Common and separable neural alterations in adult and adolescent depression – neural meta-analyses

Mercy Chepngetich Bore¹,², MSc; Xi Qin Liu³, PhD; Keith M Kendrick¹,², PhD; Bo Zhou¹,³, MD; Jie Zhang⁴,⁵, PhD; Benjamin Klugah-Brown¹,²*, PhD; Benjamin Becker¹,²,⁶,⁷*, PhD

¹Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China;

²MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China;

³Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China;

⁴Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China;

⁵Key Laboratory of Computational Neuroscience and Brain Inspired Intelligence, Fudan University, Ministry of Education, Shanghai, China;

⁶State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, China;

⁷Department of Psychology, The University of Hong Kong, Hong Kong, China.

*Corresponding authors

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Corresponding Authors:

Benjamin Becker

Email address: ben_becker@gmx.de

Postal/mail address:

University of Electronic Science and Technology of China,
Xiyuan Ave 2006, 611731 Chengdu, China.

University of Hong Kong Pokfulam, Hong Kong, China

Telephone number: 86-28-61830670

Benjamin Klugah-Brown

Email address: bklugah@gmail.com

Postal/mail address:

University of Electronic Science and Technology of China,
Xiyuan Ave 2006, 611731 Chengdu, China

Telephone number: 86-15-208436455

Manuscript Word count: 2977 words
Key Points

Question: Do adults and adolescents with depression exhibit common or distinct brain dysregulations during rewarding experiences?

Findings: The present neuroimaging meta-analysis including data from 1,492 participants revealed that depressed adults and adolescents exhibited decreased subgenual anterior cingulate and striatal reward reactivity while adolescents specifically showed reduced mid-cingulate and enhanced postcentral reactivity. Common regions were characterized by connectivity with dopamine-related reward processing circuits, while the adolescent-specific region showed a strong association with social processes and the default mode network.

Meaning: Findings suggest specific dysfunctions in adolescent depression, emphasizing the need for tailored interventions that target social domains.
Abstract

Importance: Depression is a highly prevalent and debilitating disorder that often begins in adolescence. However, it remains unclear whether adults and adolescents with depression exhibit common or separate brain dysfunctions during reward processing.

Objective: To identify common and separable neurofunctional alterations during receipt of rewards and brain structure in adolescents and adults with depression.

Data sources: PubMed, Web of Science, and PsychInfo databases were screened for eligible depression studies published between January 2000 to January 2023.

Study Selection: Original articles reporting whole-brain differences in adults and adolescents with depression compared to healthy controls.

Data extraction and synthesis: The meta-analysis followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses PRISMA guidelines. A coordinate-based meta-analysis was employed using Seed-based d mapping with permutation of subject images (SDM-PSI) software. Behavioral, network, and molecular-genetic characterization were conducted by established platforms.

Main Outcome(s) and Measure(s): Reward outcome alterations in adults and adolescents with depression compared with healthy controls.

Results: A total of 18 adult and 12 adolescent studies comprising 734 patients and 758 healthy controls were included in the meta-analysis (adults, mean [SD] age, 34.39, [9.61]; adolescents, mean [SD] age, 13.29, [1.56] years). Both age groups exhibited common activity decreases in the right striatum (putamen, caudate) and subgenual ACC (z = -4.213, P < .0025). Adults with depression showed decreased reactivity in the right putamen (z = -4.673, P < .0025) and
subgenual ACC ($z = -3.832, P < .0025$) while adolescents with depression showed decreased activity in the left mid cingulate ($z = -3.520, P < .0025$), right caudate ($z = -3.276, P < .0025$) but increased reactivity in the right post central gyrus ($z = 3.480, P < .0025$). Further meta-analytic characterization revealed that the common regions coupled with dopaminergic reward processing systems, while the adolescent-specific regions were associated with the default mode network and social functions.

Conclusions and Relevance: This meta-analysis revealed shared (caudate) and separable (putamen and mid cingulate cortex) reward-related alterations in adults and adolescents with depression. The findings suggest age-specific neurofunctional alterations and stress the importance of adolescent-specific interventions that target social functions.
Introduction

Adolescence is a critical period for the emergence of major depressive disorder (MDD). During this developmental stage, majority of cases will experience the onset of this highly prevalent and debilitating mental disorder.1,2 With over 300 million people affected worldwide, depression represents a leading cause of morbidity and disability and is accompanied by a strongly increased risk of suicide.3,4 On the symptomatic level, MDD is primarily characterized by persistent depressed mood and anhedonia (loss of interest of previously rewarding events).5-8

Mounting evidence suggests that dysfunctional reward processing represents a candidate mechanism underlying the development and maintenance of depressed mood and anhedonia.5,9 Rewards are described as events that elicit pleasurable or positive affective experiences10 and the pursuit of rewards is crucial for survival because it is one of the strongest motivators in both animals and humans.11 Adaptative reward processing is crucial for hedonic experience, learning from rewards and shaping future motivational behavior.12-15 Dysregulations in this domain form the core of the Research Domain Criteria (RDoC) framework for positive valence systems and may represent a candidate mechanism underpinning anhedonia.16,17 The neural basis of reward processing has been extensively mapped across species and has been closely linked to mesocortico-limbic pathways, in particular the (ventral) striatum and its connection with prefrontal and limbic regions.14,18-20 While mounting evidence from functional MRI studies indicates that reward processing dysfunctions in adult patients with mental disorders, including those with depression map onto these circuitries,9,21-24 less is known about the neural basis of reward processing dysfunctions in adolescent depression and whether these resemble those observed in adults.
Convergent evidence suggests that adults with depression exhibit aberrant activity in the striatum and frontal cortex, mostly consistent decreased striatal response during reward receipt. While adolescents with depression have shown attenuated responses during reward outcome, it remains unclear whether the findings converge on common neurofunctional alterations across the age groups and whether separable regions may underpin the distinct symptomatic profiles in adult versus adolescent depression.

The present meta-analysis aimed to determine common and distinct brain functional alterations during reward processing in adults and adolescents with depression. Specifically, we aim to determine (a) general reward alterations in both adults and adolescents with depression, (b) robust neurofunctional alterations during reward processing in adolescents with depression, (c) meta-analytically characterize the identified regions on the behavioral, molecular and network level, (d) explore whether commonly reported brain structural alterations in depression overlap with the identified functional alterations. We hypothesized that adults would exhibit reward-processing alterations in the striatum while adolescents would potentially exhibit striatal dysfunction as well as alterations in other regions involved in value and cognitive control processing or those involved in social and self-referential processing such as the default mode network. The analyses were pre-registered (https://osf.io/wc8eh) and implemented in Seed-based d Mapping with Permutation of Subject Images (SDM-PSI) version 6.21, a novel and well established technique for performing neuroimaging meta-analyses.

Methods

Search strategy and selection criteria
The current meta-analysis follows widely accepted procedures for conducting coordinate-based meta-analyses\(^{36}\) and the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines.\(^{37}\) An extensive literature search was conducted on three databases; Pubmed (https://www.ncbi.nlm.nih.gov/pubmed), Web of Science (https://www.webofscience.com/wos/alldb/basic-search) and, PsycInfo https://www.apa.org/pubs/databases/psycinfo/). To increase the credibility and interpretability of the results, the current meta-analysis was pre-registered in the Open Science Framework (OSF) repository prior to data analysis (https://osf.io/wc8eh). Studies included in the main reward outcome analysis of adults and adolescents with depression are listed\(^{30,31,33,38-64}\) (see eTable2).

Data analysis

Coordinate-based meta-analytic approach

The coordinate-based meta-analysis was performed using SDM-PSI toolbox (https://www.sdmproject.com) briefly described in supplements. Visualization of brain maps was performed using MRICroGL (NITRC: MRICroGL: Tool/Resource Info). All analyses were considered significant at \(p < .0025\) uncorrected, with a threshold of \(k=10\) voxels. This threshold balances Type I and Type II errors, as shown in a previous meta-analysis.\(^{34}\) Three main meta-analysis, including all adult and adolescent studies (n=30), adult studies (n=18) and adolescent studies (n=12) were conducted. First, a general meta-analysis of all reward outcome studies of adults and adolescents with depression was performed. Next, a meta-analysis of all reward outcome studies on adults with depression was conducted. Finally, a meta-analysis of all fMRI studies on adolescents with depression was conducted. Subsequent analyses mostly compared the peak regions identified in the meta-analysis results of the two groups.
Selection criteria

Original fMRI studies of adults and adolescents with depression were screened, and suitable studies were included according to the pre-defined inclusion and exclusion criteria. Additionally, relevant articles from other sources, such as review articles, were included. The selection criteria encompassed studies written in English and published between January 2001 and January 2023, reporting whole brain results in standard stereotactic space (Talairach or Montreal Neurological Institute). To augment the sample size of the adolescent group, one study was included outside the pre-registered inclusion period. The data extraction process, involving details such as authors' names, paper titles, publication years, age and gender of participants, medication status, experimental paradigms, etc., was carried out by M.C.B and B.K.B. Any discrepancies during the literature search, screening, or inclusion process were resolved through consensus with B.B. The literature search adopted a three-step approach, covering adult and adolescent fMRI studies, as well as exploratory VBM studies. For adult and adolescent fMRI studies, the primary contrast focused on the receipt of rewards in both age groups. The search terms and exclusion criteria have been described in the eMethods 1.

Network, behavioral, genetic and receptor-level analyses

Firstly, the main meta-analysis aimed at determining common and distinct reward alterations in adult and adolescent depression. Network analyses were performed using the peak coordinates of the identified regions representing nodes of separable networks.

Secondly, distinct behavioral functions of the identified signatures were identified using the Brain Annotation Toolbox (BAT). The top ten functional characterizations of each region were extracted and plotted according to their p-values, starting with the most significant (p_perm < 0.05 was considered significant). Thirdly, to investigate the separable genetic underpinnings of the
identified brain regions, gene expressions were determined using the BAT toolbox. This analysis identified genes with the highest expressions in the identified regions. The functions of the top ten genes were further determined using PubMed (https://www.ncbi.nlm.nih.gov/gene). Finally, neurotransmitter analysis of dopamine (DA) and serotonin (5HT) were performed to compare their mean density values in the identified regions. Dopamine and serotonin were selected on the basis of their role in motivation and reward processing dysregulations in mental disorders such as depression65,66 (eMethods in supplements).

Tests for heterogeneity, sensitivity and publication bias

Heterogeneity, sensitivity and publication bias tests were performed according to standard procedures (see eMethods).

Exploratory analyses – meta-regression and linear model analysis

An exploratory VBM meta-analysis of adult and adolescent depression was performed to explore whether structural alterations overlap with the functional alterations determined in depression.34 Confounding effects of medication in the adult group was assessed by the linear model function of SDM-PSI. Here, medication and non-medication studies were coded as 1 and 0, respectively. We further performed a sub-group meta-analysis including only unmedicated studies to validate the stability of the results. Moreover, the influence of potential confounding effects of age and gender (number of females) were examined by meta-regression.

Results

Demographic and clinical data summary of all included studies

The extensive literature search produced 75 suitable fMRI and VBM studies on adult and adolescent depression, i.e., 18 fMRI studies on adult depression, 12 fMRI studies on adolescent
depression, 7 adolescent VBM studies and 44 adult VBM studies on depression. A total of n=1,492 participants (n=734 patients, n=758 healthy controls) were included in the main fMRI meta-analysis. The database included patient data from adult studies (n=410, mean age=34.39, SD=9.61) and adolescent studies (n=324, mean age=13.29, SD=1.56). Healthy controls data from adult studies (n=423, mean age=32.23, SD=8.72) and adolescent studies (n=335, mean age=13.52, SD=1.72). There were no significant group differences between patients and healthy controls in the adult (p=0.32, t=0.99) and adolescent (p=0.91, t=-0.11) groups. The exploratory VBM meta-analysis included a total of 44 studies (7 adolescent studies and 37 adult studies).

Figure 1 shows the flow diagram of the selection criteria. Figure 2 shows the workflow of all the main analyses that were conducted. A summary of all included studies is presented in eTable 1.

Meta-analytic results of reward dysfunctions across all fMRI studies

The meta-analysis of all pooled studies of adult and adolescent depression during receipt of rewards revealed decreased activation in the subgenual anterior cingulate and right striatum (putamen extending to the caudate) (Figure 3a). Compared to healthy controls, adults with depression showed decreased activation in the right putamen and the subgenual anterior cingulate cortex (Figure 3b). However, adolescents with depression showed decreased activation in the left median cingulate, right caudate nucleus and inter-hemispheric regions compared to healthy controls (Figure 3). However, there was one peak of increase in the right postcentral gyrus in adolescents with depression versus healthy controls. Clusters were considered significant at p < .0025 uncorrected across all meta-analyses. A summary of all significant clusters and their effect sizes are presented on Table 1.

Reward dysregulations on the network, behavioral, genetic and receptor levels
Respective comparative analyses were performed to characterize the identified regions on the network, behavioral, genetic and receptor levels. Network level analyses revealed the voxel-wise functional connectivity patterns of the common region (caudate) and peak separate regions in adults (putamen) and adolescents (MCC) respectively. The common region (caudate) connected more with the reward circuit pathways in the striatum as well as the frontal pole. The identified putamen region in adult depression coupled more with regions encompassing the bilateral dorsal striatal regions as well as lateral frontal extending to the insular regions. The MCC showed strong connectivity to frontal and midline structures resembling the default mode network (Figure 4a). An overlap of the putamen and the MCC revealed strong connections to the bilateral frontal pole and bilateral occipital lobe.

Behavioral characterization of the identified regions revealed that the common region (caudate) was strongly associated with compulsive behaviors and reward. The putamen was strongly connected to motivation and behavioral control while the MCC coupled stronger with learning and social/moral cognition (Figure 4b). In summary, behavioral characterization of adult and adolescent depression showed distinct behavioral patterns.

Genetic expression analyses revealed separable gene expressions for the adults and adolescents with depression. S-antigen visual arrestin (SAG) gene was the most expressed gene in the caudate and putamen. However, the DHRS7C (dehydrogenase 7C) was the most expressed gene in the MCC (Figure 4c).

Receptor level analysis compared dopamine (DA) and serotonin (5HT) neurotransmitter mean densities in the peak regions. The results revealed that the putamen had a higher mean density of both neurotransmitters compared to the MCC. The mean density of DA and 5HT₁b in the putamen was 0.7074 and 0.4729 respectively (t=10.14, df=244, s.d=0.18). However, the mean
density of DA and 5HT\textsubscript{1b} in the mid cingulate cortex was 0.1632 and 0.1436 respectively (t=1.1452, df=244, s.d=0.13). The common region, caudate had a mean density of 0.4202 and 0.1171 for DA and 5HT\textsubscript{1b} respectively (t=15.63, df=244, sd=0.21). The visual comparison of neurotransmitter expression in the putamen and the MCC is shown in the eFigure 1.

Tests for heterogeneity, publication bias and sensitivity

Across all meta-analyses, the included studies exhibited low to moderate levels of heterogeneity. Tests for publication bias did not reach statistical significance, as indicated by bias p-values and symmetric funnel plots (eFigure 2). The jackknife sensitivity analysis provided overall evidence supporting the robustness of our meta-analysis findings. A comprehensive interpretation of the results is available in Table 1.

Exploratory analyses

There were no significant regions of convergence in the adolescent VBM meta-analysis possibly due to limited number of studies. In line with our previous meta-analysis (Liu et al., 2022), the VBM meta-analysis in adults with depression revealed generally decreased gray matter volume in the right subgenual anterior cingulate (ACC), right middle temporal gyrus (MTG), right fusiform gyrus (FG) and left insula (eFigure 3). Meta-regression in the fMRI data revealed that the mean age of adult patients was negatively associated with decreased reactivity in the putamen while a younger mean age of adolescents with depression was associated with a stronger reduction of MCC reactivity (eFigure 4a and c). In addition, the number of adult female patients was positively associated with decreased activity in the putamen while the number of adolescent female patients was positively associated with decreased activity in the MCC (eFigure 4b and d). Linear model analyses revealed that confounding effects of medication, age and gender showed no significant impact on the main meta-analytic results. Furthermore,
subgroup meta-analyses of studies without medication in both adults and adolescents confirmed the stability of the main meta-analytic findings (eFigure 4). Sub-analysis of unmedicated studies only, confirmed the stability of the findings (eFigure 5).

Discussion

The current meta-analysis is the first to systematically examine common and age-specific neurofunctional alterations in depression compared to healthy controls during reward processing and revealed: a) Adults and adolescents with depression exhibit common reductions in subgenual ACC and caudate reward reactivity, b) Adolescents with depression specifically exhibit decreased reactivity in the mid cingulate cortex (MCC) and caudate nucleus, but increased activity in the postcentral gyrus while adults show reduced reactivity in the putamen and subgenual ACC, (c) the common striatal regions are characterized by reward and cognitive control processes and couple with dopaminergic reward circuits, while the MCC is characterized by social and learning processes and couples with the default mode network (DMN). All synthesized findings are considered according to the existing literature and implications for clinical practice.

Common alterations in the caudate

Consistent with our hypothesis, the caudate, which is a sub-region of the striatum, exhibited reduced neural reward sensitivity across adults and adolescents with depression. The caudate represents a highly-connected key reward processing hub with additional engagement in inhibitory and emotional processes. Previous neuroimaging meta-analyses have reported decreased caudate reward sensitivity in depression across reward domains, and across patients over and below the age of 18. Together with the present results and original studies reporting decreased caudal reward reactivity in children and adolescents with depression,
the present findings underscore a key role of reduced caudate reward sensitivity as general markers of depression. Further meta-analytic characterization suggests that dysfunction in this region lead to network level dysruptions in the fronto-striatal reward pathways, compulsive and reward alterations as well as alterations in S-antigen visual arrestin (SAG) gene signaling which is responsible for G-protein coupled receptor reactivity which mediates sensitivity to several neurotransmitters. Overall, implications of the caudate in both adults and adolescents with depression suggests that the region critically mediates anhedonia and depressive episodes. Interventions targeting the caudate and associated functions could represent a general therapeutic strategy in depression.

Role and implications of the MCC in adolescent depression

Despite the extensive literature on striatal reward processing dysfunctions in depression, initial studies have suggested more widespread alterations in adolescent depression, including the insular, cingulate and frontal regions. Our meta-analytic results indicated that adolescents with depression additionally exhibit decreased reward sensitivity in the MCC, the key hub for social behavior and social reward-based decision-making in the cingulate, supporting formation about the rewards that others will receive and the decisions that lead to other’s rewarding outcomes or, the self-referential components of reward.

Disruptions in these processes may be particularly impactful in adolescents navigating the complex social demands of their development. The behavioral and network characterization of the MCC further stressed its involvement in social and adaptive processes and communication with the DMN, a large-scale brain network strongly involved in social and self-referential cognition. Notably, the MCC also exhibited a higher serotonin density compared to the putamen (implicated in adult findings), suggesting potential differences in neurochemical
underpinnings of adult and adolescent depression. Selective serotonin reuptake inhibitors (SSRIs) are first-line treatment for depression and potentially have more beneficial effects in childhood and adolescent depression, suggesting that the serotonin system or interacting systems such as the oxytocin system in combination with interventions targeting social functions, may have a high potential in adolescent depression.

Role and implications of the putamen in adult depression

In line with previous meta-analyses, our findings support the putamen as a neural substrate of reward processing disruptions in adult depression. Traditionally, the putamen has been associated with motor functions while recent studies showed more complex functions in other domains including reward processing and habit formation. Lower putamen activity is associated with greater anhedonia and individuals with smaller putamen volumes exhibited blunted responses during positive reward feedback, which may link this region to anhedonia and habitual rather than reward-oriented behavior.

The exploratory VBM meta-analysis of adults with depression did not reveal neurostructural alterations in the identified striatal regions, while the findings resemble previous VBM meta-analysis reporting reduced gray matter in regions outside of the striatum in depression, results may reflect a modifiable treatment target.

Some limitations must be considered in the current meta-analysis. First, there was limited number of adolescent studies on reward anticipation to further segregate reward processing in both adults and adolescents. Second, the exploratory VBM studies on adolescents were only 7 and did not yield any significant clusters probably because of small sample size. Thirdly, some of the included studies had a mix of medicated and unmedicated patients in a single study. Although the effects were considered in compiling the findings of the current study, medication
effects could cause some errors if not properly controlled. It is suggested that future studies should include patients with identical medication status to limit heterogeneity and type II errors.82

Overall, altered reward processing is integral to the pathophysiology of depression. The current meta-analysis is the first to comprehensively reveal the neural correlates underlying dysfunctional reward processing in depression across the lifespan. In line with previous definitions, the caudate was identified as the region of common alterations in both adults and adolescents with depression while specific alterations of the putamen and mid cingulate cortex in adults and adolescents respectively, were unraveled. Distinct biomarkers representing age-specific alterations could serve as potential therapeutic interventions in current and future clinical practice.

Author Contributions:

Study concept and design: Mercy Chepngetich Bore, Benjamin Klugah-Brown, Benjamin Becker.

Acquisition, analysis, or interpretation of data: Mercy Chepngetich Bore, Xiqin Liu, Benjamin Klugah-Brown, Benjamin Becker.

Drafting of the manuscript: Mercy Chepngetich Bore, Benjamin Klugah-Brown, Benjamin Becker.

Critical review of the manuscript for important intellectual content: Bo Zhou, Jie Zhang, Benjamin Klugah-Brown, Benjamin Becker.

Statistical analysis: Mercy Chepngetich Bore, Benjamin Klugah-Brown.

Administrative, technical, or material support: Xiqin Liu, Keith Kendrick, Benjamin Becker.

Supervision: Benjamin Klugah-Brown and Benjamin Becker.

Conflict of Interest Disclosures
None reported.

Funding/Support

The present study was supported by the China Brain Project (MOST2030, Grant No. 2022ZD0208500), the National Natural Science Foundation of China (NSFC 82271583; 32250610208), and a startup grant from The University of Hong Kong.

Role of the Funder/Sponsor: The funder(s) had no role in the design and conduct of the study; collection, management, analysis, and interpretation of the data; preparation, review, or approval of the manuscript; and decision to submit the manuscript for publication. Any opinions, findings, conclusions, or recommendations expressed in this publication do not reflect the views of the Government of the Hong Kong Special Administrative Region or the Innovation and Technology Commission.

Data availability

Data supporting the findings of the present study is available on the Open Science Repository platform (OSF) (https://osf.io/v5nwj/).
References

Figure 1. PRISMA flow diagram of the selection process

Figure 2. a General illustration of altered receipt of rewards in adolescents and adults with depression. b Work flow of main analyses in the current study.

Figure 3. Results of the main meta-analyses of altered reward processing in adolescent and adult depression compared to healthy controls. a Overall meta-analysis of all adult and adolescent studies on reward outcome alterations. b Reward outcome alterations in adults with depression. c Reward outcome alterations in adolescents with depression. The right panel presents the results of the seed-based functional connectivity of the peak coordinates of altered reward outcome function in adults (putamen) and adolescents (mid cingulate cortex): d Resting-state functional connectivity of the caudate, e putamen and f mid cingulate cortex. The overlap of the putamen and MCC network maps is presented on the far right.

Figure 4. Results of the behavioral and genetic analyses of adult and adolescent depression. a Behavioral analysis of altered reward outcome in adults and adolescents (left), in adults only (middle) and adolescents (right). b A word cloud showing the behavioral terms. c Genetic level analysis showing the top ten genes identified in the key regions of caudate (left), putamen (middle) and mid cingulate (right).
Table 1. Whole brain meta-analytic results of functional depression in adults and adolescents, significant at uncorrected p < 0.0025

<table>
<thead>
<tr>
<th>Meta-analysis</th>
<th>Contrast</th>
<th>Main brain regions</th>
<th>MNI coordinates</th>
<th>SDM Z</th>
<th>Voxels</th>
<th>I² statistic (%)</th>
<th>Egger’s bias</th>
<th>Egger’s p</th>
<th>Jackknife sensitivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>General</td>
<td>Depression < HC</td>
<td>R</td>
<td>12, 6, -8</td>
<td>-4.213</td>
<td>316</td>
<td>4.46</td>
<td>-0.38</td>
<td>0.638</td>
<td>31/30</td>
</tr>
<tr>
<td></td>
<td></td>
<td>putamen/caudate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Depression > HC</td>
<td>None</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adults</td>
<td>Depression < HC</td>
<td>R putamen</td>
<td>18, 4, -8</td>
<td>-4.673</td>
<td>314</td>
<td>14.92</td>
<td>-0.46</td>
<td>0.642</td>
<td>19/18</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Subgenual ACC</td>
<td>0, 2, -10</td>
<td>-3.832</td>
<td>38</td>
<td>2.58</td>
<td>-0.15</td>
<td>0.880</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Depression > HC</td>
<td>None</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adolescents</td>
<td>Depression < HC</td>
<td>L median cingulate</td>
<td>2, -28, 38</td>
<td>-3.520</td>
<td>134</td>
<td>20.79</td>
<td>-2.08</td>
<td>0.256</td>
<td>13/12</td>
</tr>
<tr>
<td></td>
<td></td>
<td>R caudate nucleus</td>
<td>12, -6, 16</td>
<td>-3.276</td>
<td>16</td>
<td>4.04</td>
<td>-0.79</td>
<td>0.663</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>------------------</td>
<td>------------------</td>
<td>--------</td>
<td>---</td>
<td>-----</td>
<td>--------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inter-hemispheric</td>
<td>2, 2, 8</td>
<td>-3.117</td>
<td>12</td>
<td>11.70</td>
<td>-0.92</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Depression > HC</td>
<td>R postcentral</td>
<td>58, 14, 24</td>
<td>3.480</td>
<td>50</td>
<td>2.17</td>
<td>-0.35</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ACC, Anterior cingulate cortex, HC healthy controls, L, left, MNI, Montreal Neurological Institute, R right, SDM Seed-based D Mapping
a. General

R striatum

b. Adults

R putamen
R caudate
ACC

c. Adolescents

L median cingulate
R caudate nucleus
Postcentral gyrus

d.
e.

Overlap

f.