female participants of 10.7 years. Thus, while female APOE ε4 noncarriers may be relatively resilient at younger ages,
their risk for AD may increase with age becoming particularly divergent from males over the age of 75 years (57). This is supported by the literature, where 40% of female APOEɛ4 noncarriers aged 75 years or more with prodromal AD, transitioned to dementia during a four-year study compared to only 21% of male noncarriers (44).

Limitations of this current study include its retrospective nature, its small size, and that participants were largely of European ancestry. In addition, discerning clinical phenotypes on a variable background of AChE-I therapy (Tables S3, 4) may be problematic because APOEɛ4 carriers are more responsive to AChE-I treatment in the mild stage of AD, therefore attention, processing speed, and amnestic deficits may have been partly obscured (63).

In early AD below 75 years of age, increased APOEɛ4 allele frequency is associated with decreased functional activation of glia; this was evident in females, but not in males. Male and female APOEɛ4 homozygotes had the lowest levels of glial activation, while female APOEɛ4 noncarriers, and to a lesser extent female APOEɛ4 heterozygotes, had increased levels of glial activation. These age, genotype, and sex influences on levels of glial activation are important determinants in the mix and timing of amyloid and tau pathology, neurodegeneration, denervation of the corticolimbic cholinergic system, and clinical features of early AD. They may explain much of the phenotypic heterogeneity in early AD populations aged below 75 years. These findings should be confirmed in larger, prospective, and longitudinal studies.
Acknowledgements

We thank the participants and their companions who participated in the study; the sites, and study team from Ionis for executing the study; and Gwendolyn Kaeser who created the figures, and edited and styled the manuscript per journal requirements.

Author contributions

RML was responsible for study design, statistical analysis plan design, and data interpretation, and wrote the manuscript. DL advised on statistical analysis plan, performed data analysis, data interpretation, and performed critical review of the manuscript. TDS advised on structure of the manuscript, data interpretation, and performed critical review of the manuscript.

Funding

The clinical trial from which these baseline results were obtained was funded by Biogen. The preparation of this manuscript was funded by Ionis Pharmaceuticals.

Availability of data and materials

The baseline data that support the findings of this investigation are available in the supplementary materials (Tables S3–S4) and additional data and materials are available upon request.

Declarations

Ethics approval and consent to participate

Patients provided written, informed consent at the time of recruitment. The study was approved by the institutional review board or independent ethics committee at each investigational site.
Declarations of interest

RML and DL are Employees of, and holders of stock/stock options in, Ionis Pharmaceuticals Inc.

TDS has no conflicts of interest.
References


MULTI-ATLAS SEGMENTATION TOOL TO HIPPOCAMPUS, VENTRICLE AND WHOLE BRAIN
Statistical Software. 2015;64:1-23.
39. Huang LC, Lee MY, Chien CF, Chang YP, Li KY, Yang YH. Age and sex differences in the association
between APOE genotype and Alzheimer's disease in a Taiwan Chinese population. Frontiers in aging
neuroscience. 2023;15:1246592.
44. Lane RM, He Y. Butyrylcholinesterase genotype and gender influence Alzheimer's disease
Ethnicity on the Association Between Apolipoprotein E Genotype and Alzheimer Disease: A Meta-
and age effects on flrabetapir positron emission tomography in healthy aging and Alzheimer disease.
patterns of gray matter volumes and associated gene expression profiles in cognitively-defined
and reduced cortical thickness in APOE ε4-negative Alzheimer's disease: a cohort study. Alzheimers Res
Ther. 2018;10(1):77.
Exceptionally low likelihood of Alzheimer's dementia in APOE2 homozygotes from a 5,000-person
cerebrospinal fluid proteomic analysis in Alzheimer's disease patients reveals five molecular subtypes
with distinct genetic risk profiles. medRxiv. 2023:2023.05.10.23289793.
53. Sauty B, Durrelman S. Impact of sex and APOE-e4 genotype on patterns of regional brain
atrophy in Alzheimer's disease and healthy aging. Front Neurol. 2023;14:1161527.
Sex differences in Alzheimer disease - the gateway to precision medicine. Nat Rev Neurol.


