Electrophysiological Correlates of Dynamic Cycling in Parkinson's Disease

Prajakta Joshi, M.S.¹, Lara Shigo, M.S.², Brittaney Smith, M.S.², Camilla Kilbane, M.D.³,
Kenneth Loparo, Ph.D.⁴, Angela L. Ridgel, Ph.D.², and Aasef G. Shaikh, M.D., Ph.D.¹,³,⁵

¹Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
²Department of Exercise Physiology, Kent State University, Kent, OH, USA
³Department of Neurology, Case Western Reserve University, and Neurological Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
⁴ISSACS: Institute for Smart, Secure and Connected Systems, Case Western Reserve University, Cleveland, OH, USA
⁵Functional Electrical Stimulation Center, Daroff-Dell’Osso Ocular Motor Laboratory, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA

Key words: Exercise, dynamic cycling, basal ganglia, local field potential, neuroplasticity

Word counts: Abstract: 282
Text: 3446

Number of figures and tables: 6

Source(s) of support:
Shaikh was supported by the Career Development Grant from the American Academy of Neurology, George C. Cotzias Memorial Fellowship, Network Models in Dystonia grant from the Dystonia Medical Research Foundation, Department of VA Merit Review (I01RX003676), Care Source Ohio Community Partnership Grant, and philanthropic funds to the Department of Neurology at University Hospitals (Penni and Stephen Weinberg Chair in Brain Health).

Financial Disclosure and Conflict of Interest:
Shaikh serves on speaker bureau for Acorda Pharmaceuticals, and Abbott Neuroscience. Angela Ridgel and Kenneth Loparo are co-inventors on two patents which are related to the device used in this study: “Bike System for Use in Rehabilitation of a Patient,” US 10,058,736. No royalties have been distributed from this patent.

Corresponding Author:
Aasef G. Shaikh, MD, PhD
Department of Neurology
University Hospitals Cleveland Medical Center
11100 Euclid Avenue
Cleveland, OH 44110
Phone: 216-844-1000
Email: axs848@case.edu

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Abstract:

Objective: Physical exercise, particularly tailored approaches like dynamic cycling, has shown promise in enhancing motor function in Parkinson’s disease (PD). We examined the underlying mechanisms of dynamic cycling in PD, emphasizing its impact on the activity of the subthalamic nucleus (STN), a pivotal region within the basal ganglia.

Methods: The investigation involved 77 dynamic cycling sessions conducted among seven PD individuals. Each participant underwent a maximum of 12 sessions over a four-week period. Local field potentials (LFPs) originating from the STN were recorded before and after dynamic cycling, utilizing DBS electrodes positioned within the nucleus. We evaluated both immediate and sustained impacts of dynamic cycling on LFP. The periodic LFP activity was assessed by determining the dominant spectral frequency and the power associated with that frequency. Aperiodic LFP activity was analyzed by calculating the 1/f exponent of the power spectrum.

Results: The comparison of LFP parameters immediately before and immediately after dynamic cycling did not reveal significant changes in the LFP characteristics. Long-term effects, over four weeks, however, revealed substantial alterations in power at the dominant frequency and 1/f exponent of the power spectrum. Changes were observed in both dorsal and ventral STN electrode contacts, with varied responses among participants. The comparison of parameters between hemispheres indicated a trend towards uniformity, implying a tendency for equalization in inter-hemispheric STN activity. Similar trends were also observed in the dorso-ventral parameter ratios, suggesting uniformity of neuronal activity across dorso-ventral axis of the STN in response to dynamic cycling.

Conclusions: These results highlight the impact of dynamic cycling on STN neuronal activity in PD. Prolonged interventions, even without immediate changes, bring about significant modifications, emphasizing the role of extended exercise in PD management and neuroplasticity.
Introduction:
Nearly 10 million people worldwide suffer from Parkinson’s disease (PD). Physical exercises play a crucial role in enhancing the quality of life for those with PD. One such type of PD rehab is served by high cadence dynamic cycling. Dynamic cycling at a high cadence involves using a motorized stationary bike for maintaining desired pedaling rate. The system adds resistance based on the rider’s effort, requiring continuous exertion to maintain a preset average. This constant engagement influences neural behavior. Despite the recognized effectiveness of the intervention, its mechanistic underpinnings remain unknown. This study delves into these mechanisms within the context of the subthalamic nucleus (STN), a pivotal location for pathophysiology and treatment of PD.

The STN is a strategic nucleus within the basal ganglia, playing a crucial role in the integration of sensorimotor functions. It establishes extensive connections with key brain regions, including the cerebellum, brainstem, thalamus, and cortex. There is a reciprocal connection between the dorsal STN and the cerebellum, facilitated by subthalamo-ponto-cerebellar projections. The ventral STN connects with the inferior frontal gyrus through the hyperdirect pathway. The pallidum mediates connections of STN with thalamus, while STN receives cortical projections via striatum. PD is associated with increased STN neural activity. Levodopa and therapeutic modulation with deep brain stimulation (DBS) changes STN hyperactivity.

Can exercise modulate STN activity? The exercise leads to changes in blood flow, neuro-transmitter levels, and neurotrophic factors. Acute exercise reallocates the brain’s energy towards the motor systems and increases the blood flow to striatum, cortex and cerebellum. Engaging in 60 minutes of exercise leads to a notable elevation in extracellular dopamine levels in rats. Acute exercise increases norepinephrine levels in the striatum. Given the strong connectivity of STN with the striatum, cortex, and cerebellum, it is possible that acute effects of exercise may be seen in the STN activity pattern. In long term, both randomized and non-randomized controlled exercise trials have shown enhancement in serum neurotrophic factors, such as brain-derived neurotrophic factor (BDNF) and insulin-like growth factor-1 (IGF-1). In a 12-month exercise intervention for healthy adults, a positive correlation was observed between motor fitness and the overall volume of putamen and globus pallidus, suggestive of neuroplasticity in response to exercise. This suggests neuroplasticity in response to exercise that may be reflected in the STN activity.

The goal of our study, based on above premise, is to study the effects of exercise on changes in STN neuronal activity using local field potentials (LFP). The hypothesis is that dynamic cycling in PD influences the STN activity as measured by LFP. The anticipated outcome suggests that changes, whether immediate or not in the acute phase after exercise, will become evident after several exercise sessions.

Methods:
The study protocol and written informed consent were approved by the institutional review board. The primary focus was to explore the mechanistic foundations of how dynamic cycling contributes to the improvement of PD symptoms. This involved measuring the effects of dynamic cycling on STN neuronal activity in PD. We measured effects of dynamic cycling on STN LFP activity on 77 instances from seven PD individuals (six men and one woman; age 68.6±9.2). The average Unified Parkinson’s Disease rating scale (UPDRS-III) values were 20.7±2.56, and average daily dopamine dose was 1135.7±470 mg/day. The inclusion criteria were the diagnosis of PD confirmed with UK Brain Bank Criteria, stable antiparkinsonian medication regimen for at least six months, bilateral subthalamic region deep brain stimulation (STN-DBS) with Medtronic Percept™ PC implantable pulse generator and electrode lead models 3389 or Sense Sight B33005 Directional™ (Medtronic, Minneapolis, MN, USA), the ability to provide written informed consent, and the ability to perform exercise on a motorized stationary bike every other day for up to 12 sessions over four weeks. Those with cardiovascular risk factors or musculoskeletal injury that prevents safe participation in the exercise program were excluded from the study.

Experimental Setup: The participants engaged in a structured exercise intervention that involved dynamic cycling, 12 supervised sessions. Each session involved lasted 40 minutes and was spaced 48-72 hours apart from the subsequent session. Cycling was done on a custom made interactive motorized stationary bike at a cadence of 80 rotations per minute (RPM) for 30 mins. Each high
cadence cycling was preceded by a 5-minute warm-up period and was followed by a 5-minute cool-down period at a speed of 60 RPM. The time interval between exercise and medications was kept consistent, and the participants performed the session at the same time of the day. Patients were advised to refrain from additional physical activities beyond their regular routine before the intervention. This precaution ensures a clear determination that any observed changes result specifically from the exercise intervention. The exercise intensity was monitored at two-minute intervals through a heart-rate monitor (Mi Band 6, Xiaomi, China or Polar H10 sensor, Polar, USA). The rating of perceived exertion (RPE) was acquired every four minutes using the 6-20 Borg RPE scale. Out of the seven participants, five completed all 12 sessions. One participant discontinued after the 9th session, and another discontinued exercise sessions after the 8th session, both due to unrelated seasonal flu like illness. Nevertheless, we were able to test our hypothesis from all participants, who were included in the analysis.

LFP data acquisition: The participants remained seated in a comfortable chair with their arms supported and refrained from talking or making any voluntary movements that are known to change STN neuronal activity. We used the sensing functionality of Medtronic Percept™ PC to examine the effects of exercise on neuronal activity, the LFPs, from four contact pairs (two in each hemisphere). The steps followed are depicted in Figure 1A. Medication was taken at least 120 minutes before each session, and though biking was performed with DBS on, measurements were taken with DBS turned off for at least 10 minutes before and after each biking session during the 210-second LFP recording sessions at a sampling frequency of 250 Hz. This mode records differentially contact pair combinations (contacts 0-2 (ventral) and 1-3 (dorsal) in the left STN; and contacts 8-10 (ventral), 9-11 (dorsal) on the right STN) (Figure 1B). The process was repeated before and after each of the 12 exercise sessions over the four-week period.

Data analysis: After conducting a visual inspection of the data, any instances of movement artifacts were identified and removed from the dataset. The cardiac artifact noted in two participants was removed using the open source Perceive toolbox (https://www.github.com/neuromodulation/perceive/). The results were saved to be used for further analysis. The power spectral density (PSD) was calculated for each dataset using Welch’s method, using a 1 second Hanning
window with 0.5 second overlap. The PSD values were then used to fit a curve using the “Fitting oscillations over 1/f” (FOOOF)\(^{30}\). The peak width range was selected to minimize the error between the fit and actual PSD. The initial frequency range chosen for FOOOF fitting was from 4 to 60 Hz. This range underwent adjustments increasing the lower limit and decreasing the upper limit by 1 Hz increments, whenever oscillatory peaks were detected at the boundaries of this defined range\(^{31}\). For long-term data analysis, we divided each dataset into 20 overlapping epochs and performed similar analysis for each of the epoch to derive the FOOOF parameters to compare the first and the last session data. The FOOOF algorithm yielded two chosen parameters: the "aperiodic exponent," representing the slope of the aperiodic activity, and the "peak power", indicating the peak power of the periodic component derived after subtracting the aperiodic activity from the power spectrum. Additionally, we also analyzed the frequency at which this peak occurred which will be referred as “periodic peak power frequency”.

Results:
The overarching goal of this pilot study was to gain insight into the physiological underpinning of how the dynamic cycling intervention affects PD, particularly in context of STN neuronal activity. The hypothesis is that dynamic cycling in PD modulates the STN activity measured by LFP, where the change may (or may not) be evident in the acute phase, immediately after the exercise; but it would be evident after several exercise sessions. To examine this hypothesis, we investigated the impact of dynamic cycling across a total of 77 biking sessions involving seven Parkinson's disease participants with bilateral STN DBS using the Medtronic Percept™ PC device. These sessions occurred every other day over a period of four weeks, during which we assessed LFPs both before and after exercise, evaluating the effects of dynamic cycling on LFP changes in both acute and long-term contexts.

Changes in the motor scores: We found significant enhancements in postural tremor (66.76±32.78% improvement over 4 weeks) and kinetic tremor (40.29±22.17% improvement) in response to exercise, however, minimal resting tremor was observed even at the pre-exercise state since DBS was on. In other words, dynamic cycling improved postural and kinetic tremor that was refractory to DBS at programmed parameters. Finger taps speed and rhythm improved by 20±36% and 28.8±77.13%, respectively. Although hand movement speed remained unchanged, there was a notable improvement in hand movement rhythm by 32.83±30.57%. Dynamic cycling did not improve the foot taps.

Immediate effects of dynamic cycling on STN activity measured with LFP: Figure 2A depicts an example of the segment of LFP recorded from two locations in the right STN and two locations in the left STN. The red traces depict before exercise and grey traces immediately after exercise on the same day. There are no subjective changes noted. The observations were further confirmed by computing the power spectral density, the dominant frequency of periodic component of the LFP, the peak power of periodic component at dominant frequency, and the 1/f exponent that measures the aperiodic component of the LFP (as outlined in methods section). Figure 2B depicts power spectra and 1/f analyses in the same participant, from each of the four contacts, before and after exercise on the same day. There were no objective differences. In an exemplary participant shown in Figure 2B, the dominant power spectral frequency on dorsal and ventral contacts on the right and left side before biking were 23.80 ± 1.86 (right dorsal), 22.13 ± 1.50 (right ventral), 26.37± 0.65 (left dorsal), and 24.70 ± 5.10 (left ventral) Hz respectively. The values after biking were 24.23 ± 2.08 (right dorsal), 22.44 ± 1.35 (right ventral), 26.52 ± 1.02 (left dorsal), and 24.78 ± 5.30 (left ventral) Hz. The power of the dominant spectral frequency at dorsal and ventral contacts before biking on the left side were 0.36 ± 0.06 and 0.40 ± 0.06, respectively; the power at the dominant spectral frequency on dorsal and ventral contacts on the right side were 0.55 ± 0.11 and 0.58 ± 0.15, respectively. After biking, the values remained unchanged, 0.34 ± 0.08 and 0.36 ± 0.08 on left dorsal and left ventral, respectively; and 0.49 ± 0.09 and 0.61 ± 0.08 at right dorsal and right ventral, respectively. The pre-biking value of the 1/f exponent of the PSD in the LFP signal recorded from left dorsal and left ventral contacts were 1.19 ± 0.1 and 0.92 ± 0.09 respectively, while the 1/f exponent on right dorsal and right ventral contract were 0.96 ± 0.18 and 0.81 ± 0.09, respectively. After biking, the values were 1.22 ± 0.15 and 0.92 ± 0.01 in left dorsal and left ventral contacts respectively. The values of post-biking 1/f exponent on dorsal and ventral contact on the right side were 0.91 ± 0.08 and 0.81 ± 0.11, respectively.
Such lack of effects of dynamic cycling on acute phase was noteworthy in all participants, across all sessions. Figures 3A-F depict the summary. Figures 3A, B illustrate the summary of $1/f$ exponents. The power at dominant spectral frequency is summarized in Figures 3C, D and the dominant spectral frequency is summarized in Figures 3E, F. Each symbol illustrates an individual session, symbol color represents an individual PD participant, filled symbol is ventral contact while open symbol is dorsal contact. All symbols are gathered around the equality line which lies within the 95% confidence interval of the linear fit, suggesting the lack of an acute phase effect of dynamic cycling on LFP, across the participant population.

Long-term effects of dynamic cycling on STN activity measured with LFP: We asked how dynamic cycling changes the LFP over four weeks (over 12 sessions). Figure 4 depicts the long-term measurements of the $1/f$ exponent (Figure 4A), power at the dominant spectral frequency (Figure 4B), and dominant spectral frequency of the LFP power spectrum (Figure 4C), measured from dorsal and ventral contacts on the right and left side. Each symbol is an observed measure plotted on the y-axis, while the x-axis is the session number. The power at the dominant spectral frequency changes in all four contacts over 12 sessions. For the participant shown in Figure 3, the power of dominant spectral frequency from the 1st to the 12th session was significantly different (Right Ventral: start (session 1) 1.61 ± 0.022, end (session 12) 1.86 ± 0.0409; $p<0.001$; Right Dorsal: start (session 1) 1.577 ± 0.0403, end (session 12) 1.881 ± 0.0268; $p<0.001$;

Figure 2: (A) shows 1s of local field potential (LFP) time-series data from each contact from participant PD04. (B) depicts power spectral density (PSD) of each of the time series signals. The PSD signal can be divided in 2 components, the aperiodic activity and periodic power as shown in the last 2 columns of panel B.

Figure 3: Immediate effects of biking on LFP recorded from ventral and dorsal contacts. This figure shows the changes in LFP parameters calculated using FOOOF technique. (A, B) show the effects of biking on aperiodic exponent. (C, D) show the effects of biking on periodic peak power. (E, F) show the effects of biking on dominant frequency component of the LFP signals.
Figure 5: (A) illustrates the 1/f exponent summary comparing the exercise intervention’s start and end, (B) presents a summary of power at the dominant spectral frequency at the onset and conclusion of the exercise intervention for all seven participants.
Long term effects - intra-hemispheric (dorsal-ventral) comparison: The ventral and dorsal contacts, spaced 0.5mm apart, facilitate the recording of LFP signals from distinct neural populations, potentially involving overlapping neuronal groups. We analyzed the alterations in the ratio of parameters (1/f exponent, peak power frequency) between dorsal and ventral values for the signals detected at these contacts within the same hemisphere, comparing before the first and last sessions. In Figures 6A and 6B, each color represents one participant, with a solid line for the right STN and a dashed line for the left STN. Notably, the dorsoventral ratio of power at the dominant spectral frequency and the 1/f exponent showed a significant reduction, converging close to 1 (Wilcoxon signed-rank test, p < 0.05 for both power at the dominant frequency and the 1/f exponent).

Long-term effects - inter-hemispheric (right-left) comparison: Examining inter-hemispheric changes with exercise, we observed a reorganization in the power distribution of the peak power and 1/f exponent in the right and left STN. Figure 6C illustrates such effect for the 1/f exponent, approaching the unity (ratio approaching 1) in both contacts. The inter-hemispheric ratio of the 1/f exponent was not statistically significant (Wilcoxon signed-rank test, p > 0.05). Figure 6D shows the peak power ratio, converging toward 1 in most cases, significantly different for dorsal contacts (p < 0.05) but not for ventral contacts (p > 0.05).

Discussion:
Expanding on previous evidence of dynamic cycling's beneficial impact on PD motor symptoms, this pilot study aimed to uncover the mechanisms behind these improvements. Our hypothesis centered on the modulation of STN activity measured by LFP in PD, both acutely and in the long term. Using DBS electrodes, we measured LFP frequency, power at the dominant spectral frequency, and aperiodicity (1/f exponent). In contrast to prior research that focused on real-time LFP activity during motor activity, our study investigated effects of exercise on spontaneous LFP activity measured immediately before and after the exercise. In addition to the acute effects, we also examined the long-term effects of exercise on LFP measured from the STN. We found lack of immediate effects of dynamic cycling, but lasting effects were evident over the 4-week intervention with up to 12 sessions of dynamic cycling.
The extended effects are aligned with the notion that exercise induces nervous system plasticity, and such plasticity then led to changes in STN activity manifest in LFP changes. There is strong evidence that exercise and physical activity in PD involves neurotrophic factors as key mediators of neuroplasticity. Intensive treadmill training is known to rescue alterations in striatal plasticity in rodent models of synucleinopathy. Improved motor control is also associated with a recovery in dendritic spine density and alterations and lasting rescue of physiological corticostriatal long-term potentiation. Further pharmacological analyses of long-term potentiation have shown modulation of N-methyl-d-aspartate receptors bearing GluN2B subunits and tropomyosin receptor kinase B, BDNF is also involved in these beneficial effects. The exercise induced alterations in both dopaminergic and glutamatergic neurotransmission are thought to mitigate cortically driven hyper-excitability in basal ganglia that is seen in PD.

We observed changes in both the initial and final session LFP measurements, but the response to 1/f and peak power values was varied, sometimes increasing, while sometimes decreasing. This prompted us to further investigate, shifting our analysis to a comparison between contacts and revealing intriguing results. The separation between dorsal and ventral contacts indicates two distinct or partially overlapping groups of STN neurons, potentially connected via interneurons or to external brain structures. Our observation that ratio between dorsal ventral contacts tending towards unity suggests increased similarity in their relative activity. Furthermore, to understand the overall impact of this exercise intervention on bilateral STN in PD, comparing the activity on both STNs enabled us to evaluate long-term changes in interhemispheric differences. The trend in the ratio of bihemispheric contacts converging towards one indicates that the dorsal contacts, generally placed in the sensorimotor region of STN according to the tripartite division of STN anatomy, initially had asymmetric values and became more symmetric after the exercise intervention. Notably, dopamine intake is known to increase interhemispheric STN coherence, suggesting a similar impact of dopamine intake and prolonged physical exercise.

The LFP signals, representing neuronal activity from transmembrane currents in the extracellular medium, are significantly influenced by synaptic currents among various contributors. The recorded value of LFP signals is impacted by the type of neurotransmitter release, morphology, and distance from the electrode. The 1/f exponent, serving as a measure of aperiodic activity in the recorded LFP signal, can be considered a surrogate measure of ionic conductance and the extracellular medium. Additionally, it has been proposed that the 1/f exponent reflects the excitatory-inhibitory balance in the region. The peak power represents the highest observed power in the synchronous oscillatory activity of surrounding neurons within the specified range of 4–60 Hz in this study.

Both periodic and aperiodic activity measured by the power at peak frequency and 1/f exponent can be highly variable and may respond to different states of nervous system. While measuring the acute response, these patterns of neural discharge would also be influenced by the state of the disease at a given time of the day and level of dopaminergic medications. To minimize the impact of dopaminergic medications on our interpretations, we designed our experiments with a consistent duration between medication intake, exercise performance, and the measurement of LFPs before and after the dynamic cycling exercise intervention. Despite efforts to control for dopaminergic medication effects on LFP interpretations during dynamic cycling, challenges in ensuring consistent medication levels persist due to time variances. While observations suggest minimal variance between pre- and post-exercise, the data's considerable variability argues against a consistent medication-related explanation for changes across dorsal and ventral STN and hemispheres.

In summary, this study examines the impact of high cadence dynamic cycling on STN activity in PD patients, investigating acute and long-term changes in LFPs. While immediate post-exercise effects were not observed, significant alterations in STN LFP power and periodicity emerged over a four-week, 12-session period. These findings indicate dynamic cycling induces neuroplastic changes in STN activity, potentially enhancing motor function in PD patients. The study underscores the significance of prolonged, customized exercise interventions for managing PD symptoms.
Acknowledgements

Our gratitude extends to the Medtronic, Minneapolis, MN, USA team particularly James Adler and Robyn Whipple, and Adam Matthews for their invaluable support in steering us through the data collection and raw data interpretation process. We also extend our thanks to Aratrik Guha and Hanieh Agharazi for their contributions in troubleshooting data analysis.

References

