Onchocerciasis Elimination Mapping in Tanzania Mainland: A case of Kilindi DC, Handeni DC and Kilolo DC, Iringa DC.
Evangelina Chihoma1*#, Stephen G. Mbwambo2*#, Ezekiel Moirana2#, Casmil Masayi1, Julius Masanika1, Shabbir Lalji1, Kathryn Crowley3, Rory Post4, Darin Evans5, Moses Katabarwa3, Upendo Mwingira3 and George Kabona2

1 USAID Act to End NTDs Program, Dar es Salaam, Tanzania
2 National Neglected Tropical Diseases Control Program, Preventive Services Department, Ministry of Health, Tanzania
3 Research Triangle Institute, Washington DC
4 USAID, Washington DC
*Corresponding authors
Email: chihomae@gmail.com: mbwambo702@gmail.com

The same contribution authors

Abstract

Background: In Tanzania, seven councils were showed possibility of endemicity of Onchocerciasis. For this reason, a desktop review of Onchocerciasis exclusion mapping was undertaken in these councils with reference to the vectors and categorized the district ecology as suitable or unsuitable for vector breeding. Out of seven councils, four councils were met the suitable criteria for conducting Onchocerciasis elimination mapping (OEM). The OEM aimed to determine the level of exposure to onchocerciasis among children 5 to 9 years’ age in four councils.

Methods: A community-based cross-sectional survey was conducted between May and July 2023 using multistage sampling of 30 villages. Mapping was conducted in four councils that were merged to form two Evaluation units (EUs) of Kilindi-Handeni close to Tanga focus located northeast and Kilolo and Iringa close to Mahenge in the southwest of Tanzania. The
target population were 6,000 children of 5 to 9 years that have been living in the selected villages for their entire lives.

Results: A total of 6,054 children were sampled from the two EUs whereby 3,044 children came from Handeni-Kilindi EU and 3,010 came from Kilolo-Iringa DC EU. A total of 5 (0.1%) out of 6,054 tested children were seropositive for IgG4 antibodies using OV-16 RDT from the two EUs, whereby 2 (0.07%) came for Handeni-Kilindi and 3 (0.1%) came from Kilolo-Iringa.

Conclusions:
Based on these study findings, there is no transmission of onchocerciasis currently taking place in the assessed EUs. It is vital that appropriate surveillance procedures are now implemented to confirm and ensure that no transmission remains.

Keywords: Onchocerciasis, Elimination Mapping, Mass Drug Administration, Exclusion Mapping
Background
In Tanzania, Onchocerciasis is among of five Preventive Chemotherapy Neglected Tropical Diseases endemic across seven regions in 29 councils classified into eight known transmission foci namely Tanga, Tukuyu, Mahenge, Ruvuma, Morogoro, Kilosa, Tunduru and Mufindi (2). Since 2001, Tanzania Onchocerciasis program has adopted the World Health Organization’s intervention of mass drug administration (MDA) using community directed treatment with Ivermectin (CDTI) approach contributed to significant decrease of disease prevalence from 45-95% (baseline) to 0-3.5 % by 2023 in 27 endemic councils.

The Onchocerciasis verification guidelines, recommends periodic monitoring to assess disease prevalence after at least 13 rounds of MDA and mapping of disease along with delineating the transmission zone/focus. For purpose of disease elimination, Onchocerciasis elimination mapping (OEM)/exclusion mapping countrywide has conducted by implementing district-by-district exclusion process (4). The highest priority for elimination mapping includes ivermectin naïve districts bordering known onchocerciasis-endemic areas under MDA or beyond. The mapping is aimed at gathering evidence of any presence or absence of infection in areas suspected of the possible onchocerciasis-endemicity. However, these ivermectin naïve should have similar geographical characteristics required for the breeding of blackflies.

Desktop review Onchocerciasis Exclusion mapping was undertaken through seven councils (Kilolo DC, Iringa DC, Kilindi DC, Handeni DC, Makete DC, Newala TC and Newala DC) in the country (6). The Exclusion Mapping exercise aimed at determining possibility of endemicity of Onchocerciasis with reference to the vectors and categorized the district ecology as suitable or unsuitable for vector breeding. Initially, the desktop review was done to confirm whether the ecology of the areas in question were likely suitable for the breeding of onchocerciasis vectors. If not suitable, no further actions were indicated, but when deemed suitable other stages of mapping were recommended (7). Based on desk review elimination mapping in Kilolo, Iringa, Kilindi and Handeni DCs was recommended as the ecology is likely suitable for breeding of Simulium vectors for onchocerciasis. Thus, these four councils were met criteria to conduct Onchocerciasis Elimination Mapping (OEM).
In order to determine possibility of exposure to *Onchocerca volvulus* (OV) in four councils that were merged to form two evaluation units (EU), OEM was conducted in two phases based on seropositive surveys through collection of dried blood spots (DBS). The phase one OEM was undertaken in 2022 to among adult who were at least 20 years old and have lived in their resident villages for 20 years or above. The samples were selected purposively from first line villages and randomly selected villages at least 10 kms beyond first line villages. The findings revealed 71 individuals that seemed to have been exposed to the infection out of 6266 in all 4 councils (fig1).

During the 4th meeting of Tanzania Onchocerciasis Expert advisory committee (TOEAC), it was noted that the study population in these four councils were not ivermectin naïve as they had been under Lymphatic Filariasis (LF) MDA. That means, MDA with Ivermectin and Albendazole targeting for LF elimination might have some impact on Onchocerciasis transmission although the treatment period for onchocerciasis is longer than that for LF. Therefore, the committee recommended for OV-16 analysis of new collections of DBS from young children (5-9 years old) from two groups of neighbouring councils (phase ii): Handeni and Kilindi (3000 samples) and Kilolo and Iringa (3000 samples). From each group of councils, a cluster of 30 villages composed of purposively selected villages (all first line that registered positive adult cases during previous survey and those confirmed (breeding/productive) through river prospections during the current survey and randomly selected villages beyond first line communities.

OEM findings facilitate programmatic decision to the mapped councils includes commencement of MDA in case of higher than 0.1% transmission rate or excluded from MDA in case of none transmission of infection. Even so, where there are clusters with sero-positive results, entomological surveys are recommended to confirm onchocerciasis infection using O-150 PCR. If positive pools are identified; MDA is recommended within these positive clusters. Scattered positive results are not an indicator of possible onchocerciasis infection. This means, no further action will be indicated if the positive cases are scattered (8). Therefore, this study aimed to determine the level of exposure to onchocerciasis among children 5 to 9 years’ age in two EU of Kilindi-Handeni and Kilolo-Iringa and provide guidance in deciding whether to start MDA for Onchocerciasis or considered alternative interventions.
Methods

Study design
A community-based cross-sectional survey was conducted in June 2023 in the two EUs (four councils) using multistage sampling of 30 villages.

Study Area
Mapping was conducted in four councils that were merged to form two Evaluation units (EU) of Kilindi-Handeni close to Tanga focus located northeast and Kilolo and Iringa close to Mahenge in the southwest of Tanzania. Geographically the councils in each EU are similar as Kilindi DC was formed out of Handeni DC in 2002, and Kilolo district was formed out of Iringa DC in 2005. That means councils in each of the group are characteristically similar in terms of weather, geographical and environmental conditions. There was focus on villages which had clusters of positives from the previous OEM survey which was conducted in July 2022 as shown on the map in Fig 1.
Target population

The target population are children of 5 to 9 years that have been living in the selected villages for their entire lives.

Sample size and sampling procedures

Selection of villages: First-line villages were selected purposively by their proximity of 1-3km to fast flowing rivers which are potential vector breeding sites and by confirmation of breeding sites in the rivers and crab trapping (9). The entomological team visited the EUs for confirmation of the productivity of the breeding sites through river prospection as recorded in the river prospection form (appendix 3). River prospection was guided by district maps and information from communities whereby a list first line villages for each EU was established. In Kilindi-Handeni where the predominant species is *Simulium neavei* group (*Simulium woodi*), river
prospection was accompanied by crab trapping, a reliable method of identifying aquatic stages of
the vector. 5 traps were set in every site selected and fresh meat was used as bait see detail in
river prospection form (Appendix 3). A total of 30 first line villages were confirmed in each EU
starting with those that formed clusters of positives (by OV 16 RDT) from previous survey in
July 2022 among adults. The number of first line villages selected was sufficient to sample
children therefore no additional villages was required (10).

Selection of Households
At each selected village List of Households was created by hamlet leaders using registers which
were provided by previsit team whereby households to be surveyed were selected by systematic
sampling by the survey team. With help from the village leader the previsitors in each EU
distributed registers each hamlet leader to list the households. The lists of households where then
combined to make a main list for the village. From the list a total number of households was
divided by 200 to obtain the sampling interval whereby the households were systematically
selected (11). The list of selected households was then handed over to the hamlet leaders with for
advocacy and sensitization of the community on the upcoming survey. From every household
children meeting the inclusion criteria were taken Dried Blood samples from their fingers. In
each village a minimum of 100 samples was required to make a total of 3,000 DBs sample in
each EU (12). In a small village whereby all households were included in survey and the number
of children found were less than the required 100, additional households were sampled from
hamlets of neighboring village that were adjacent to the originally selected villages (13).

Inclusion Criteria:
- aged 5 to 9 years old
- lived in the village for entire period of his/her age
- Not sick at the time of the survey (Bed-ridden)
- parents/guardians have provided written consent for the study

Exclusion Criteria
- Reported to be sick at the time of survey (Bedridden)
- Aged less than 5 years and 10 years and above
- Have not lived in the village for their entire life

SENSITIVE BUT UNCLASSIFIED
Preliminary activities (river prospection and pre-visit)
There were two stages of the survey preliminary activities: river prospection (entomology) and pre-visit. For each EU, entomology work was done by one district Assistant entomologist who attended the national entomological surveillance training in Tukuyu in May 2023. The pre-visit work was done by trained entomological technician for each EU. These activities were accompanied by representative from district level major the district NTD coordinator (DNTDCO).

Survey teams
12 survey teams were developed for DBS collection, 6 in each EU accompanied by supervisor selected from Ministry of Health/National NTD Control Program. The team comprised of 6 national laboratory technicians responsible for collecting, handling, drying, packing and refrigeration of DBS samples paired by 6 district-based laboratory technicians and 6 research assistants for each EU for administering questions, consent forms from study participants and recording data using an open source mobile data collection (ODK) platform. Village and hamlet leaders also accompanied the team at the field by providing guidance to the team during the door-to-door visiting of selected households. The survey teams were trained and oriented on the study protocol and their terms of references (TOR).

Data collection procedures

Household surveys

Head of households were interviewed using mobile phone based structured questionnaire. Information collected included study areas, participants’ demographic information (age, gender, administrative levels, documentation of informed consent, location) and description of how the DBS will be taken. The information was recorded and entered in the ODK platform. Each questionnaire was assigned a barcode which matched with the DBS. Global Positioning System (GPS) coordinates was recorded at each location of the surveyed households whereby the data were uploaded daily into the NTDCP database where they were reviewed and cleaned. All information was kept confidential and could only be accessed by NTDCP and RTI personnel.

Specimen collection and storages

A finger prick blood was collected from eligible individuals in the selected household by a trained team of laboratory technicians which was carefully put on at least 3 ears of TropBio filter paper, air dried and packed in labelled small Zip-lock bags. A total of 50 small Zip-lock bags were put in a bigger Zip-lock bag and labelled properly and stored in the cool boxes. Zip-lock bags were stored under -200 Celsius at the district hospital (14). At the end of the survey the collected DBS were transported to Amani Biomedical Research Laboratory (AMBRELA) at Tanga center of the National Institute for Medical Research (NIMR) where analysis was done. No testing or result interpretation was done during fieldwork.
Sample analysis, result interpretation and decision making
The detection of the presence of O. volvulus IgG4 antibodies from eluted DBS samples was done using OV16 RDT by adhering to the quality assurance/quality control (QA/QC) procedures and recording of results. (13).

The permission to conduct this study was granted by Regional Administrative Secretary (RASs) and District Executive Directors (DEDs) at region and district councils respectively. Community Leaders in communities did not only provide permission to work at their levels but took lead in community sensitization and guidance during field works. Study participants were recruited on voluntary bases by signing an informed consent. Participants who refused to participate in the study were left out without any repercussions.

RESULTS
A total of 6,054 children were sampled from the two EUs whereby 3,044 children came from Handeni-Kilindi EU and 3,010 came from Kilolo-Iringa DC EU.

Characteristics of study participants and distribution
A total of 3,495 households were sampled from both EUs making an average two children per household. (51%) of total number of children sampled were female, whereby half of them came from Handeni-Kilindi EU (Table 2). The highest number of children sampled were of 5 years of age (26%) followed by those who were 9 years of age (23%) compared to the rest of the ages. The mean age of children was found to be seven (7) years old.
Table 2: Characteristic of study participants and distribution by EU.

Age composition

<table>
<thead>
<tr>
<th>EU</th>
<th>5 Years</th>
<th>6 Years</th>
<th>7 Years</th>
<th>8 Years</th>
<th>9 Years</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N (%)</td>
<td>N (%)</td>
<td>N (%)</td>
<td>N (%)</td>
<td>N (%)</td>
<td>N (%)</td>
</tr>
<tr>
<td>EU1</td>
<td>796 (26.2)</td>
<td>543 (17.8)</td>
<td>539 (17.7)</td>
<td>463 (15.2)</td>
<td>703 (23.1)</td>
<td>3,044 (100.0)</td>
</tr>
<tr>
<td>EU2</td>
<td>809 (26.9)</td>
<td>542 (18.0)</td>
<td>513 (17.0)</td>
<td>483 (16.0)</td>
<td>663 (22.1)</td>
<td>3,044 (100.0)</td>
</tr>
</tbody>
</table>

Sex Composition

<table>
<thead>
<tr>
<th>EU</th>
<th>Female</th>
<th>Male</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N (%)</td>
<td>N (%)</td>
<td>N (%)</td>
</tr>
<tr>
<td>EU1</td>
<td>1,556 (51.1)</td>
<td>1,488 (48.9)</td>
<td>3,044 (100.0)</td>
</tr>
<tr>
<td>EU2</td>
<td>1,512 (50.2)</td>
<td>1,498 (49.8)</td>
<td>3,010 (100.0)</td>
</tr>
</tbody>
</table>

Handeni-Kilindi, **Iringa-Kilolo**

Prevalence of onchocerciasis

A total of 5 (0.1%) out of 6,054 tested children were seropositive for IgG4 antibodies using OVA-16 RDT from the two EUs, whereby 2 (0.07%) came for Handeni-Kilindi and 3 (0.1%) came from Kilolo-Iringa.

Fig 2: A map of Iringa DC and Kilolo EU showing the wards with positives bordering Kilosa focus
Table 3: Prevalence of onchocerciasis Per EU

<table>
<thead>
<tr>
<th>EU</th>
<th>+Ve*</th>
<th>-Ve**</th>
<th>Total</th>
<th>Prevalence(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Handeni-Kilindi</td>
<td>2</td>
<td>3,042</td>
<td>3,044</td>
<td>0.07</td>
</tr>
<tr>
<td>Iringa-Kilolo</td>
<td>3</td>
<td>3,007</td>
<td>3,010</td>
<td>0.1</td>
</tr>
</tbody>
</table>

*Number of positive cases **Number of negative cases

Out of the 5 positives which were found in the two EUs the results have shown that 2 of them came from one ward known as Ruaha Mbuyuni in Iringa DC-Kilolo EU, making the ward to have a prevalence of 1%. The rest of the positives were from one from each ward making a prevalence of 0.1% (Table 4).

Table 4: Prevalence of Onchocerciasis per village

<table>
<thead>
<tr>
<th>EU</th>
<th>District</th>
<th>Ward</th>
<th>Village</th>
<th>+Ve*</th>
<th>-Ve**</th>
<th>Total</th>
<th>Prevalence (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>EU1</td>
<td>Kilolo</td>
<td>Ruaha Mbuyuni</td>
<td>Mtandika</td>
<td>1</td>
<td>99</td>
<td>100</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td>Kilolo</td>
<td>Ruaha Mbuyuni</td>
<td>Ruaha Mbuyuni</td>
<td>1</td>
<td>99</td>
<td>100</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td>Kilolo</td>
<td>Ng’ang’ange</td>
<td>Mdeke</td>
<td>1</td>
<td>99</td>
<td>100</td>
<td>1.0</td>
</tr>
<tr>
<td>EU2**</td>
<td>Handeni</td>
<td>Mgambo</td>
<td>Gendagenda</td>
<td>1</td>
<td>100</td>
<td>101</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td>Handeni</td>
<td>Segera</td>
<td>Jitengeni</td>
<td>1</td>
<td>99</td>
<td>100</td>
<td>1.0</td>
</tr>
</tbody>
</table>

Handeni-Kilindi, Iringa-Kilolo, *Number of positive cases, **Number of negative cases

Two children who were found positive in Handeni-Kilindi EU were both females with a prevalence of 0.13% by sex in females and 0.0% in males since there were no positives from male children with a p-value of 0.2 and chi² of 1.9. Out of the 3 positives from Iringa DC-Kilolo EU, 1 was female with a prevalence of 0.07% in females and 2 were males with a prevalence of 0.13% in males with a p-value of 0.6 and chi² = 0.3
Table 5 Prevalence of Onchocerciasis per sex for each EU.

- Handeni-Kilindi, ** Iringa-Kilolo, #Number of positive cases, ##Number of negative cases

2 of the positives found in Handeni-Kilindi EU were 5 and 6 years, with a prevalence of 0.13% and 0.18% respectively with a p-value of 0.6 and chi² = 2.7. And 3 of the positives in Iringa DC-Kilolo EU were aged 5 and 9 years with a prevalence of 0.12% and 0.30% respectively with a p-value of 0.4 and chi² = 4.3.

Table 6: prevalence of Onchocerciasis per age for each EU

<table>
<thead>
<tr>
<th>EU</th>
<th>Age</th>
<th>+Ve</th>
<th>-Ve</th>
<th>Total</th>
<th>Prevalence (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>EU1</td>
<td>5</td>
<td>2</td>
<td>1,554</td>
<td>1,556</td>
<td>0.13</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>0</td>
<td>1,488</td>
<td>1,488</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>2</td>
<td>3,042</td>
<td>3,044</td>
<td>0.07</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Chi² (4) = 1.9139, p value = 0.167</td>
</tr>
<tr>
<td>EU2</td>
<td>5</td>
<td>2</td>
<td>1,554</td>
<td>1,556</td>
<td>0.13</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>0</td>
<td>1,488</td>
<td>1,488</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>2</td>
<td>3,042</td>
<td>3,044</td>
<td>0.07</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Chi² (4) = 0.3430, p value = 0.558</td>
</tr>
</tbody>
</table>

DISCUSSION

In the process of moving from Control to elimination the Tanzania program was recommended to map presence of onchocerciasis in fifteen hypo endemic districts (4). Four of the districts were required further consideration through OEM protocol (15), the last survey conducted in July 2022 was not confirmatory enough to consider its results hence the TOEAC committee recommended the survey to be repeated in children to confirm the status of transmission in Handeni, Kilindi, Kilolo and Iringa councils.

First line villages were purposively selected, and the rest were excluded from the study due to lack of evidence supporting presence of vector breeding sites during river prospection. The first OEM done in July 2022 confirmation of breeding sites was not done therefore there was no
evidence of active black fly breeding in any of the selected villages hence they were selected according to their ecology to support transmission of onchocerciasis. Out of the prospected rivers villages with evidence of larvae and active biting of black flies were selected for the serology survey. A sensitive and specific test is required for mapping onchocerciasis in hypo endemic areas to overcome the limitations of the existing arsenal.

The WHO onchocerciasis Technical subgroup recommended establishing a biological threshold of 2% in adults and 0.1% in children as a decision to start treatment (16). From this mapping it has shown that the transmission is below the threshold where EUs with the PWM MDA distributed for Lymphatic Filariasis in 2015 with prevalence 1% for villages which have elicited positives.

Hence in the evaluated areas which are not ivermectin naïve the results indicate that onchocerciasis is not a public health problem. However, more needs to be investigates to confirm whether the positives are recrudescence or if they are coming from the neighboring focus, leading to the need of redefining the limits of transmission zones bordering the two EUs since both have onchocerciasis transmission still ongoing with biannual MDA.

Conclusions

This implementation of OEM indicates that there is no transmission of onchocerciasis currently taking place in the assessed EUs. It is vital that appropriate surveillance procedures are now implemented to confirm and ensure that no transmission remains.

The concept of onchocerciasis mapping has changed at least three times over the past 50 years as the programmatic goals and assessment tools have changed. With the current goal of global elimination of onchocerciasis, all areas where onchocerciasis might be transmitted and where ivermectin treatment has not been delivered in the past must be defined as either onchocerciasis endemic or not by careful, detailed elimination mapping. With detailed guidance and technical support from the Tanzania Onchocerciasis Expert advisory committee, the onchocerciasis-endemic councils left in Tanzania, the NTDCP can soon complete their elimination mapping challenges and continue with their MDA programmes to progressively achieve the same success in onchocerciasis elimination as the growing list of formerly onchocerciasis-endemic countries in the Africa such as Nigeria and Uganda have done.

Abbreviations

Acknowledgment

The authors thank everyone who supported this study either directly or indirectly. First and foremost the government of Tanzania through its Ministry of Health and USAID Act to End NTDs East Program.

Funding

The study was funded in Tanzania by USAID Act to End NTDs program.

Availability of data and materials

The data set for this study is available on request from MOH/National NTD Control Program.

Declarations
Ethics approval and consent to participate.

Approval for the study was provided by the Institutional Review board of the Ministry of Health in Tanzania through NTDCP and Research Triangle Institute in Washington DC.

Consent for publication

Not applicable.

Competing Interests

The authors declare that they have no competing interests.

References

medRxiv preprint doi: https://doi.org/10.1101/2024.03.06.24303848; this version posted March 7, 2024. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license.