A Systematic Review on Malaria and Tuberculosis (TB) Vaccine Challenges in Sub-Saharan African Clinical Trials

Maonezi Abas Hamisi1*, Nur Ain Mohd Asri2, Aini Syahida Mat Yassim3, Rapeah Suppian4
1School of Science and Technical Education (CoSTE), Mbeya University of Science and Technology, Tanzania; 2,3,4School of Health Sciences, Universiti Sains Malaysia, Kelantan, Malaysia.
*Corresponding author: Maonezi Abas Hamisi, School of Science and Technical Education (CoSTE), Mbeya University of Science and Technology, Tanzania; hamisi2012maonezi@gmail.com, +255763457088, P.O. Box 131 Mbeya, Tanzania

Abstract

Objective: For more than a century, developing novel and effective vaccines against malaria and tuberculosis (TB) infections has been a challenge. This review sought to investigate the reasons for the slow progress of malaria and TB vaccine candidates in sub-Saharan African clinical trials.

Methods: The systematic review protocol was registered on PROSPERO on July 26, 2023 (CRD42023445166). The research articles related to the immunogenicity, efficacy, or safety of malaria or TB vaccines that were published between January 1, 2012, and August 31, 2023, were searched on three databases: Web of Science (WoS), PubMed, and ClinicalTrials.gov.

Results: A total of 2342 articles were obtained, 50 of which met the inclusion criteria. 28 (56%) articles reported on malaria vaccine attributes, while 22 (44%) articles reported on TB vaccines. In both cases, the major challenges in sub-Saharan African clinical trials were immunogenicity and efficacy, rather than safety.

Conclusion: Factors such as population characteristics, pathogen genetic diversity, vaccine nature, strategy, and formulation were associated with slow progress of the malaria and TB vaccine candidates in sub-Saharan African clinical trials.

Author summary

Vaccines are one of the most powerful control strategies for both infectious and non-infectious diseases. The lack of durable vaccines and the development of antimicrobial resistance have made malaria and...
TB threats to human lives, specifically in sub-Saharan Africa. The search for novel, reliable, and durable vaccines against these infections has been underway for more than a decade. Despite this, none have resulted in vaccines with all three preferred critical attributes: immunogenicity, efficacy, and safety. This indicates that there are hindering challenges that have been neglected in the development pipeline. This review focused on understanding these challenges in sub-Saharan African clinical trials. The results of the study are crucial for the identification of areas for improvement in vaccine design, evaluation, and implementation strategies, hence driving advancements in NTD vaccine research and development.

Keywords

Malaria vaccines; Tuberculosis vaccines; Sub-Saharan Africa; Clinical trials; Systematic review
1. Introduction

Malaria and Tuberculosis (TB) are among the top ten causes of death in low- and middle-income countries, the majority of which are sub-Saharan countries (1). Malaria is a plasmodium-borne infection that is spread by female Anopheles mosquitoes (2). *Plasmodium falciparum* species are the dominant cause of human malaria (3). In 2021, 619,000 deaths were caused by malaria worldwide, 95% of which occurred in sub-Saharan Africa (4). The favourable environment for *P. falciparum* species (5) and healthcare systems contribute to this prevalence (6). In contrast, human TB is an airborne disease caused by *Mycobacterium tuberculosis* (Mtb). TB spreads through respiratory system encounters active Mtb-containing air droplets (7). TB infections were the leading cause of human deaths prior to COVID-19 (7). Human TB causes 10.6 million cases and 1.6 deaths, 90% of which occurred in sub-Saharan Africa (7).

Currently, chemical drugs, as well as vaccines, are used for the control of malaria (8) and TB (7). However, the development of resistant strains has made drug use inefficient and costly. Vaccines are the most effective options for these diseases, and they can help to prevent the spread of resistance. Despite not being fully certified, the malaria RTS, S/AS01, was recommended for the pilot vaccination of 5- to 17-month-old children living in high-endemic areas(9). Unlike malaria, BCG is the only certified TB vaccine. Both RTS, S/AS01 (10), and BCG (11) share similar limitations: they provide protection but limited to young age groups. Different groups of malaria vaccine candidates have been tested in sub-Saharan African clinical trials. Some of these include subunit vaccines (12,13), (14), (15,16), viral-like particle vaccines (17–20), and whole attenuated vaccines (21–23). Like malaria vaccine candidates, TB vaccine candidates include subunit vaccines (24–27), (28–30), (31–34), inactivated vaccines (35), and whole attenuated vaccines (11,36,37).

Nevertheless, the progress of malaria and TB vaccine development in sub-Saharan Africa has been arduous and frequently regarded as sluggish. The aim of this study was to elucidate the barriers that hinder the rapid advancement of efficacious malaria and TB vaccines, with a specific emphasis...
on immunogenicity, effectiveness, and safety in sub-Saharan Africa.

2. Methodology

The review protocol was registered on PROSPERO (CRD42023445166). In brief, this review followed the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines (38). The keywords and review questions were formulated based on PICO: Sub-Saharan Africans (population), malaria and TB vaccine candidates (intervention), non-vaccinated, placebo, or any control setting (control), immunogenicity, efficacy, and safety (outcomes). The review question was “What are the challenges that hinder the rapid development of malaria and TB vaccines in sub-Saharan African clinical trials?”.

2.1 Article identification

The review began with the identification of keywords and their respective synonyms by the first and second authors (HM and NA, respectively). The keywords and synonyms used to formulate the search strategy were based on the PICO formulation, which includes Sub-Saharan Africans (population), malaria and TB vaccine candidates (intervention), non-vaccinated, placebo, or any control setting (control), immunogenicity, efficacy, and safety (outcomes) as summarized in Table 1. The search was performed between the 1st of August 2023 and the 31st of August 2023 on three databases, Web of Science, PubMed, and ClinicalTrials.gov, with some refinement to meet the inclusion criteria.

2.2 Article screening and eligibility

Two authors, HM, and NA screened the articles obtained independently. Malaria or TB vaccine candidate studies that reported immunogenicity, efficacy, safety, or a combination, involved a sub-Saharan population, were randomised clinical trials, published in English between January 1, 2012, and August 31, 2023, were included. Studies not meeting these criteria were excluded. The discrepancies occurred were resolved by involving the third and fourth authors (AS and RS). The duplicate and irrelevant articles were removed using Mendeley software (2.107.0, 2023).
Table 1: The search strategy applied in this study.

<table>
<thead>
<tr>
<th>Databases</th>
<th>Filter</th>
<th>String/Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>Web of Sciences</td>
<td>Only English, Article type, Sub-Saharan</td>
<td>TS=(("Tuberculosis" OR "Malaria" OR "Vaccine" OR "Vaccine candidate") AND</td>
</tr>
<tr>
<td></td>
<td>Countries by excluding Libya, Egypt,</td>
<td>("immunogenicity" OR "safety" OR "efficacy" OR "protect" OR "immune responses"</td>
</tr>
<tr>
<td></td>
<td>Algeria, Morocco and Tunisia)</td>
<td>OR "CD4+" OR "CD8+" OR "antibody responses") AND ("Africa" OR "Sub Sahara")</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NOT ("typhoid" OR "SARS" OR "Covid-19" OR "rotavirus" OR "influenza" OR</td>
</tr>
<tr>
<td></td>
<td></td>
<td>"ebola" OR "drug" OR "yellow fever").)</td>
</tr>
<tr>
<td>PubMed</td>
<td>Full text, Randomized Controlled Trial,</td>
<td>"("Malaria") OR ("Tuberculosis") AND ("vaccin") OR</td>
</tr>
<tr>
<td></td>
<td>Humans, English</td>
<td>("vaccine candidate") AND ("immunogenicity") OR ("safety") OR "protect" OR</td>
</tr>
<tr>
<td></td>
<td></td>
<td>"immune responses") OR ("CD4+ ") OR ("CD8+") OR ("antibody responses") AND</td>
</tr>
<tr>
<td></td>
<td></td>
<td>("Africa") OR ("Sub Sahara") NOT ("typhoid") NOT ("SARS") NOT ("Covid-19")</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NOT ("rotavirus") NOT ("influenza") NOT ("ebola") NOT ("drug") NOT ("yellow fever")</td>
</tr>
<tr>
<td>ClinicalTrials.gov</td>
<td>N/A</td>
<td>ClinicalTrials.gov: Immunogenicity OR safety OR efficacy OR CD4+ OR CD8+ OR</td>
</tr>
<tr>
<td></td>
<td></td>
<td>protection OR immune response OR Africa OR Sub Sahara</td>
</tr>
</tbody>
</table>

*N/A: Not Available

2.3 Assessment of study quality

The risk of bias in the eligible studies was analysed by the first author (HM) using the Cochrane risk of bias tool (RoB 2)(38). The other three co-authors confirmed the findings (NA, AS, and RS). Each randomised controlled trial was rated as “high,” “low,” or “some concerns” for bias in five domains: randomization process, deviation from intervention, missing outcome data, measurement of outcomes, and selection of reported outcomes.

2.4 Data extraction and synthesis

Data were extracted and compiled from all eligible articles on the standard data collection table. The first author’s surname, publication year, population, region (country), clinical trial phase, intervention, control, and number of doses were retrieved for the articles. We then performed a narrative synthesis of the literature using our outcome keywords immunogenicity, efficacy, and safety.
3. Results

3.1 Study selection

The search yielded 2342 publications. 1791 (76.5%) articles were from Web of Sciences, 497 (21.2%) from PubMed, and 54 (2.3%) from ClinicalTrials.gov. The ClinicalTrials.gov database contained 54 articles from 11 studies (55%) of 20 search projects. To minimise bias, nine (45%) studies had no publications and were excluded from this review. The 2342 published studies were reduced to 92 (3.9%) duplicates and 2179 (93%) irrelevant. 17 (23.9%) studies were removed after screening titles and abstracts of 71 (3.0%). After full-text screening, 4 (7.4%) of 54 (76.1%) studies were removed. Fifty studies were eligible for review; 28 (56%) were malaria vaccines and 22 (44%) were TB vaccines. The flowchart of this study was summarized in Figure 1 and Table 2 highlighted all eligible studies' characteristics.

Figure 1. PRISMA flowchart of this study.
Table 2. Characteristics of all eligible studies in this review.

<table>
<thead>
<tr>
<th>Author</th>
<th>Year</th>
<th>Country</th>
<th>Vaccine</th>
<th>Control</th>
<th>Phase</th>
<th>No of doses</th>
<th>Participants</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Churchyard et al.,</td>
<td>2015</td>
<td>South Africa</td>
<td>AERAS-402/A D35. TB-S</td>
<td>Placebo</td>
<td>II</td>
<td>2</td>
<td>Adults</td>
<td>(28)</td>
</tr>
<tr>
<td>Ndiaye et al.,</td>
<td>2015</td>
<td>South Africa & Senegal</td>
<td>MVA85A</td>
<td>Placebo</td>
<td>II</td>
<td>2</td>
<td>Adults</td>
<td>(24)</td>
</tr>
<tr>
<td>Meeren et al.,</td>
<td>2018</td>
<td>Zambia, Kenya, South Africa</td>
<td>M72/AS10E</td>
<td>Placebo</td>
<td>II</td>
<td>2</td>
<td>Adults</td>
<td>(33)</td>
</tr>
<tr>
<td>Tait et al.,</td>
<td>2019</td>
<td>Kenya, South Africa, & Zambia</td>
<td>M72/AS01E</td>
<td>Placebo</td>
<td>II</td>
<td>2</td>
<td>Adults</td>
<td>(39)</td>
</tr>
<tr>
<td>Tameris et al.,</td>
<td>2019</td>
<td>South Africa</td>
<td>MTBAV</td>
<td>BCG</td>
<td>I & II</td>
<td>3</td>
<td>Infants adults</td>
<td>(11)</td>
</tr>
<tr>
<td>Walsh et al.,</td>
<td>2016</td>
<td>Kenya</td>
<td>AERAS-402</td>
<td>Placebo</td>
<td>I</td>
<td>2</td>
<td>Adults</td>
<td>(30)</td>
</tr>
<tr>
<td>Tchakoute et al.,</td>
<td>2014</td>
<td>South Africa</td>
<td>BCG</td>
<td>BCG</td>
<td>II</td>
<td>1</td>
<td>Infants</td>
<td>(40)</td>
</tr>
<tr>
<td>Tameris et al.,</td>
<td>2015</td>
<td>South Africa</td>
<td>AERAS-402</td>
<td>Placebo</td>
<td>II</td>
<td>3</td>
<td>Infants</td>
<td>(41)</td>
</tr>
<tr>
<td>Study</td>
<td>Year</td>
<td>Location</td>
<td>Vaccine/Adjuvant</td>
<td>Comparator</td>
<td>Phase</td>
<td>Dose</td>
<td>Age Group</td>
<td></td>
</tr>
<tr>
<td>-------------------------------</td>
<td>------</td>
<td>------------</td>
<td>------------------</td>
<td>--------------</td>
<td>-------</td>
<td>------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>Penn-Nicholson et al.,</td>
<td>2018</td>
<td>South Africa</td>
<td>ID93+ GLA-SE</td>
<td>Placebo</td>
<td>I</td>
<td>2</td>
<td>Adults</td>
<td></td>
</tr>
<tr>
<td>Nell et al.,</td>
<td>2014</td>
<td>South Africa</td>
<td>RUTI</td>
<td>Placebo</td>
<td>II</td>
<td>2</td>
<td>Adults</td>
<td></td>
</tr>
<tr>
<td>Lutwama et al.,</td>
<td>2014</td>
<td>Uganda</td>
<td>BCG</td>
<td>Delayed</td>
<td>-</td>
<td>1</td>
<td>Infants</td>
<td></td>
</tr>
<tr>
<td>Idoko et al.,</td>
<td>2014</td>
<td>Gambia</td>
<td>M72/AS01</td>
<td>Meningitis vaccine</td>
<td>II</td>
<td>2</td>
<td>Infants</td>
<td></td>
</tr>
<tr>
<td>Nemes et al.,</td>
<td>2018</td>
<td>South Africa</td>
<td>H4: IC 31 & rBCG</td>
<td>Placebo</td>
<td>II</td>
<td>2</td>
<td>Adolescents</td>
<td></td>
</tr>
<tr>
<td>Suliman et al.,</td>
<td>2016</td>
<td>South Africa</td>
<td>BCG</td>
<td>Unvaccinated</td>
<td>I</td>
<td>1</td>
<td>Adults</td>
<td></td>
</tr>
<tr>
<td>Loxton et al.,</td>
<td>2017</td>
<td>South Africa</td>
<td>VPM1002</td>
<td>BCG</td>
<td>II</td>
<td>1</td>
<td>Infants</td>
<td></td>
</tr>
<tr>
<td>Tameris et al.,</td>
<td>2013</td>
<td>South Africa</td>
<td>MVA85A</td>
<td>Placebo</td>
<td>IIb</td>
<td>1</td>
<td>Infants</td>
<td></td>
</tr>
<tr>
<td>Bekker et al.,</td>
<td>2020</td>
<td>South Africa</td>
<td>H4: IC 31, H56: IC31 & BCG</td>
<td>Placebo</td>
<td>1b</td>
<td>2</td>
<td>Adolescents</td>
<td></td>
</tr>
</tbody>
</table>

8
<table>
<thead>
<tr>
<th>Study</th>
<th>Year</th>
<th>Region</th>
<th>Vaccine</th>
<th>Adjuvants</th>
<th>Study Arm</th>
<th>Age Group</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Odutola et al.,</td>
<td>2012</td>
<td>Gambia</td>
<td>MVA85A</td>
<td>EPI</td>
<td>I</td>
<td>Infants</td>
<td>(25)</td>
</tr>
<tr>
<td>Geldenhuys et al.,</td>
<td>2015</td>
<td>SouthAfrica</td>
<td>BCG</td>
<td>-</td>
<td>I & II</td>
<td>Infants and adults</td>
<td>(47)</td>
</tr>
<tr>
<td>Hesseling et al.,</td>
<td>2015</td>
<td>SouthAfrica</td>
<td>BCG</td>
<td>-</td>
<td>II</td>
<td>Infants</td>
<td>(36)</td>
</tr>
<tr>
<td>Kagina et al.,</td>
<td>2014</td>
<td>SouthAfrica</td>
<td>AERAS-402</td>
<td>Placebo</td>
<td>I</td>
<td>Infants</td>
<td>(29)</td>
</tr>
<tr>
<td>Hatherill et al.,</td>
<td>2014</td>
<td>SouthAfrica</td>
<td>BCG</td>
<td>-</td>
<td>I</td>
<td>Adults</td>
<td>(48)</td>
</tr>
</tbody>
</table>

Malaria

<table>
<thead>
<tr>
<th>Study</th>
<th>Year</th>
<th>Region</th>
<th>Vaccine</th>
<th>Adjuvants</th>
<th>Study Arm</th>
<th>Age Group</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bell et al.,</td>
<td>2022</td>
<td>Ghana, Malawi, and Gabon</td>
<td>RTS, S/AS01/AS01</td>
<td>Placebo</td>
<td>III</td>
<td>Children</td>
<td>(10)</td>
</tr>
<tr>
<td>Agnandji et al.,</td>
<td>2014</td>
<td>7 Sub Saharan countries</td>
<td>RTS, S/AS01/AS01E</td>
<td>Meningococcal or rabies</td>
<td>III</td>
<td>Infants & children</td>
<td>(49)</td>
</tr>
<tr>
<td>Kimani et al.,</td>
<td>2014</td>
<td>Kenya and Gambia</td>
<td>Chad63 &MV A ME-TRAP</td>
<td>Placebo</td>
<td>Ib</td>
<td>Adults</td>
<td>(13)</td>
</tr>
<tr>
<td>Partnership</td>
<td>2012</td>
<td>7 Sub Saharan countries</td>
<td>RTS, S/AS01 & EPI</td>
<td>Meningococcal vaccine</td>
<td>III</td>
<td>Infants</td>
<td>(17)</td>
</tr>
<tr>
<td>Dassah et al.,</td>
<td>2021</td>
<td>Ghana, Uganda, Burkina Faso, and Gabon</td>
<td>GMZ2</td>
<td>Rabies</td>
<td>IIb</td>
<td>Children</td>
<td>(15)</td>
</tr>
<tr>
<td>Study</td>
<td>Year</td>
<td>Location</td>
<td>Vaccine</td>
<td>Stage</td>
<td>Children</td>
<td>Ref.</td>
<td></td>
</tr>
<tr>
<td>------------------</td>
<td>------</td>
<td>-----------------------------------</td>
<td>--------------------------</td>
<td>-------</td>
<td>----------</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>Otieno et al.,</td>
<td>2020</td>
<td>Sub-Saharan countries RTS, S/AS01/AS01</td>
<td>Meningococcol or rabies vaccine</td>
<td>III</td>
<td>Infants and children</td>
<td>(50)</td>
<td></td>
</tr>
<tr>
<td>Bejon et al.,</td>
<td>2013</td>
<td>Sub-Saharan countries RTS, S/AS01A</td>
<td>Placebo/ comparator vaccine</td>
<td>II</td>
<td>NA</td>
<td>(51)</td>
<td></td>
</tr>
<tr>
<td>Oneko et al.,</td>
<td>2021</td>
<td>Kenya</td>
<td>PfSPZ</td>
<td>Placebo</td>
<td>I & II</td>
<td>(52)</td>
<td></td>
</tr>
<tr>
<td>Bell et al.,</td>
<td>2020</td>
<td>Malawi</td>
<td>RTS, S/AS01/AS01 Meningococcol or rabies</td>
<td>III</td>
<td>Infants and children</td>
<td>(53)</td>
<td></td>
</tr>
<tr>
<td>Ouédraogo et al.,</td>
<td>2013</td>
<td>Burkina Faso</td>
<td>Ad35.CS.01</td>
<td>Placebo</td>
<td>Ib</td>
<td>(12)</td>
<td></td>
</tr>
<tr>
<td>Dejon-Agobe et al.,</td>
<td>2019</td>
<td>Gabon</td>
<td>GMZ2</td>
<td>Rabies vaccine</td>
<td>NA</td>
<td>(16)</td>
<td></td>
</tr>
<tr>
<td>Dobaño et al.,</td>
<td>2019</td>
<td>Tanzania, Burkina Faso, and Ghana RTS, S/AS01/AS01E</td>
<td>Comparator vaccine</td>
<td>III</td>
<td>Infants and children</td>
<td>(54)</td>
<td></td>
</tr>
<tr>
<td>Mendoza et al.,</td>
<td>2019</td>
<td>7 Sub-Saharan Africa RTS, S/AS01</td>
<td>Meningococcol or rabies</td>
<td>III</td>
<td>Infants and children</td>
<td>(55)</td>
<td></td>
</tr>
<tr>
<td>Datoo et al.,</td>
<td>2021</td>
<td>Burkina Faso</td>
<td>R21/MM</td>
<td>Rabies vaccine</td>
<td>Ib</td>
<td>(56)</td>
<td></td>
</tr>
<tr>
<td>Berry et al.,</td>
<td>2019</td>
<td>Mali</td>
<td>FMP2.1/ AS02A</td>
<td>Rabies vaccine</td>
<td>II</td>
<td>(57)</td>
<td></td>
</tr>
<tr>
<td>Study</td>
<td>Year</td>
<td>Location</td>
<td>Vaccine Details</td>
<td>Comparator Vaccine</td>
<td>Route</td>
<td>Age Group</td>
<td>Participants</td>
</tr>
<tr>
<td>------------------</td>
<td>------</td>
<td>-------------------</td>
<td>---</td>
<td>-------------------</td>
<td>-------</td>
<td>--------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>Sirima et al.,</td>
<td>2017</td>
<td>Burkina Faso</td>
<td>(PfAMA1-DiCo)-GLA Ia/Ib Placebo</td>
<td></td>
<td></td>
<td>Adults</td>
<td>(14)</td>
</tr>
<tr>
<td>Moncunill et al.,</td>
<td>2017</td>
<td>Africa</td>
<td>RTS, S/AS01E Rabies vaccine</td>
<td></td>
<td></td>
<td>Children</td>
<td>(18)</td>
</tr>
<tr>
<td>Han et al.,</td>
<td>2017</td>
<td>Malawi</td>
<td>RTS, S/AS01 Meningoccal & rabies vaccines</td>
<td></td>
<td></td>
<td>Infants and children</td>
<td>(58)</td>
</tr>
<tr>
<td>Sissoko et al.,</td>
<td>2017</td>
<td>Mali</td>
<td>PfSPZ Placebo</td>
<td></td>
<td></td>
<td>Adults</td>
<td>(22)</td>
</tr>
<tr>
<td>Mensah et al.,</td>
<td>2016</td>
<td>Senegal</td>
<td>ChAd 63 & MVA ME-TRAP Rabies vaccine</td>
<td></td>
<td></td>
<td>Male adults</td>
<td>(59)</td>
</tr>
<tr>
<td>RTS, S partnership</td>
<td>2015</td>
<td>7 Sub-Saharan countries</td>
<td>RTS, S/AS01/AS01 Meningoccal vaccine Comparator vaccine</td>
<td></td>
<td></td>
<td>Infants and children</td>
<td>(20)</td>
</tr>
<tr>
<td>Thera et al.,</td>
<td>2016</td>
<td>Mali</td>
<td>PfAMA1-FVO Tetanus vaccine</td>
<td></td>
<td></td>
<td>18-55 men and women</td>
<td>(60)</td>
</tr>
<tr>
<td>Ubillos et al.,</td>
<td>2018</td>
<td>Ghana and Mozambique</td>
<td>RTS, S/AS01E NA Meningoccal vaccine</td>
<td></td>
<td></td>
<td>Infants and children</td>
<td>(61)</td>
</tr>
<tr>
<td>Neafsey et al.,</td>
<td>2015</td>
<td>7 Sub-Saharan Africa</td>
<td>RTS, S/AS01 Meningoccal vaccine</td>
<td></td>
<td></td>
<td>Infants and children</td>
<td>(62)</td>
</tr>
<tr>
<td>Gyaase et al.,</td>
<td>2021</td>
<td>Ghana</td>
<td>RTS, S/AS01 Meningoccal vaccine</td>
<td></td>
<td></td>
<td>Children</td>
<td>(63)</td>
</tr>
<tr>
<td>Jongo et al.,</td>
<td>2018</td>
<td>Tanzania</td>
<td>PfSPZ Placebo</td>
<td></td>
<td></td>
<td>Men adults</td>
<td>(21)</td>
</tr>
</tbody>
</table>
Chandramohan et al., 2021 Burkina Faso RTS, S/AS01E NA III 3 Children (64)

Shekalaghe et al., 2014 Tanzania PfSPZ Placebo I 2 Adult males (23)

*TST means Tubercle skin test.
3.2 Quality assessment

The overall quality of all 50 eligible studies was good. 47 (94%) studies received “low risk” overall status for causing bias, 3 (6%) studies received “some concerns” status (13,18,48), and there were no articles with “high risk” overall status (Figure 2).

![Bias assessment diagram](image)

Figure 2. Robvis risk assessment summary for all randomised controlled trials in this review.

3.3 Immunogenicity

Immunogenicity varied in magnitude, duration, and type for most malaria and TB vaccine candidates. Most malaria vaccine candidates had seven times the immunogenicity of humoral immune cells compared to CD4+ and CD8+ cells, which appeared two times (7.14%). Conversely, TB vaccine candidates were more immunogenic to CD4+ T cells (72.7%) than CD8+ T cells (45.50%). Most TB vaccine candidates induce CD4+ and CD8+ cells only (24,29,35,37,43,45,47), followed by CD4+, CD8+ cells and antibodies only (28,30,31,41) and CD4+ cells and antibodies only (32,42). Additionally, very few candidates induce only CD4+ cells (11,25,40), and there are no vaccine candidates that induce CD8+ cells only. These findings demonstrate the immunogenic diversity of malaria and TB vaccine candidates, emphasising the need for tailored vaccine design and evaluation.

3.4 Efficacy

This review revealed that out of 28 malaria-related studies, only the R21/MM vaccine candidate (3.8%) had the highest vaccine efficacy (VE) of 77% (56), followed by RTS, S/AS0, 50.3% VE (62).
46% VE (49), 45% VE (51), 28% VE (20), 27% VE (49), 12% VE (52), and 18% VE (20), as well as 8% VE (59) in adults. Other malaria-related studies reported vaccine efficacy qualitatively (22,63,64). On the other hand, the M72/AS01E TB vaccine candidate showed the highest vaccine efficacy, 54.0% VE (33), followed by 49.7% VE (39), 45.4% VE, and 30.5% VE (44). In some cases, MVA85A vaccine candidates have shown insignificant efficacy (24,27). Certain candidates show promise as disease-fighting tools due to their efficacy. However, insignificant efficacy in some cases highlights the need for continued research and development to improve malaria and TB vaccines.

3.5 Safety

This review revealed that both malaria and TB vaccine candidates had no safety issues that resulted in the termination of the studies. The common localized adverse effects (AEs) of the malaria vaccine candidates included injection site swelling (9, 32.14%) and pain (8, 28.6%), whereas the systemic AEs included headache (12, 42.9%), myalgia, fever, and nausea (8, 28.6%). The severe adverse effects (SAEs) included malaria (8, 28.6%), meningitis, and febrile convulsion (7; 25%). In contrast, the common AEs associated with TB vaccine candidates were injection site pain (5, 22.7%) and systemic abdominal pain (11, 50.0%). The SAEs were gastroenteritis (3, 13.6%). This study found that vaccine candidates for malaria and TB may cause some side effects, but the risks are generally tolerable. No studies were stopped due to safety concerns.

4. Discussion

The systematic review of 50 studies highlights immunogenicity and efficacy as major challenges in sub-Saharan African malaria and TB vaccine clinical trials. Safety was not a challenge. However, this factor should not be ignored in new vaccine development against these diseases since factors such as dose (23,34,52), vaccine type (44), age group (55), and health status (28) have some impact on safety. It is critical to evaluate the factors that contribute to variations in immunogenicity and efficacy during the development of vaccines against malaria and TB, especially in clinical trial settings. Complexities arise because of factors such as population attributes, vaccine strategy, and pathogen genetic diversity, all of which influence the immune responses of vaccine candidates. Thus, given the complexity of the
factors, it appears that no general conclusion can be drawn regarding the variation.

Lack of generalizability, which considered as limitation of evidence in this review, necessitates that each factor be examined individually. We discovered that population characteristics play the most important role in variation of immunogenicity and efficacy during malaria and TB vaccine clinical trials. There is a correlation between age group and vaccine candidate protection. For example, non-cytophilic antibodies increase the risk of malaria infection while also reducing the immunogenicity and efficacy of RTS and S/AS01E (61). These antibodies may also explain why malaria is more common in older people (65). However, the complexity arises when the effects of these antibodies were found to be more immunogenic in malaria-naïve adults than in semi-immune adults (13). This finding suggests that infection exposure also contributes to the immunogenicity and efficacy variations. This was supported by findings that high malaria transmission intensity reduced the efficacy of RTS, S/AS01 efficacy (10,51). Ideally, older age groups might have more non-cytophilic antibodies than younger age groups due to the longer exposure time. Immunogenicity and efficacy improved more in older vaccinees than young ones (15,20,49,58). Furthermore, factors such as lower socioeconomic status (SES) (63), forest ecological context (53), and season (64) in the respective region were associated with low efficacy. This contributes to the variations in immunogenicity and efficacy that are caused by population characteristics.

The vaccine strategy significantly influences the immunogenicity and effectiveness of potential vaccines. This review observes the impact of BCG vaccination on infants at various time points and found mixed results of TB protection. Vaccination at birth results in more distinct cellular immune responses than vaccination at 6 weeks (43) or vaccination at 14 weeks (36). In contrast, there was no significant difference in the prevalence of BCG vaccination at birth or at 8 weeks after delivery. However, there is a subsequent shift in this response, as infants who were delayed in their attempts to receive the vaccine demonstrate increased cellular immune responses. These changes could potentially be attributed to HIV exposure at birth, a period when the immune system lacks the
capability to combat the viruses (40). Thus, vaccination timepoints affect vaccine candidate immune response.

This review revealed that the inferior performance of the vaccine candidates was associated with either poor immunogenicity or a narrow range of immune response inductions. For example, a vaccine study in which H56:IC31, H4:IC31, and BCG were used induced high antigen specific CD4+ and IgG expression. However, the number of CD8+ cells induced was very low (31). Boosting with BCG enhanced only anti-BCG CD4+ but not anti-H4 or anti-H56 IgG antibodies. Similarly, the BCG booster of MVA85A failed to enhance anti-Ag85A immune responses (44). The induction of a few immune responses affects the treatment efficacy. Anti-CSP and anti-HB-specific IgG as well as IgM antibodies defined the efficacy of the RTS and S/AS01 vaccine candidates (61). Despite being different from one endemic region to another, the efficacy of these agents decreased once the anti-HB antibodies were not induced (17). Additionally, the lack of PfSPZ vaccine candidate efficacy at 6 months postimmunization was associated with the lack of induction of cellular T immune responses (52). This showed that multiple immune responses must work together for robust protection. This factor relates to the vaccine strategy to improve malaria and TB vaccine candidates' immunogenicity and efficacy in clinical trials.

Pathogen genetic diversity affects vaccine immunogenicity and efficacy in clinical trials. Allelic mismatches between vaccine antigens and natural plasmodium species affect immunogenicity and efficacy (62). In addition, there were more than 90% mismatches in Sub-Saharan Africa. This might be another major reason for the diminishing protection efficacy (12,50,58). However, this review revealed that boosting with additional doses (53,56) and the use of a strong adjuvant (51) might prevent waning protection. However, continuous boosting might not be useful for low- or middle-income countries (LMICs), such as Sub-Saharan Africa. Furthermore, adjuvant effects, such as RTS, S/AS01 and RTS, S/AS02A (51), GMZ2/alum (15), and GMZ2/Alhydrogel/liposomes (16), and AMA1-DiCo GLA-SE and AMA1-DiCo Alhydrogel (14), have been reported in comparative studies.
However, these similar differences were not observed during the GMZ2 Alhydorgel and GMZ2 CFA01 studies (16). Despite this, pre-evaluation of adjuvants for conjugation is crucial. Other vaccine candidates lacked correlation protection. For example, the FMP2.1/AS02A (57), GMZ2 (15,16), PfSPZ (21), and MVA-vectored TB candidates were immunogenic but not protective (24,27). This observation was like that of the Nouatin et al. study in Gabon (66). The lack of specificity may have played a role in these observations.

Most of the studies included in this review induced all immune responses (CD4+, CD8+, IgG, IgA, and IgM). Most CSP-based malaria vaccine candidates induce a greater quantity of anti-NANP antibodies than anti-C-terminal antibodies (54,56). This might be because the NANP region is conserved, while the C-terminus is polymorphic (67). The authors added that removing the antigen parts responsible for the induction of non-neutralizing antibodies might reduce this challenge.

However, the profile of antibodies and CD8+ cells induced by Ad.35.CS.01 was based on the CSP and Ad35 antigens (12). In HIV-infected vaccinees, the reduction in immune responses was dose dependent (24,28,29). In some cases, the dose had no effect on immunogenicity (42). Other vaccine candidates, such as AERAS-402 in infants (41) and MTBVAC in adults and neonates (11), induce low immune responses at all vaccine dose levels. However, the highest MTBVAC dose was superior to the equivalent BCG dose. The three H56:IC31 doses were found to be highly immunogenic (68).

In contrast, the highest dose of the RUTI vaccine candidate lost its immunogenicity capability (35). Furthermore, PfSPZ vaccination in infants induces significant humoral and insignificant cellular responses (52).

This review revealed that M72/AS01E was the most protective TB vaccine candidate (33). However, another study reported that M72/AS01E had decreased vaccine efficacy with no worsening tendency (39). These differences were associated with vaccine nature, vaccination strategies, genetic differences, and health status. The differences in nature of the vaccines used were as follows: BCG and H4:IC31 (44,69) and H56:IC31, H4:IC31, and BCG (31). Additionally, the immune responses
induced during comparative RTS and S/AS01 vaccination between HIV and non-HIV vaccinees were
greater in healthy individuals than in HIV vaccinees (50). These findings are consistent with a
previous study in which HIV vaccinees were shown to reduce immune responses (19). The reduced
immune responses in HIV-infected participants might be due to the ability of HIV to cause immune
response dysfunction. Concomitant vaccination with antiretroviral drugs (ARVs) might reduce the
impacts of these viruses [19].

Unfortunately, this review revealed that none of the studies employed mucosal delivery routes. The
mucosal route enhances the speed and efficiency of both localized and systemic humoral and cellular
immune responses, as well as innate and adaptive immune responses. The mucosal MVA85A
immunization in the United Kingdom induced strong immunogenicity, which has not been observed
in South Africa through traditional routes (70). Even though the natural route to malaria infection does
not involve mucosal surfaces, mucosal immunization with malaria-inducing antibodies protects mice
(71). In addition to the immunological point of view, mucosal routes may be more economical than
parenteral routes because they do not require trained personnel and hence are appropriate in resource-
limited sub-Saharan Africa.

The review acknowledges the absence of comparison groups and inconsistencies in observations
across studies as limitations of the review processes. Furthermore, comprehensive interpretation of
the findings is complicated by divergences in vaccine administration timing, dosage, and the existence
of confounding variables such as HIV exposure. The ineffectiveness of specific vaccine candidates
can be attributed to their inadequate immunogenicity, which means they elicit a restricted spectrum
of immune responses. This underscores the criticality of refining the process of vaccine development
and assessment. The review emphasises the importance of comprehensive immune responses, which
comprise humoral and cellular components, to provide strong protection against malaria and TB.
Further investigation is warranted to tackle the identified obstacles, including but not limited to
optimising dosing regimens, enhancing the immunogenicity of vaccines that is specific to certain
endemic region, and investigating alternative delivery routes such as mucosal administration to enhance vaccine efficacy, particularly in settings with limited resources like sub-Saharan Africa.

5. Conclusion

This review revealed that immunogenicity and efficacy are the major challenges for both malaria and TB vaccine candidates. The challenges were orchestrated by population characteristics, vaccination strategies, and pathogen genetic diversity. This review suggested that the continued neglect of these factors could lengthen the journey toward robust vaccines, that mucosal routes may improve vaccine candidate performance, and that the development of endemic region-based vaccines is worthwhile.

6. Conflict of interest

The authors declare that there are no financial and non-financial conflicts of interests.

7. Funding

This review was funded by the Strategic Research Fund (SRF), Ministry of Science, Technology, and Innovation (MOSTI), Malaysia (Grant number: 305.PPSK.614503). The funder did not participate at any stage of this study: study design, data analysis and interpretation, report writing, or submission decision.

8. Ethical approval and consent to participate

Note applicable.

9. Availability of data and material

All data and materials are available in this manuscript.

10. Author contribution

MH conceptualised and designed the study, collected, and interpreted data, and drafted the work. NA contributed to study conception, design, collection, interpretation, and work drafting. AS contributed to the data collection, interpretation, and drafting of the work. Furthermore, RS contributed to the
conceptualization of the study, data collection, and interpretation. All authors revised and approved
the final version. Also, the authors agreed to be accountable for the contribution made and the
resolution of any questions that would arise about data accuracy or integrity.

11. Acknowledgement

We would like to express our gratitude to the Malaysian Ministry of Science, Technology, and
Innovation (MOSTI) for funding this study.
13. References

Ouédraogo A, Tione AB, Kargougou D, Yaro JB, Ouédraogo E, Kaboré Y, et al. A phase 1b randomized, controlled, double-blinded dosage-escalation trial to evaluate the safety, reactogenicity and immunogenicity of an adenovirus type 35 based circumsporozoite malaria vaccine in burkinabe

Hesseling AC, Jaspan HB, Black GF, Nene N, Walzl G. Immunogenicity of BCG in HIV-exposed and non-exposed infants following routine birth or delayed vaccination. International Journal of

Oneko M, Steinhardt LC, Yego R, Wiegand RE, Swanson PA, Natasha KC, et al. Safety,

