Cardio respiratory demands of firearms training instruction and 15m shuttle tests in law enforcement.

Warwick. J.,¹ Cooper. S.,¹ Ronca. F.¹

Author affiliation:
1 – University College London, London, UK

Corresponding Author:
Mr Joseph Warwick
170 Tottenham Court Road
Institute of Sport Health and Exercise,
University College London,
London,
W1T 7HA.

Email – Joseph.warwick.18@ucl.ac.uk

Word Count (ex. Abstract, strength and limitation, tables, figure legends, acknowledgements, funding statement, author contributions, data availability statement & references) – 3794

Number of tables – 3
Number of figures – 2

Author contributions:

Mr J. Warwick – Conception and design of protocol, acquisition of data, interpretation of data, drafting and revising of work critically for important intellectual content. Final approval of version to be published. Agreement to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.

Miss S Cooper - Acquisition of data, analysis of data, revision of work critically for important intellectual content. Final approval of version to be published.

Assoc Prof Dr F. Ronca – Interpretation of data, revising of work critically for important intellectual content. Final approval of the version to be published.

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Abstract

Objectives: Law enforcement agencies require minimum fitness standards to safeguard their officers and training staff. Firearms instructors (FI) are expected to maintain the same standards as their operational counterparts. This study aimed to quantify the daily physiological demands placed on FI. Methods: 19 FI (45 ± 5 years) completed occupational tasks whilst wearing heart rate (HR) monitors for a minimum 10 days. VO₂max testing was conducted on FI during a treadmill test (TT) and a multistage shuttle test (ST). Linear regression models were used to model the relationship between VO₂ and HR throughout the TT. This model was applied to HR data from occupational tasks to infer oxygen consumption. Repeated Measures ANOVAs were used to compare time spent in VO₂max equivalent zones throughout. Results: The VO₂max achieved during ST (45.1 ± 5.6 ml/kg/min) was significantly higher than TT (39 ± 3 ml/kg/min) (p = 0.014). Time to exhaustion was sooner on ST (06:26 min) compared to TT (13:16 min) (p < .001). FI spent ~85% of occupational time with an oxygen demand ≤20 ml/kg/min (p < .005). The most intense occupational tasks saw FI achieve a VO₂max ≥30 ml/kg/min, but <40 ml/kg/min.

Conclusion: Using ST to assess cardiorespiratory fitness resulted in a quicker time to exhaustion and a higher VO₂max. Predominantly, FI occupational tasks are low intensity with sporadic exposures requiring a VO₂max of >40 ml/kg/min. To safeguard FI from occupational-related cardiorespiratory or long-term health issues, it is intuitive to suggest fitness standards should exceed a VO₂max of 40 ml/kg/min.

Key words – Law Enforcement, Exercise test, Cardiorespiratory Fitness, Oxygen Consumption, Aerobic Exercise.
INTRODUCTION

In recent years, a significant portion of public service personnel, including law enforcement officers, firefighters, paramedics and military personnel, have globally shown a reduced level of cardiorespiratory fitness, increased BMI and increased fat free mass. This is partly due to changes in recruitment standards and the concurrent implementation of human rights legislation with regards to physical standards for employment in 2010. The legislation within the United Kingdom states that employers must be able to defend physical standards as ‘reasonably necessary to the safe and efficient performance of the job’ and ‘to employ the standards, tests and cut-off scores that adequately capture the minimum requirements to do a job safely and efficiently’.

Throughout their careers, specialist law enforcement officers who train for firearms operations develop high levels of skill, making employee retention an important focus for this population. The more experienced and skilled firearms officers become a strong asset to their forces, contributing to the development and education of new recruits as firearms instructors (FI), sometimes even after retirement from operational duties. Key elements of an instructor’s responsibilities include live range teaching and active role play, some of which can require significant physical effort, all while also instructing and teaching. Supporting the physical fitness of this group is therefore highly relevant to their occupational performance, their ability to instruct while under exertion, and to enable their retention. Heart rate and stress related heart rate variability (HRV); particularly, HRV derived sympathetic responses have been shown to directly impact shooting accuracy and success, with level of expertise directly impacting cognitive control and timing of shot with the cardiac rhythm. A reduced heart rate during initiating of shooting also determines the shooter’s ability to control shot timing and accuracy. Cardiovascular fitness is therefore essential to enable FI to maintain a good level of performance, and to withstand the occupational demands of role play and instruction during officer training, while also safeguarding their own health.

VO\textsubscript{2}max, also known as maximal oxygen carrying capacity, is the gold standard measure of cardiovascular and pulmonary fitness and reflects one’s ability to sustain specific levels of physical exertion. Cardiorespiratory fitness testing has historically played an integral part of officer and FI recruitment and is still a key pre-requisite for enrolment and annual revalidation in many law enforcement settings. The minimum requirements of fitness
should be determined based on the demands of operational tasks, to ensure that officers
and FI are able to fulfil their duties without incurring in unnecessary fatigue. Therefore, the
aim of this study was to assess the cardiorespiratory demands placed on FI during law
enforcement officer firearms training, including exertion undertaken during instruction and
during job-related fitness testing.
METHODS.

Study Design

Instructors were voluntarily recruited through internal emails sent via line managers in their workforce during January and February 2021. A total of 19 FI aged 45 ± 5 years volunteered to take part (18 male, 1 female). One participant was non-operational and 18 were operational, of these, 16 (1 female) were armed vehicle response officers (AVRO) and 2 were firearms officers (FO). All participants signed a written informed consent form and a physical activity readiness questionnaire (PARQ) before participating. The study was approved by UCL’s Ethics Committee (Project ID number: 13985/004) in line with the declaration of Helsinki.

Anthropometric measurements and body composition were taken using a Tanita MC980 MA (Tanita Cooperation, Tokyo, Japan). In a randomised order, participants then completed two VO₂max tests. One VO₂max test was conducted on a treadmill (TT) using the incremental Bruce treadmill protocol\(^{12,13}\)\(^{15,16}\) commonly considered the gold standard VO₂max test to evaluate maximal oxygen consumption. The second VO₂max test was a 15-meter shuttle test (ST)\(^{17}\) which consisted of the volunteers’ annual fitness revalidation test and is often used as a field-based indirect measure of VO₂max in British law enforcement settings. After this, all participants recorded their heart rate (HR) for a minimum of 10 days during occupational firearms instruction activities. The HR data for this period was collected via a polar chest strap HR monitor (H9, Polar, Kempele, Finland) through the Polar Beat app.

Treadmill VO₂max procedure

The lab-based VO₂max test was conducted on a treadmill (h/p/cosmos, Nussdorf, Germany) using the incremental Bruce treadmill protocol and breath-by-breath analysis with a Vyntus CPX Metabolic Cart (Vyaire Medical, Chicago, USA)\(^{15,16}\). The incremental protocol commences with a three-minute warm up walking at 2.7 km/h with no incline. Every three minutes thereafter, the speed and incline of the treadmill are increased, participants are verbally encouraged to push themselves to maximal exertion. The test is terminated at volitional exhaustion, at which point participants walk on no incline at 2.7 km/h until their HR recovered to under 120 bpm. A test was considered maximal if the participant reached their predicted maximal heart rate (220-age), if RER > 1.15 and if a plateau was observed in
the VO₂ data. All participants in this study reached these criteria. The anaerobic threshold was determined using the v-slope method.

**15m Shuttle test VO₂max procedure**

In a randomised order, participants also completed a 15m multistage shuttle test (ST) while wearing a portable breath-by-breath analyser (Metamax 3B, Cortex, Leipzig, Germany). This was completed indoors to alleviate external environmental influences and required individuals to repeatedly run back and forth between two markers 15 meters apart in time with an electronic beep. The ST requires participants to run progressively faster, level one allowing 6.8 seconds per shuttle, with incremental increases in pace to >4 seconds per shuttle in the later stages. All participants completed to volitional exhaustion with verbal encouragement.

**Data Processing**

**Treadmill Test**

Breath-by-breath VO₂ (ml/kg/min) and HR (bpm) were smoothed to every 7 breaths using the Vyaire interface and then extracted from the software. To estimate oxygen requirements during occupation-related tasks, a correlation factor was calculated from the treadmill test. This was achieved by extracting the correlation equation from a linear regression plot comparing HR against VO₂ for data collected during the treadmill test.

**Occupation-related task data**

Occupation-related data was collected using the Polar coach module, the most strenuous session per participant was then downloaded and analysed using the Pandas module for Python (Python Software Foundation. Python Language Reference, version 3.7. Available at http://www.python.org). HR data from the entirety of the most strenuous session was correlated to a VO₂ equivalent to provide an estimate of oxygen requirements throughout the task. Data was then analysed by categorising it into two samples: the highest recorded value for HR and VO₂ in each minute of the tests, and the highest recorded value for VO₂ in each HR category. Categories were recorded in 10bpm increments from 50 to 190.
Shuttle test data.

Breath-by-breath VO\textsubscript{2} (ml/kg/min) and HR (bpm) were extracted from the software and then smoothed to every 7 breaths using Python. Shuttle timings were used to label the data instance to the appropriate ‘Stage: Shuttle’ category. Maximum values for HR and VO\textsubscript{2} for each category, for each participant, were then calculated using pre-built tools from the Pandas (version 1.04) module for Python.

Statistical analysis

The data was analysed using the statistical software SPSS 26 (IBM, New York, USA), with alpha set at <0.05. All data was normally distributed. Linear regression models were used to model the relationship between VO\textsubscript{2} and HR for each participant throughout the treadmill VO\textsubscript{2}\text{max} test, as described above. The model was then applied to the polar HR data collected during job-related tasks to infer oxygen consumption during working hours. Paired t-tests were used to compare VO\textsubscript{2}\text{max} and maximum HR between the treadmill test and shuttle test. Repeated Measures ANOVAs with Bonferroni post-hoc were used to compare time spent in VO\textsubscript{2}\text{max} equivalent zones within participants. A Mauchley’s test of sphericity was initially carried out to confirm the assumption required to run an ANOVA.
RESULTS

Participant Demographics

Participant fitness and anthropometrics are shown in Table 1. Since the female participant’s data did not differ from the mean values of the cohort, male and female data was combined into one group to safeguard the anonymity of participants’ outcomes.

Table 1. Mean ± SD values for anthropometric and fitness data.

<table>
<thead>
<tr>
<th>Measure</th>
<th>n</th>
<th>Mean ± SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>19</td>
<td>45 ± 5</td>
</tr>
<tr>
<td>Height (cm)</td>
<td>19</td>
<td>180.0 ± 5.7</td>
</tr>
<tr>
<td>Weight (kg)</td>
<td>19</td>
<td>93.3 ± 10.3</td>
</tr>
<tr>
<td>BMI</td>
<td>19</td>
<td>28.8 ± 2.4</td>
</tr>
<tr>
<td>Fat Free Mass (kg)</td>
<td>18</td>
<td>71.3 ± 7.2</td>
</tr>
<tr>
<td>Muscle Mass (kg)</td>
<td>18</td>
<td>67.7 ± 7.0</td>
</tr>
<tr>
<td>Body Fat (%)</td>
<td>18</td>
<td>23.5 ± 3.8</td>
</tr>
<tr>
<td>Shuttle VO2 max (ml/kg/min)</td>
<td>10</td>
<td>45.1 ± 5.6</td>
</tr>
<tr>
<td>Treadmill VO2 max (ml/kg/min)</td>
<td>17</td>
<td>39.7 ± 4.5</td>
</tr>
<tr>
<td>Treadmill Anaerobic Threshold (ml/kg/min)</td>
<td>17</td>
<td>24.8 ± 3.0</td>
</tr>
</tbody>
</table>
Comparison between the treadmill test and the 15m shuttle test

Ten participants completed both the TT and the ST, data from two ST was excluded due to technical issues. The data presented in this section only relates to those eight participants who provided completed data on both tests (male = 7; age 43 ± 7 years; height 177.4 ± 5.8 cm; weight 91.1 ± 9.4 kg). The VO\(_2\max\) achieved during the ST was significantly higher (p = 0.014) than that achieved during the TT (45.1 ± 5.6 ml/kg/min and 39 ± 3 ml/kg/min respectively) (Figure 1a). There was no correlation between VO\(_2\max\) measured during the ST and VO\(_2\max\) measured during the TT (Figure 1b).

(Insert Figure 1 here)

All participants reached exhaustion sooner on the ST, with a total average duration of 13:16 min on the TT and 06:26 min on the ST (p < .001). Both heart rate and VO\(_2\) were higher throughout the ST compared to the TT (p < .001) from minute 2 to test termination (Figure 1). However, when comparing VO\(_2\) to HR zones (Figure 2) the difference between tests was not statistically significant between tests (p =0.068).

(Insert Figure 2 here)

Despite a difference in the rate of increase of both VO\(_2\) and HR by time between tests (Figure 2), when comparing the rise in increase of VO\(_2\) concerning HR zones the difference was not statistically significant (p=0.068) (Figure 3).

(Insert Figure 3 here)

Figure 3. Mean ± SD rise in VO\(_2\) by heart rate zone during the shuttle test and treadmill test. (Note: the dotted lines denote incomplete data, where data for heart rate zones higher than 170-180 bpm include a subsample of participants whose hearts reached higher values)
Occupation-related physical exertion

Heart rate data was collected during occupational tasks for a total of 18 participants (17 male), with an average of 16 ± 9 instructional days recorded per individual, yielding an average total duration of 72.7 ± 0.5 hours of data collection per person.

Due to the lower variability in the data obtained from the TT compared to the ST, this data set was used to calculate equivalent VO₂ consumption based on HR, during occupation-related tasks. The average time spent in equivalent VO₂ zones for the most strenuous session is represented in Table 2. There was a significant difference observed between the percentage of time spent in each VO₂ zone (F = 16.293, p ≤ 0.001), where participants spent the majority of their time working at or below an oxygen demand of 20 ml/kg/min.

**Table 2. Percentage of time spent in VO₂max equivalent zones.**

<table>
<thead>
<tr>
<th>FO (n)</th>
<th>AVRO (n)</th>
<th>VO₂ equivalent zones (ml/kg/min)</th>
<th>Percentage of wearing time per zone during the most strenuous session (%)</th>
<th>Average duration spent in each zone during the most strenuous session (mean ± SD) hours:minutes:seconds</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>16</td>
<td>&lt;5</td>
<td>4</td>
<td>00:28:12 ± 00:26:49</td>
</tr>
<tr>
<td>2</td>
<td>16</td>
<td>5-10</td>
<td>35 *</td>
<td>02:59:58 ± 02:34:33</td>
</tr>
<tr>
<td>2</td>
<td>16</td>
<td>10-15</td>
<td>35 *</td>
<td>02:25:01 ± 01:51:45</td>
</tr>
<tr>
<td>2</td>
<td>16</td>
<td>15-20</td>
<td>11 *</td>
<td>00:29:42 ± 00:32:20</td>
</tr>
<tr>
<td>2</td>
<td>16</td>
<td>20-25</td>
<td>4</td>
<td>00:07:10 ± 00:05:31</td>
</tr>
<tr>
<td>16</td>
<td></td>
<td>25-30</td>
<td>4</td>
<td>00:06:30 ± 00:08:39</td>
</tr>
<tr>
<td>16</td>
<td></td>
<td>30-35</td>
<td>4</td>
<td>00:04:21 ± 00:03:52</td>
</tr>
<tr>
<td>16</td>
<td></td>
<td>35-40</td>
<td>2</td>
<td>00:01:36 ± 00:01:45</td>
</tr>
</tbody>
</table>

* Indicates a significant difference between time spent in between 5-20 ml/kg/min compared to above 20 (p < 0.05).

Of the 18 participants, all delivered FO training, and 16 of these also (15 male) delivered AVRO training. The 16 AVRO instructors reached oxygen demand levels beyond 30
ml/kg/min, only while training AVROs. Instructors who delivered FO training did not exceed an oxygen demand of 30 ml/kg/min during sessions, while instructors delivering AVRO training worked at higher intensities than 30 ml/kg/min but did not exceed 40 ml/kg/min.

**Discussion**

This study identified the maximal oxygen demand (VO$_2$max) obtained during two incremental tests (the 15m shuttle test and the Bruce treadmill test). The TT VO$_2$max was used to determine the level of cardiorespiratory exertion that firearms instructors undergo when delivering operational firearms training. The main findings of this study suggest that instructing Firearms officers demands an oxygen consumption of up to 30 ml/kg/min, instructing armed vehicle response officers demands an oxygen consumption of up to 40 ml/kg/min, and that the 15m shuttle test (ST) is more physically demanding than the treadmill test (TT).

**Comparison of the shuttle test with the treadmill test**

Optimal cardiovascular fitness is a key requirement for safeguarding health and promoting effective performance in law enforcement. The ST is a practical field-based test, typically administered with the assumption that specific stages of the test equate to estimated levels of VO$_2$max. (19,20) In this study, the ST resulted in significantly higher peak oxygen demands compared to the TT. This falls in line with Morris et al. (21) findings, where measured VO$_2$max during the ST was higher than the estimations provided by Brewer (22) (Table 3).

**Table 3. Estimated and measured VO$_2$ equivalents per each end stage of the 15m shuttle test.**

<table>
<thead>
<tr>
<th>Level: Shuttle</th>
<th>Estimated VO$_2$ (ml.kg$^{-1}$.min$^{-1}$) (Brewer, 2010)</th>
<th>Measured VO$_2$ (ml.kg$^{-1}$.min$^{-1}$) (Morris et al., 2020)</th>
<th>Measured VO$_2$ (ml.kg$^{-1}$.min$^{-1}$) (Current study)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5:4</td>
<td>35</td>
<td>40.4 ± 4.8</td>
<td>42.4 ± 4.9</td>
</tr>
<tr>
<td>7:6</td>
<td>41</td>
<td>46.8 ± 5.8</td>
<td>48.6 ± 5.2</td>
</tr>
<tr>
<td>9:4</td>
<td>46</td>
<td>52.1 ± 7.2</td>
<td>49.4</td>
</tr>
<tr>
<td>10:5</td>
<td>51</td>
<td>55.3 ± 6.5</td>
<td>-</td>
</tr>
</tbody>
</table>
This information indicates that the ST is a more strenuous test than the TT, where participants present a higher oxygen demand on the ST and reach exhaustion sooner. This is likely due to the higher physical requirements of constant changes in direction on the ST. The TT involves continuous linear running and is therefore primarily reliant on endurance qualities, while the ST requires regular change of direction, adding a reliance on agility, eccentric forces to decelerate, and explosive concentric force to accelerate. The increased oxygen demand during the ST is therefore almost certainly due to the nature of musculature loading during deceleration and change of direction, with greater angles of change of direction requiring a greater muscle activation.(20) As a result, the change of direction increases the metabolic cost of task, resulting in higher cardiovascular requirements.(23) These increases in muscle activation and metabolic cost have been shown to be further impacted by an individual’s lower body strength and power.(24) Additionally a 180-degree change of direction is further impacted by co-ordination and test familiarity, causing a high degree of variability in test outcome.(19) This is reflected in the results presented here, where there was no correlation between the VO₂max obtained on the two tests, indicating that, although the ST consistently produced higher values, there was no defined ratio to this relationship. Therefore, ST might be best used to provide a VO₂max predictive range rather than a definitive VO₂max per stage reached.(19,25)

Measuring VO₂max on a treadmill presents a progressive test with less variability and less strain on the lower limbs, providing a more accurate estimate and reducing the risk of injury.(15,16,26) Therefore, if the intention is to purely obtain a measure of cardiovascular fitness, an ergometer test (eg. treadmill or bike) provides a more reliable direct measure of VO₂max. If, however, the intention is to measure a more complex fitness ability which includes cardiovascular fitness, lower limb power, acceleration and agility, a ST could be more appropriate.

This study concentrated purely on the cardiopulmonary demands of delivering training to law enforcement firearms instructors, therefore, any mention of VO₂ hereafter will be made in reference to values obtained through the TT, as this is the more reliable measure of cardiovascular fitness.

Physical requirements of occupation-related tasks
FI spent most of their most strenuous day at or below 20 ml/kg/min. However, it should be noted that a significant amount of time (7:10 ± 5:30 minutes) was spent between 20-25 ml/kg/min. To be able to sustain this workload without the detrimental accumulation of fatigue, a minimum anaerobic threshold of 25 ml/kg/min could be recommended. Measuring an anaerobic threshold requires expensive equipment, while VO₂max can be estimated using indirect tests. Given that the ratio of anaerobic threshold to VO₂max in the general population is typically between 55 - 65%,(27,28) a minimum VO₂max between 38.5 – 45.5 ml/kg/min would therefore be required to sustain this level of effort without incurring excessive fatigue. This would put individuals in the best position to sustain the delivery of firearms training courses with minimal cardiovascular strain. (28–31) It should also be considered that a “good” rating in cardiorespiratory fitness ranges from 36-56 ml/kg/min for 18-55-year-old females and 40-60 ml/kg/min for males (See ACSM, 2014 for a detailed table of normative values). Good cardiorespiratory function is crucial to safeguard general health and reduce the risk of coronary heart disease, myocardial infarction and overall mortality, where values below 28 ml/kg/min present a significantly greater risk of these incidents. (29–31) It is also worth noting that higher cardiorespiratory fitness is associated with improved cognitive function and motor processes through ageing,(32) which also allows for greater control of the timing of shot with cardiac rhythm, improved shot success, decision-making, alertness and memory.(7–12)

When delivering FO training, instructors did not exceed an oxygen demand of 30 ml/kg/min. AVRO training was more demanding, where instructors sustained a small but meaningful period (1:36 ± 1:45 minutes) between 35-40 ml/kg/min of equivalent VO₂, which approaches maximal intensities for some participants included in this study. Assuming FI should not be working at their maximal physical capacity while instructing others, it should be strongly recommended that these FI should hold a VO₂max that exceeds this bracket.

Therefore, taking into consideration a required anaerobic threshold of 25 ml/kg/min, FI who only train FOs could be recommended to have a VO₂max that exceeds 38.5 ml/kg/min. However, considering the significantly greater physical demands of AVRO training, instructors who train these officers could be recommended to have a VO₂max that noticeably exceeds 40 ml/kg/min. It is important to note here that these measurements only relate to the physical demands placed on instructors while training other law
enforcement officers, they do not relate to the fulfilment of real-life operational tasks, which are highly likely to exceed these demands.

Cardiovascular exercise recommendations

Utilising a multi-modal approach of cardiovascular exercise prescription seems to suggest the greatest long-term yield for adaptation not only for the cardiovascular system but also for body composition (33–35). This would include a comprehensive strategy to train physiological outputs that would improve centrally driven factors such as cardiac output and stroke volume (36–38) concurrently with stimuli that would cause peripheral adaptations such as mitochondrial biogenesis, upregulation of capillary density and A-VO2 difference, and thus improving VO2max and reducing body fat percentage (33–38). This involves the concurrent prescription of steady-state continuous effort exercise (SS), high-intensity interval training (HIIT) and sprint interval (SI) exercise. Evidence suggests that an 8-week 2-3x per week HIIT program will start to elicit cardiovascular central adaptations to improve VO2max but at the cost of reduced enjoyment and increased discomfort when compared to SS training (33,39). This alone may put individuals off its completion, furthermore, peripheral and body composition adaptations were not seen until 12 weeks, aligned with the adaptations of SS training (33–39). Alone HIIT or SI training did not display any greater physiological adaptations long term when compared to SS, except for a minor increase in lean muscle mass for SI compared to SS (33). Thus, the concurrent prescription of all three modalities across a 12+ week training program is postulated to simultaneously improve central, peripheral and body composition adaptations. This will also reduce training monotony, which is a major limiting factor for training participation (40). Therefore, a 2-3x per week 12-week training program that mixes SS, HIIT and SI with a focus on long-term physiological and body composition adaptations, whilst keeping sessions enjoyable, should be emphasised to minimise long-term cardiorespiratory illness in the more senior FI.

Limitations and further research

The sample size of the study was limited due to access to a small specialist population, where data was also lost due to participants being called on operation while being tested.
This study focused on cardiorespiratory requirements only; it did not investigate other physical requirements needed to safeguard FI from injury during role-playing, resistance and restrain scenarios. Strength and power are key requirements to many armed operational tasks and should also be considered when assessing the physical burden of instructor and officer training. An enquiry into the prevalence of musculoskeletal injuries obtained during firearms drills could also provide an understanding of injury risk in this population, enabling the development of risk reduction strategies.

It should be underlined that these results apply to males but may not necessarily apply to females. The data set only included one female; even though this participant’s values matched the average values obtained by the wider male cohort, one person is not representative of the wider female population. Further research focused on female firearms instructors is required to ensure that recommended values are appropriate to either gender.

Finally, these results apply to instructors delivering training, but not to real-life operational tasks. A similar enquiry on cardiorespiratory demands of operational firearms tasks could provide valuable insight into the demands of specialist officers to inform fitness testing requirements in this cohort.

**Conclusions**

A comparison of the oxygen demands of the treadmill test and shuttle test suggested that the shuttle test provides more variable results, due to greater demands of motor control, agility and explosive strength. Therefore, a treadmill test appears to provide a more accurate evaluation of cardiorespiratory fitness, while a shuttle test may provide a more global assessment of cardiorespiratory fitness, lower limb power and agility together. Using the outputs from the treadmill test to estimate cardio-pulmonary demands of occupational tasks, the results indicate that FI reached oxygen demands of 30 ml/kg/min when training AROs, however, this oxygen demand may reach 40 ml/kg/min when training AVROs. Therefore, FI requires high levels of cardiorespiratory fitness to withstand the physical demands of the task. This indicates that highly experienced FI should continue to maintain levels of fitness that exceed a VO$_2$max of 40 ml/kg/min even after becoming non-
operational, allowing the effective delivery of training and safeguarding their long-term health.

Acknowledgements

We thank Justin Dixon for comments on the manuscript and Derek Brooks for organisation and logistics, making scheduling around operational shifts, work-related requirements, and facilities a harmonious process.

Funding statement:

This research received funding from the metropolitan police service.

Data availability statement:

Data can be requested from the corresponding author upon reasonable request.

REFERENCES


13. Saltin B, Calbet JAL. Point: In health and in a normoxic environment, \( \dot{V} \text{O}_2 \text{max} \) is limited primarily by cardiac output and locomotor muscle blood flow. J Appl Physiol. 2006 Feb;100(2):744–8.

14. Strasser B. Survival of the fittest \( \dot{V} \text{O}_2 \text{sub max} \) a key predictor of longevity. Frontiers in Bioscience. 2018;23(8):4657.


17. Birks A. Validity and reliability of a modified version of the Chester Treadmill Walking Test (Police) as an alternative to the 15-Metre Multi-Stage Police Fitness Test [Internet]. Available from: http://hdl.handle.net/10034/620305

18. Manser A. Physiological responses during performance of the 15-metre Multistage Shuttle Run Test (15mMSFT), with reference to the Police Fitness Standards [Internet]. 2019. Available from: http://hdl.handle.net/10034/623169


Figure A: Boxplot showing VO$_2$ max (ml/kg/min) for Treadmill and Shuttle conditions.

Figure B: Scatter plot showing the relationship between Shuttle VO$_2$ max and Treadmill VO$_2$ max (ml/kg/min).