Nephroprotective effects of cilastatin in people at risk of acute kidney injury: A systematic review and meta-analysis

Dilaram Acharya¹, Fanar Ghanim¹, Tyrone G. Harrison¹,², Tayler Dawn Scory¹, Nusrat Shommu¹, Paul E. Ronksley¹,²,³, Meghan J. Elliott¹,², David Collister⁴, Neesh Pannu⁵, Matthew T. James ¹,²,³,⁴*

¹Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
²Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
³O’Brien Institute for Public Health, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
⁴Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
⁵Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Canada

Author emails:
DA:dilaram.acharya@ucalgary.ca FG: fanar.ghanim@ucalgary.ca
TH: tgharris@ucalgary.ca TDS: tdscory@ucalgary.ca
NS: nsshommu@ucalgary.ca PR: peronksl@ucalgary.ca
ME: meghan.elliott@albertahealthservices.ca DC: dcollist@ualberta.ca
NP: npannu@ualberta.ca MTJ: mjames@ucalgary.ca

Correspondence:
Mathew Thomas James, MD, Ph.D.,
Professor, Department of Medicine, Cumming School of Medicine,
University of Calgary, Alberta, Canada
Email: mjames@ucalgary.ca
Phone: 403-220-2465

Word count (abstract): 382
Word count (main manuscript): 3,272

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
ABSTRACT

Background: Cilastatin is an inhibitor of drug metabolism in the proximal tubule of the kidney that demonstrates nephroprotective effects in animal models. Cilastatin has been in clinical use since the 1980s in combination with the antibiotic imipenem to prevent imipenem degradation, which has enabled studies testing the effect of cilastatin on kidney outcomes in observational studies and clinical trials. This systematic review and meta-analysis was undertaken to evaluate the nephroprotective effects of cilastatin among people susceptible to acute kidney injury (AKI).

Methods: We systematically searched MEDLINE, Embase, Web of Science, and the Cochrane Controlled Trials registry from database inception to November 2023 for observational studies or trials that compared kidney outcomes with cilastatin, either alone or as combination imipenem-cilastatin, compared to an inactive or active control group not treated with cilastatin. Two reviewers independently evaluated studies for inclusion, extracted data, and assessed risk of bias. Treatment effects were estimated using random effects models and heterogeneity was reported using the I² statistic.

Results: We identified 10 studies (five RCTs, n=535 patients; 5 observational studies n=6,198 participants) that met the inclusion criteria, including studies with comparisons of imipenem-cilastatin to an inactive control as well to alternate antibiotics among patients being treated for bacterial infections. Based on results from 6 studies, imipenem-cilastatin significantly reduced the incidence of AKI (pooled odds ratio [OR] 0.42 [95% CI, 0.26 to 0.69]; I² 48%), with consistent results observed from randomized trials (two trials, OR 0.12 [95% CI, 0.02 to 0.73]; I² 0%) and observational studies (four studies, OR 0.46 [95% CI, 0.28 to 0.78]; I² 62%). Based on results from six studies, kidney function was also better with imipenem-cilastatin than comparators (weighted mean difference in serum creatinine -0.14 mg/dL [95% CI, -0.22 to -
0.07; I²=0%]. There was no statistically significant difference in all-cause mortality with imipenem-cilastatin treatment compared to comparators (OR 0.60 [95% CI, 0.12 to 3.03]; I² 73%). The overall certainty of the evidence was low due to heterogeneity of the results, high risk of bias, and indirectness among the identified studies.

Conclusion: Patients at risk of AKI treated with imipenem-cilastatin developed AKI less frequently and had better short-term kidney function than those receiving control or comparator antibiotics. Larger clinical trials with less risk of bias are needed to establish the efficacy of cilastatin for AKI prevention.
BACKGROUND

Acute kidney injury (AKI) refers to a reduction in kidney function observed within 48 hours to 7 days based on serum creatinine changes or reduced urine output for 6 hours or more and is associated with increased mortality and the development of chronic conditions such as hypertension, cardiovascular disease, and chronic kidney disease (CKD). Complications from AKI not only result in higher healthcare costs but can also lead to reduced quality of life for affected individuals (1-5).

Several medication classes are well recognized for their potential to induce kidney tubular injury, thereby increasing the risks of acute and chronic kidney disease (6, 9). Nephrotoxic AKI is most often caused by chemotherapeutic agents, antibiotics, calcineurin inhibitors, and radiocontrast dyes (6-8). Hospitalized patients are often prescribed these medications in the setting of acute illness, such as infection or at the time of procedures such as surgery or vascular procedures, placing them at further risk of AKI, occurring in up to 25% of exposed patients, particularly among those with other health conditions (10-12). The identification of effective prevention strategies to mitigate nephrotoxicity is desirable to improve patient outcomes, reduce healthcare costs, and enhance quality of life.

Cilastatin was initially developed by Merck Sharp & Dohme Research Laboratories in the 1980s as an inhibitor of dehydropeptidase I (DPEP1) within the brush border of the renal proximal tubule to reduce the renal metabolism of imipenem, an antibiotic prescribed for systemic infections such as complicated intra-abdominal infections, severe pneumonia, intra- and post-partum infections, complicated urinary tract infections, and complicated skin and soft-tissue

...
infections (13-15). By inhibiting DPEP1, cilastatin blocks the enzymatic hydrolysis of drugs before they are taken up into tubular epithelial cells where they can cause cell necrosis (16). Cilastatin also blocks DPEP1 mediated leukocyte recruitment in the tubulointerstitial space, thereby reducing renal inflammation in response to injury (17).

Many animal studies have demonstrated nephroprotective effects of cilastatin, particularly following exposure to nephrotoxic drugs (18-20). Specifically, cilastatin has been shown to improve kidney function in rats following treatment with cyclosporin, imipenem, cisplatin, vancomycin, and radiocontrast dye (18, 20-22). Studies have also shown less kidney injury in rats undergoing kidney transplantation, as well as in those receiving chemotherapeutic agents, without reducing the potency of the anticancer effect of these drugs (20, 22).

The approval of imipenem-cilastatin for clinical use has enabled several studies in humans that suggest cilastatin has nephroprotective effects against drug toxicity, including from fosfomycin, vancomycin, and cisplatin (23-25), among subjects undergoing solid organ transplantation (26-28), bone marrow transplantation (29), cancer therapy (30), treatment of nosocomial pneumonia (31, 32), and childhood bacterial infections (33). A previous meta-analysis of studies testing imipenem-cilastatin among kidney transplant recipients receiving cyclosporin reported better kidney function and lower incidence of acute renal failure among patients who received imipenem-cilastatin than those who did not. However, in the 16 years since that review, additional trials and comparative effectiveness studies have been published, suggesting that an updated systematic review and meta-analysis is needed to synthesize the current evidence base on the nephroprotective effects of cilastatin (34).
This systematic review and meta-analysis was undertaken to examine the effects of cilastatin on AKI, kidney function, and subsequent clinical outcomes among people at risk of kidney injury.

METHODS

We followed a pre-specified study protocol that was registered in the International Prospective Register of Systematic Reviews (PROSPERO) database (35) and adhered to the Preferred Reporting for Systematic Review and Meta-analysis (PRISMA) guidelines (36).

Search Strategy

We conducted a comprehensive search using four electronic bibliographic databases; MEDLINE via OVID (from January 1946 to November 21, 2023), Embase via OVID (from 1974 to November 2023), Web of Science (from 1976 to November 22, 2023), and the Cochrane Controlled Trials Registry (from 1996 to November 21, 2023). We developed the search strategy with the guidance of a health sciences librarian proficient in systematic search methodology. We used the following search terms combined with Boolean operators for each bibliographic database search: (“acute kidney injury”) OR ("acute kidney injuries" OR "kidney injur*" OR "renal injur*" OR "renal insufficienc*" OR "kidney insufficienc*" OR "kidney failure*") OR (kidney failure, chronic) OR (“end-stage kidney disease*” OR “end stage kidney disease*” OR “chronic kidney failure” OR “end-stage renal disease*” OR “end stage renal disease (ersd)” OR “end-stage renal failure” OR “end stage renal failure” OR “chronic renal failure” OR “kidney dysfunction” OR esrd) OR (nephroprotection OR nephroprotective* OR prevention* OR protection* OR nephrotoxicity OR “preventive measure*” OR “all cause mortality” OR mortality OR death OR “cardiovascular event*” OR “kidney function*” OR “kidney
dysfunction” OR creatinine OR “cystatin c” OR “glomerular filtration rate” OR “urine output” OR “allograft function” OR proteinuria OR albuminuria OR (Neutrophil Gelatinase-Associated Lipocalin) OR KIM-1 (Kidney Injury Molecule-1) OR IL-18 (Interleukin-18) OR L-FABP (Liver-Type Fatty Acid-Binding Protein) OR IGFBP7 (Insulin-Like Growth Factor-Binding Protein 7) OR TIMP-2 (Tissue Inhibitor of Metalloproteinases-2)) AND cilastatin OR cilastatin, imipenem drug combination (MeSH) OR (141a6amn38 OR 5428wxz74m OR 81129-83-1 OR “mono-na salt” OR 82009-34-5 “cilastatin monosodium salt” OR “cilastatin sodium” OR mk 0791 OR mk 791 OR “monosodium salt, cilastatin” OR “salt, cilastatin monosodium” OR “sodium, cilastatin”). We limited the search to studies in human and excluded animal studies. Additionally, citations and reference lists from identified studies were also searched to identify other potentially relevant studies. The detailed literature search strategy for each electronic database are provided in the Supplement (Table S1).

Study Selection

Studies were eligible for inclusion if the population included human subjects of any age at risk of AKI, AKD, or CKD arising from acute illness, medical or surgical exposures, or procedures. Eligible studies were those including treatment with cilastatin either alone or in combination with imipenem, and included a comparator group not treated with cilastatin; this could include an inactive control group, including a placebo, or one or more active comparator groups not receiving cilastatin. Studies were included if they reported one or more outcome of interest related to nephrotoxicity including kidney function (e.g., urine output, serum creatinine, cystatin C, measured or estimated glomerular filtration rate using any technique), kidney structure (e.g., proteinuria, abnormal urine sediment, kidney injury biomarkers including markers of tubular
damage such as NGAL, KIM-1, IL-18, kidney imaging, or kidney biopsy features), incidence of AKI based on serum creatinine changes or urine output criteria aligned with the KDIGO, AKIN, RIFLE criteria, or as defined by the study authors. Additional outcomes of interest included downstream clinical outcomes of AKI, including all-cause mortality, CKD, kidney failure, and cardiovascular events.

We restricted studies to human subjects and included randomized controlled trials (RCTs) as well as comparative effectiveness observational study designs. There were no restrictions imposed on age, temporal scope, or language of publications. We excluded publications that were not primary research studies (including editorials, narrative reviews, opinion pieces, letters, and research protocols).

We conducted a two-staged screening process to assess each article's suitability for inclusion in our review. During the first stage of screening, each article's title and abstract were independently reviewed by two authors (DA and FG). If there was uncertainty regarding inclusion based on the title and abstract alone by either reviewer, the article was retained for a full-text review in the first stage.

Subsequently, a full-text review of all articles identified from the first stage was undertaken independently by the same two authors. Studies were selected for inclusion based on the predefined inclusion/exclusion criteria outlined in the study protocol. In case of any disagreements arising among the reviewers at each screening stage, consensus was sought, and remaining disagreements were resolved by a third reviewer (MJ).
To effectively organize the identified literature, we used Endnote 21 reference management software (Clarivate Analytics in Philadelphia, USA) (37). The decision to perform meta-analysis was contingent upon the availability of at least two studies that met our predefined study inclusion criteria for each outcome and that were considered clinically similar enough to justify pooling results.

Data extraction

A data extraction template was developed to systematically compile information from each eligible study. The data extraction process was distinct based on study design; a) randomized controlled trials (RCTs), and b) comparative observational studies. Two authors, (DA and FG), completed the data extraction from all studies. The specific data elements acquired included: primary author names, year of publication, geographical origin, study design, sample size, nature of the study population and their cointerventions, participant age, sex distribution, information on how cilastatin was administered, description of the comparator group, and the documented study outcomes and their definitions, measures of treatment effect. We sought to preferentially use definitions of AKI that aligned with the RIFLE, AKIN, or KDIGO criteria where possible, but used the definition provided by the study authors if the former were not reported. For studies where measures of kidney function were taken at multiple time points, we used the results from the last time point reported in each study.

Risk of bias assessment
We assessed the risk of bias of each study using the Cochrane risk of bias tool for randomized trials (RoB tool version 2) (38) and the Joanna Briggs Institute critical appraisal tool for observational studies (39). Each study underwent evaluation and was categorized into one of three levels of risk of bias: low risk, unclear risk, or high risk of bias.

Statistical analyses

We quantified the agreement on article eligibility between reviewers in the first and second stages of article selection using the kappa (κ) statistic. We prespecified the use of random-effects models for outcomes whenever substantial clinical heterogeneity was deemed to be present between included studies. Dichotomous outcomes were pooled using random-effects models, according to the DerSimonian and Laird method, with treatment effects presented as odds ratios (ORs) with 95% Confidence Intervals (CIs). Continuous outcomes were pooled using random effects models incorporating restricted maximum likelihood (REML) weighting to obtain weighted mean differences with 95% CIs (40). Between-study heterogeneity was assessed using the I² statistic. We conducted pre-specified subgroup analyses and meta-regression for each outcome according to study design (RCT or observational study). Small study effects suggestive of publication bias were investigated using funnel plots and Egger’s test. The statistical significance threshold for all tests was set at p<0.05. Analyses were conducted using Stata Statistical Software, StataCorp version 17 (Stata Corp., College Station, TX, USA), using the 'meta' package (43).

GRADE assessment of certainty of the evidence
The certainty of evidence was evaluated by two authors (DA and MJ) using the Grading of Recommendations, Assessment, Development and Evaluations (GRADE) approach to determine whether the overall certainty of the evidence for the nephroprotective effects of cilastatin in humans as: very low, low, moderate, or high (44).

RESULTS

Selection of studies

The electronic database search yielded 1,015 citations. Among these, 190 citations were identified as duplicates and removed. In the first stage of screening, 732 studies were excluded based on title and abstract, resulting in 93 studies selected for full-text review. Following a thorough review of the full texts in the second stage of screening, 10 studies were identified that met the inclusion criteria. There was a high level of agreement between reviewers in the selection of articles for inclusion (kappa statistic, κ =0.61). The study selection process is represented in further detail in the PRISMA flowchart (Figure 1) (45).

Study characteristics

The characteristics of the included studies are reported in Table 1. Five studies were RCTs (27, 28, 31, 32, 47), and five were observational comparative effectiveness studies (26, 29, 30, 33, 46). Publication dates ranged from 1994 to 2021, and the number of participants per study varied from 20 to 5,566. Study populations included kidney transplant recipients (2 studies) (27, 28), heart and lung transplant recipients (1 study) (26), bone marrow transplant recipients (1 study) (26), patients treated for nosocomial infections (2 studies) (31, 45), heart transplant recipients (1 study) (46), infants with severe bacterial infection (1 study) (33), and patients receiving
chemotherapy for peritoneal carcinomatosis (1 study) (30). All studies tested imipenem-cilastatin as the intervention. The comparison groups varied across studies, with an inactive control used in 6 studies and an active comparator used in 4 studies, including meropenem in two studies (33, 46) piperacillin plus tazobactam in one study (31), and cefepime in one study (32). Outcomes of interest included AKI reported in five studies (28-30, 33, 47) using varying definitions, changes in serum creatinine (SCr) reported in six studies (26, 27, 29, 30, 46, 47) at different time points, and all-cause mortality reported in five studies (27, 30-33, 46).

Effect of imipenem-cilastatin on acute kidney injury

Based on results from five studies (28-30, 33, 47), including a total of 3647 participants, imipenem-cilastatin reduced the incidence of AKI compared to comparators (pooled OR 0.42 [95% CI, 0.26 to 0.69], with moderate heterogeneity observed between studies (I^2 48%). Treatment effects of imipenem-cilastatin were consistent by study design (meta-regression p-value 0.27); among the 2 RCTs, the pooled OR was 0.12 (95% CI, 0.02 to 0.73), I^2 0%, while among 3 observational studies the pooled OR was 0.46 (95% CI, 0.28 to 0.78), I^2 62% (Figure 2).

Effect of imipenem-cilastatin on kidney function

Results from 6 studies showed that imipenem-cilastatin treatment resulted in better kidney function compared to comparators; weighted mean difference (WDM) in serum creatinine was -0.14 mg/dL (95% CI, -0.22 to -0.07) with no heterogeneity observed between studies (I^2=0%). Results remained consistent between RCTs and observational studies (meta-regression p-value 0.46) (Figure 3).
Effect of imipenem-cilastatin on all-cause mortality

Six studies reported on all-cause mortality (27, 30-33, 46). Overall, treatment with imipenem-cilastatin resulted in no difference in mortality compared to comparators (pooled OR 0.78 [95% CI, -0.39 to 1.58] although was a high degree of heterogeneity across studies ($I^2=73\%$) (Figure 4). Pooled estimates were consistent between RCTs and observational studies (meta-regression p-value 0.08); although high heterogeneity was observed among the observational studies ($I^2=73.1\%$) and no heterogeneity was observed among the RCTs ($I^2=0\%$).

Risk of bias

The risk of bias of RCTs according to the RoB 2.0 tool is shown in Table 2. Four of the five trials were at unclear or high risk of bias due to lack of or unclear allocation concealment. All trials were at high or unclear risk of detection bias due to lack of or unclear blinding, and three of the five trials were at unclear risk of attrition bias due to lack of reporting of losses to follow-up. The risk of bias of observation studies according to the Joanna Briggs Institute critical appraisal tool for observational studies is shown in Table 3. Three of the five observational studies were at unclear or high risk of bias due to unclear or inadequate strategies to address confounding.

Publication bias

Funnel plots for AKI, serum creatinine, and mortality showed asymmetry in-keeping with small study effects suggestive of publication bias (Supplementary Figure S1). However, there was no statistical evidence of publication bias based on Egger’s test for AKI (p-value= 0.763), serum
creatinine (p-value=0.079), or mortality (p-value =0.068), although the number of studies limited the power of these tests.

Certainty of the Evidence

The overall certainty of the evidence was graded as low due to moderate and high statistical heterogeneity for the outcomes of AKI and mortality, high risk of bias for most of the individual studies, and indirectness (use of surrogate outcomes) among the identified studies.

DISCUSSION

In this systematic review and meta-analysis, we evaluated the effects of cilastatin compared to inactive or active comparators, on kidney health outcomes. We identified 5 RCTs and 5 observational studies that evaluated effects on the outcomes of AKI, kidney function (based on serum creatinine), and all-cause mortality among human subjects at risk of AKI in a variety of clinical settings, including organ transplantation treated with cyclosporin, infections treated with antibiotics, and malignancy treated with surgery and chemotherapy. All studies included in our review used cilastatin in combination with imipenem. In meta-analysis, we found that imipenem-cilastatin reduced the odds of developing AKI by 55%, although there was heterogeneity in the effect size between studies. We also found that serum creatinine concentrations after short-term follow-up were better among participants who received imipenem-cilastatin than comparators. All-cause mortality was lower among participants who received imipenem-cilastatin than comparators, although the pooled difference was not statistically significant. For all outcomes, results were similar among RCTs and observational studies when stratified by study design. It is
important to note that many of the studies were at high risk of bias, and funnels plots suggested that publication bias may exist.

The nephroprotective effects of cilastin have been demonstrated in several pre-clinical studies (18-22) and mechanistic effects have been further examined in a number of human studies (23-29). The mechanism of action for cilastatin involves counteracting metabolism of nephrotoxic substances in the proximal tubule of the kidney, thereby blocking the uptake of these agents and preventing tubular necrosis through several pathways, including via reactive oxygen species, inflammation, and apoptosis. In addition to reducing nephrotoxin accumulation in renal tubular cells, cilastatin is believed to attenuate leukotriene mediated interstitial inflammation (24, 48, 49). The reported nephroprotective effects of cilastatin from pre-clinical studies have generated interest in its use as an agent for prevention of AKI caused by nephrotoxic medication exposures, and the availability of imipenem-cilastatin formulation has enabled comparative studies that have evaluated kidney outcomes in several clinical settings (34).

Our study findings align with those from a previous meta-analysis conducted by Tejedor et al. in 2007 (50), which included five studies among patients with organ transplantation receiving imipenem-cilastatin compared to inactive controls. Tejedor also reported lower serum creatinine concentrations for patients treated with imipenem-cilastatin and a 76% reduction in the odds of developing acute renal failure. Our updated review identified 5 additional studies published since that review and provides an updated and consolidated evidence base on the nephroprotective effects of imipenem-cilastatin.
This review has several limitations that are important to acknowledge. First, the studies included had a large degree of clinical heterogeneity, not only in the clinical populations and nephrotoxic medication exposures, but also in the way outcomes were measured, including the definition used for AKI and the timing of serum creatinine measurement. Studies did not define AKI using the KDGIO definition, requiring the use of a variety of definitions as reported by the authors that differed in their incorporation of serum creatinine thresholds, incorporation of urine output, and identification of treatment with dialysis across the studies. Furthermore, measurements of kidney function were made at different time points after treatment in these studies, which makes interpretation of the pooled difference challenging to interpret. Second, the number of studies identified was small, and the existing RCTs that were identified had small sample sizes and were at high risk of bias. The small number of studies limited our ability to explore reasons for statistical heterogeneity and detect publication bias. Third, the comparator groups varied across studies, with a number including an active comparator including an alternative broad-spectrum antibiotic. It is thus possible that these comparisons are confounded by differences in the risk of AKI with imipenem versus meropenem or beta-lactam antibiotics, rather than being attributable to an independent effect of cilastatin itself. Finally, the studies identified largely relied on surrogate endpoints such as AKI and serum creatinine differences, rather than patient-centred clinical outcomes such as major adverse kidney outcomes, resulting in indirectness of the evidence identified.

In conclusion, this systematic review and meta-analysis suggests that cilastatin may reduce the risk of acute kidney injury and improve kidney function; however, the existing evidence base is derived from studies with a high risk of bias and efficacy is uncertain due to the statistical
heterogeneity of findings, indirectness of the evidence base, and potential publication bias.

Further large-scale clinical trial with lower risk of bias are needed to determine the efficacy of cilastatin for AKI prevention among patients receiving potentially nephrotoxic medication exposures.

ACKNOWLEDGEMENT

The authors thank Diane L. Lorenzetti, from Health Sciences Library University of Calgary for assistance in developing the electronic bibliographic database search strategy.

FUNDING

The study was funded by the Canadian Institutes of Health Research (CIHR) Team Grant: Intervention Trial in Inflammation for Chronic Conditions - Evidence to Impact; Funding Reference Number LI3 189373.

DATA SHARING

All data produced in the present study are available upon reasonable request to the authors.

CONFLICTS OF INTEREST

The authors report no conflicts of interest.
<table>
<thead>
<tr>
<th>First author, Year, Country (Citation)</th>
<th>Study design</th>
<th>Comparison</th>
<th>Study population</th>
<th>Total number of participants, (Numbers in IC group / comparator group)</th>
<th>Sex M/F, (IC group / comparator group)</th>
<th>Age, IC group / comparator group, Mean (SD)</th>
<th>Follow-up duration, days</th>
<th>Outcomes reported</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carmellini (1997), Italy (27)</td>
<td>RCT</td>
<td>IC versus control</td>
<td>Kidney transplant recipients receiving cyclosporin</td>
<td>69 (33 / 36)</td>
<td>(15/18) / (15/11)</td>
<td>44.2 (9.7) / 43.1 (9.8)</td>
<td>30</td>
<td>Scr and mortality</td>
</tr>
<tr>
<td>Carmellini (1998), Italy (28)</td>
<td>RCT</td>
<td>IC versus control</td>
<td>Kidney transplant recipients receiving cyclosporin</td>
<td>16 (8/8)</td>
<td>Not specified</td>
<td>45 (5) / 42 (4)</td>
<td>14</td>
<td>AKI, 24-hour urinary output, NGAL</td>
</tr>
<tr>
<td>Markewitz (1994), Germany (47)</td>
<td>RCT</td>
<td>IC versus placebo control</td>
<td>Heart transplant patients receiving cyclosporin</td>
<td>20 (10/10)</td>
<td>Not specified</td>
<td>51 (9.3) / 5 (9.3)</td>
<td>10</td>
<td>Scr, and AKI</td>
</tr>
<tr>
<td>Schmitt (2006), Multicountry (31)</td>
<td>RCT</td>
<td>IC versus piperacillin</td>
<td>Hospitalized patients with nosocomial infection</td>
<td>217 (110/107)</td>
<td>(64/47) / (77/33)</td>
<td>65.7 (13.8) / 68.4 (13.7)</td>
<td>21</td>
<td>Mortality and serious clinical adverse events</td>
</tr>
<tr>
<td>Zanetti (2003), Multicountry (32)</td>
<td>RCT</td>
<td>IC versus cefepime</td>
<td>Hospitalized with nosocomial pneumonia</td>
<td>209 (101/108)</td>
<td>(63/34) / (72/36)</td>
<td>53 (18) / 55 (18)</td>
<td>14</td>
<td>AKI, mortality, and treatment success</td>
</tr>
<tr>
<td>Baghai (1995), USA (26)</td>
<td>Observational</td>
<td>IC versus control</td>
<td>Heart and lung transplant recipients receiving cyclosporin</td>
<td>20 (10 / 10)</td>
<td>Not specified</td>
<td>Not specified</td>
<td>14</td>
<td>Scr</td>
</tr>
<tr>
<td>Gruss (1996), Spain (29)</td>
<td>Observational</td>
<td>IC versus control</td>
<td>Bone marrow transplant recipients receiving cyclosporin</td>
<td>104 (64/40)</td>
<td>Not specified</td>
<td>Not specified</td>
<td>30</td>
<td>Scr, and AKI</td>
</tr>
<tr>
<td>Hakeem (2019), Saudi Arabia (46)</td>
<td>Observational</td>
<td>IC versus meropenem</td>
<td>Hospitalized patients being treated for various infections with vancomycin</td>
<td>227 (106/121)</td>
<td>(62/59) / (63/43)</td>
<td>50.7 (17.4) / 50.7 (17.4)</td>
<td>7</td>
<td>Scr, and AKI</td>
</tr>
<tr>
<td>Hornik (2014), USA (33)</td>
<td>Observational</td>
<td>IC versus meropenem</td>
<td>Hospitalized infants treated with carbapenem antibiotics</td>
<td>5566 (2320 /3489)</td>
<td>Not specified</td>
<td>First 120 days of life</td>
<td>120</td>
<td>AKI and Mortality</td>
</tr>
<tr>
<td>Zaballos (2021), Spain (30)</td>
<td>Observational</td>
<td>IC versus control</td>
<td>Patients with peritoneal carcinomatosis receiving surgery and intraperitoneal cisplatin + doxorubicin</td>
<td>181 (83/98)</td>
<td>(5/80) / (591)</td>
<td>56.79 (11.42) / 53.22 (10.94)</td>
<td>7</td>
<td>Scr, AKI and mortality</td>
</tr>
</tbody>
</table>

All studies included imipenem/cilastatin in the intervention group

* serum creatine measured on post operative days (PODs), 3,5,10,15 and 30;
* pre-operative and PODs 1 to 10 consecutively;
* PODs, 1 to 5 consecutively;
* post-intervention, days not specified;
* day 1 and day 4;
* baseline and post-intervention day 1 to day 7 consecutively
* defined by posttransplant mean serum creatinine levels and urinary output and NGAL
* defined by changes in the measurement of creatinine, BUN, NAG, and B2 (TXB2)
* defined as a serum creatinine level of > 200 mmol/liter, and or having a possible case of interstitial nephritis;
* not specified
* defined according to the RIFLE (Risk, Injury, Failure Loss, End-stage renal disease) criteria
* defined by creatinine measurement > 1.7 mg/dL;
* defined according to the RIFLE criteria.

Abbreviations: M/F, male/female; mg/dl, milligram/deciliter; SD, standard deviation; n, number; RCT, randomized clinical trial; IC, imipenem/cilastatin; Scr, serum creatinine;
Table 2. Risk of bias of randomized trials of imipenem-cilastatin adapted from the Cochrane Risk of Bias tool (RoB tool version 2)

<table>
<thead>
<tr>
<th>Included studies</th>
<th>Selection bias (Random sequence generation)</th>
<th>Selection bias (Allocation concealment)</th>
<th>Performance bias (Blinding of participants and personnel)</th>
<th>Detection bias (Blinding of outcome assessment)</th>
<th>Attrition Bias (Incomplete outcome data)</th>
<th>Reporting Bias (Selective reporting)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carmellini et al. (1997)</td>
<td>?</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>?</td>
<td>+</td>
</tr>
<tr>
<td>Carmellini et al. (1998)</td>
<td>?</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>?</td>
<td>+</td>
</tr>
<tr>
<td>Schmitt et al. (2006)</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>?</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Zanetti et al. (2003)</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>?</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

High risk of bias

Unclear risk of bias

Low risk of bias
Table 3. Risk of bias assessment of observational studies of imipenem-cilastatin adapted from the Joanne Briggs Institute critical appraisal checklist

<table>
<thead>
<tr>
<th>Included studies</th>
<th>Criteria for inclusion in the sample clearly defined</th>
<th>Subjects and the setting described in detail</th>
<th>Exposure measured in a valid and reliable way</th>
<th>Objective, standard criteria used for measurement of the condition</th>
<th>Confounding factors identified</th>
<th>Strategies to deal with confounding factors stated</th>
<th>Outcomes measured in a valid and reliable way</th>
<th>Appropriate statistical analysis used</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baghai et al. (1995)</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>?</td>
</tr>
<tr>
<td>Gruss et al. (1996)</td>
<td>+</td>
<td>?</td>
<td>+</td>
<td>?</td>
<td>-</td>
<td>-</td>
<td>?</td>
<td>+</td>
</tr>
<tr>
<td>Hakeam et al. (2019)</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Hornik et al. (2014)</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Zaballos et al. (2021)</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>?</td>
<td>?</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

Legend:
- **High risk of bias**
- **Unclear risk of bias**
- **Low risk of bias**
Figures

Figure 1. PRISMA flow diagram

Records identified from:
- Databases (N = 1015; Medline=161, Embase=324, Cochrane Registry=67, and Web of Science=463)

Records removed before screening:
- Duplicate records removed (n = 190)
- Records marked as ineligible by automation tools (n = 0)
- Records removed for other reasons (n = 0)

Records screened. (n = 825)

Reports sought for retrieval (n = 93)

Reports excluded (n = 732)
- Review/Meta-analysis (n = 199)
- Outcome not of outcome of interest/or no comparator (n = 268)
- Animal study (n = 69)
- Others (case reports, conference paper, guidelines, clinical updates, book chapter, duplicate study, retracted study, abstract unavailable, editorial comment) (n = 196)

Reports assessed for eligibility (n = 93)

Reports excluded (n = 83)
- Not reported KD outcome (n = 32)
- Comparators unavailable (n = 22)
- Pharmacokinetic studies (n = 14)
- Others (n = 15; full text not found = 12 antibiotic resistance = 1 economic/cost effectiveness analysis = 2)
 etc.

Studies included in review (n = 10)
Figure 2. Pooled effect of imipenem-cilastatin on acute kidney injury from all studies, and stratified by randomized controlled trial or observational study design

A. Combined RCTs and Observational Studies

<table>
<thead>
<tr>
<th>Study</th>
<th>ICU group</th>
<th>Control group</th>
<th>Odds Ratio (95% CI)</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carmeliti, M., et al. (1998)</td>
<td>2 (10)</td>
<td>5 (16)</td>
<td>0.20 (0.02, 1.71)</td>
<td>4.86</td>
</tr>
<tr>
<td>Markowitz, A., et al. (1994)</td>
<td>0 (19)</td>
<td>5 (70)</td>
<td>0.05 (0.00, 1.03)</td>
<td>2.90</td>
</tr>
<tr>
<td>Gruss et al. (1996)</td>
<td>13 (84)</td>
<td>19 (40)</td>
<td>0.28 (0.12, 0.67)</td>
<td>19.73</td>
</tr>
<tr>
<td>Hornik, C. P., et al. (2014)</td>
<td>299 (2320)</td>
<td>529 (3489)</td>
<td>0.41 (0.35, 0.47)</td>
<td>47.36</td>
</tr>
<tr>
<td>Zeballos, M., et al. (2021)</td>
<td>19 (63)</td>
<td>25 (95)</td>
<td>0.87 (0.44, 1.72)</td>
<td>25.55</td>
</tr>
<tr>
<td>Overall, CI 2 = 47.5%, p = 0.107</td>
<td></td>
<td></td>
<td>0.42 (0.25, 0.69)</td>
<td>100.00</td>
</tr>
</tbody>
</table>

NOTE: Weights are from random-effects model; centrality correction applied to studies with zero cells.
B. RCTs only

<table>
<thead>
<tr>
<th>Study</th>
<th>I/C group</th>
<th>Control group</th>
<th>Odds Ratio (95% CI)</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carmellini, M., et al. (1998)</td>
<td>2 (10)</td>
<td>8 (10)</td>
<td>0.20 (0.02, 1.71)</td>
<td>97.20</td>
</tr>
<tr>
<td>Markowitz, A., et al. (1994)</td>
<td>0 (10)</td>
<td>6 (10)</td>
<td>0.05 (0.00, 1.03)</td>
<td>32.80</td>
</tr>
<tr>
<td>Overall, DL (I^2 = 0.0%, p = 0.453)</td>
<td></td>
<td></td>
<td>0.12 (0.02, 0.73)</td>
<td>100.00</td>
</tr>
</tbody>
</table>

NOTE: Weights are from random-effects model, continuity correction applied to studies with zero cells.

C. Observational studies only

<table>
<thead>
<tr>
<th>Study</th>
<th>I/C group</th>
<th>Control group</th>
<th>Odds Ratio (95% CI)</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gruss et. al (1996)</td>
<td>13 (64)</td>
<td>19 (40)</td>
<td>0.28 (0.12, 0.67)</td>
<td>21.20</td>
</tr>
<tr>
<td>Hornik, C. P., et al. (2014)</td>
<td>299 (2320)</td>
<td>929 (3489)</td>
<td>0.41 (0.35, 0.47)</td>
<td>51.30</td>
</tr>
<tr>
<td>Zaballos, M., et al. (2021)</td>
<td>19 (83)</td>
<td>25 (98)</td>
<td>0.87 (0.44, 1.72)</td>
<td>27.51</td>
</tr>
<tr>
<td>Overall, DL (I^2 = 62.0%, p = 0.072)</td>
<td></td>
<td></td>
<td>0.46 (0.28, 0.78)</td>
<td>100.00</td>
</tr>
</tbody>
</table>

NOTE: Weights are from random-effects model.
Figure 3. Pooled effect of imipenem-cilastatin on serum creatinine from all studies, and stratified by randomized controlled trial or observational study design

A. Combined RCTs and Observational

<table>
<thead>
<tr>
<th>Study</th>
<th>Scr (mg/dl) I/C group, Mean±SD (n)</th>
<th>Scr (mg/dl) in Control group, Mean±SD (n)</th>
<th>Mean Difference with 95% CI</th>
<th>Weight (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carmellini, M., et al. (1997)</td>
<td>1.5±0.6 (33)</td>
<td>1.6±0.5 (36)</td>
<td>-0.10 [-0.36, 0.16]</td>
<td>8.04</td>
</tr>
<tr>
<td>Markewitz, A., et al. (1994)</td>
<td>1.08±0.21 (10)</td>
<td>1.19±0.11 (10)</td>
<td>-0.11 [-0.26, 0.04]</td>
<td>25.15</td>
</tr>
<tr>
<td>Hakeam, H. A., et al. (2019)</td>
<td>0.64±0.28 (106)</td>
<td>0.75±0.52 (121)</td>
<td>-0.11 [-0.22, 0.00]</td>
<td>44.17</td>
</tr>
<tr>
<td>Baghai, A., et al. (1995)</td>
<td>1.14±0.13 (10)</td>
<td>1.35±0.28 (10)</td>
<td>-0.21 [-0.40, -0.02]</td>
<td>14.83</td>
</tr>
<tr>
<td>Gruss et al (1996)</td>
<td>1.65±0.88 (64)</td>
<td>2.2±1.26 (40)</td>
<td>-0.55 [-1.00, -0.10]</td>
<td>2.73</td>
</tr>
<tr>
<td>Zaballos, M., et al. (2021)</td>
<td>0.92±0.89 (83)</td>
<td>1.16±1.28 (98)</td>
<td>-0.24 [-0.57, 0.09]</td>
<td>5.08</td>
</tr>
</tbody>
</table>

Overall

- Heterogeneity: $\hat{\tau}^2 = 0.00, \hat{\tau} = 0.00\%$, $H^2 = 1.00$
- Test of τ^2: Q(5) = 4.64, $p = 0.46$
- Test of $\tau = 0$: z = -3.79, $p = 0.00$

Random-effects REML model
B. RCTs only

<table>
<thead>
<tr>
<th>Study</th>
<th>Scr (mg/dl) in I/C group, Mean±SD (n)</th>
<th>Scr (mg/dl) in Control group, Mean±SD (n)</th>
<th>Mean Difference with 95% CI</th>
<th>Weight (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carmellini, M., et al. (1997)</td>
<td>1.5±0.6 (33)</td>
<td>1.6±0.5 (36)</td>
<td>-0.10 [-0.36, 0.16]</td>
<td>24.23</td>
</tr>
<tr>
<td>Markewitz, A., et al. (1994)</td>
<td>1.08±0.21 (10)</td>
<td>1.19±0.11 (10)</td>
<td>-0.11 [-0.26, 0.04]</td>
<td>75.77</td>
</tr>
<tr>
<td>Overall</td>
<td>Total N= 89 (I/C group, n=43, Control group, n=46)</td>
<td></td>
<td>-0.11 [-0.24, 0.02]</td>
<td></td>
</tr>
</tbody>
</table>

Heterogeneity: $\tau^2 = 0.00, I^2 = 0.00\%, H^2 = 1.00$

Test of $\theta = 0$: $Q(1) = 0.00, p = 0.95$

Test of $\theta = 0$: $z = -1.65, p = 0.10$

Random-effects REML model

C. Observational studies only

<table>
<thead>
<tr>
<th>Study</th>
<th>Scr (mg/dl) in I/C group, Mean±SD (n)</th>
<th>Scr (mg/dl) in Control group, Mean±SD (n)</th>
<th>Mean Difference with 95% CI</th>
<th>Weight (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hakeem, H. A., et al. (2019)</td>
<td>0.64±0.28 (106)</td>
<td>0.75±0.52 (121)</td>
<td>-0.11 [-0.22, 0.00]</td>
<td>54.50</td>
</tr>
<tr>
<td>Baghai, A., et al. (1995)</td>
<td>1.14±0.13 (10)</td>
<td>1.35±0.28 (10)</td>
<td>-0.21 [-0.40, -0.02]</td>
<td>27.65</td>
</tr>
<tr>
<td>Gruss et. al (1996)</td>
<td>1.65±0.88 (64)</td>
<td>2.2±1.26 (40)</td>
<td>-0.55 [-1.00, -0.10]</td>
<td>6.44</td>
</tr>
<tr>
<td>Zaballos, M., et al. (2021)</td>
<td>0.92±0.89 (83)</td>
<td>1.16±1.28 (98)</td>
<td>-0.24 [-0.57, 0.09]</td>
<td>11.41</td>
</tr>
<tr>
<td>Overall</td>
<td>Total N=532 (I/C group, n=239, Control group, n=293)</td>
<td></td>
<td>-0.18 [-0.30, -0.06]</td>
<td></td>
</tr>
</tbody>
</table>

Heterogeneity: $\hat{\tau}^2 = 0.00, \hat{I}^2 = 20.94\%, H^2 = 1.26$

Test of $\theta = ?$: $Q(3) = 4.21, p = 0.24$

Test of $\theta = 0$: $z = -3.03, p = 0.00$

Random-effects REML model
Figure 4. Pooled effect of imipenem-cilastatin on all-cause mortality from all studies, and stratified by randomized controlled trial or observational study design

A. Combined RCTs and Observational studies
B. RCTs only

<table>
<thead>
<tr>
<th>Study</th>
<th>I/C group Mortality (n)</th>
<th>Control group Mortality (n)</th>
<th>Odds Ratio (95% CI)</th>
<th>% Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carmellini, M., et al. (1997)</td>
<td>3 (33)</td>
<td>2 (36)</td>
<td>1.70 (0.27, 10.87)</td>
<td>7.06</td>
</tr>
<tr>
<td>Schmitt, D. V., et al. (2006)</td>
<td>11 (110)</td>
<td>17 (107)</td>
<td>0.59 (0.26, 1.32)</td>
<td>37.00</td>
</tr>
<tr>
<td>Zanetti, G., et al. (2003)</td>
<td>19 (101)</td>
<td>28 (108)</td>
<td>0.68 (0.34, 1.28)</td>
<td>55.95</td>
</tr>
<tr>
<td>Overall, DL (I² = 0.0%, p = 0.587)</td>
<td></td>
<td></td>
<td>0.68 (0.41, 1.11)</td>
<td>100.00</td>
</tr>
</tbody>
</table>

NOTE: Weights are from random-effects model

C. Observational only

<table>
<thead>
<tr>
<th>Study</th>
<th>I/C group Mortality (n)</th>
<th>Control group Mortality (n)</th>
<th>Odds Ratio (95% CI)</th>
<th>% Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hakeam, H. A., et al. (2019)</td>
<td>2 (106)</td>
<td>8 (121)</td>
<td>0.27 (0.06, 1.31)</td>
<td>33.37</td>
</tr>
<tr>
<td>Hornik, C. P., et al. (2014)</td>
<td>162 (2330)</td>
<td>147 (3489)</td>
<td>1.71 (1.36, 2.16)</td>
<td>48.25</td>
</tr>
<tr>
<td>Zaballó, M., et al. (2021)</td>
<td>0 (83)</td>
<td>3 (65)</td>
<td>0.16 (0.01, 3.21)</td>
<td>18.38</td>
</tr>
<tr>
<td>Overall, DL (I² = 73.1%, p = 0.024)</td>
<td></td>
<td></td>
<td>0.60 (0.12, 3.03)</td>
<td>100.00</td>
</tr>
</tbody>
</table>

NOTE: Weights are from random-effects model; continuity correction applied to studies with zero cells
References

43. StataCorp. Stata Statistical Software: Release 17 College Station, TX: StataCorp LLC.2021.