Characteristics of Cerebrospinal Fluid in Autism Spectrum Disorder - A Systematic Review

Vandana Srivastavaa,c, Christian O'Reillya,d

a AI Institute, University of South Carolina, 5th floor, 1112 Greene St., Columbia, South Carolina, USA.

b Department of Computer Science and Engineering, University of South Carolina, Columbia, South Carolina, USA.

c Carolina Autism and Neurodevelopment Research Center, University of South Carolina, Columbia, South Carolina, USA.

d Institute for Mind and Brain, University of South Carolina, Columbia, South Carolina, USA.

Correspondence: Vandana Srivastava, vandana@email.sc.edu

Declaration of interest: none
Abstract

Autism Spectrum Disorder (ASD) is a range of neurodevelopmental conditions characterized by impaired social interaction, learning, and restricted or repetitive behaviors. The underlying causes of ASD are still debated, but researchers have found many physiological traits to help understand the etiology of ASD. Some of the features that characterize people with ASD are immune markers (e.g. increased lymphocytes, cytokine levels), decreased neuropeptides like oxytocin and arginine vasopressin, folate deficiency, change in brain anatomy and physiology, and increased extra axial cerebrospinal fluid (CSF). CSF has a critical role in maintaining the homeostasis of the neuronal environment and has, therefore, been analyzed in multiple conditions that impact the central nervous system. The study of CSF is critical in understanding neurological disorders as its composition changes with the disorders, and these changes may indicate various disorder-related physiological mechanisms. For this systematic review, we searched the PubMed database for studies published between 1977 and 2023. We found 54 studies from 276 eligible for this review after manual screening. We took stock of the evidence supporting the hypothesis that ASD alters the properties and composition of CSF. We systematically report on the different attributes of CSF in the ASD population that could 1) be potential biomarkers, 2) assist in understanding the origins and progression of ASD, and 3) shed light on the aspects of the relationship between ASD and the immune system.

Keywords: autism spectrum disorder, cerebrospinal fluid, immune system,
Introduction

Autism Spectrum Disorder (ASD) is a complex neurodevelopment disorder that results in an array of challenges associated with social interactions, communication skills, learning, and repetitive behaviors. Individuals with ASD may present varying degrees of impairment, etiology, and phenotypical profile. Hence, this condition is referred to as a "spectrum" disorder. According to the Centers for Disease Control and Prevention, the prevalence of ASD among children aged 8 years in the USA was 1 in 36 (2.8%; approximately 4% of boys and 1% of girls) in 2020 (CDC, 2022). Factors contributing to the etiology of ASD are diverse and not all fully ascertained but many studies have been carried out to determine the anatomical and physiological characteristics specific to the ASD population. Analyzing the properties of the cerebrospinal fluid in that population is one of the avenues that have been investigated to gain a deeper understanding of ASD.

The cerebrospinal fluid, or CSF, is a clear, colorless fluid present in the region surrounding the brain and spinal cord of vertebrates (Adigun, Al-Dhahir, 2022). It serves multiple purposes, including keeping the brain floating, cushioning it from jolts and preventing associated trauma, helping distribute various substances between brain cells, and carrying away the waste produced from neural activity. The CSF is found in the brain ventricles and the cranial and spinal subarachnoid space. It is produced mostly by the neuroepithelial lining (called ependyma) of the brain ventricular system (Jiménez et al., 2014) and the central canal of the spinal cord. These special ependymal cells exist in the choroid plexus (CP), an organ that facilitates the entry of immune cells into the central nervous system (CNS) and monitors the synthesis, formation, and flow of CSF (Lun et al., 2015). The brain interstitial fluid and capillaries also secrete a small amount of CSF (Sakka et al., 2011).

The CSF is regenerated about 4-5 times per day. It is similar in composition to blood plasma except that it contains negligible proteins and has higher concentrations of Na⁺, Cl⁻, and Mg⁺, and lower concentrations of K⁺ and Ca²⁺ (Sakka et al., 2011). Monoamines like dopamine, serotonin, melatonin, and neuropeptides like atrial natriuretic peptide (ANP) play an important role in CSF regulation (Faraci et al., 1990). Along
with monoamines and neuropeptides, arginine vasopressin (AVP) receptors are present on the surface of the choroidal epithelium. CSF secretion is found to be decreased by ANP and AVP (Faraci et al., 1990).

CSF is easy to obtain and can be drawn from the spinal canal at very low risk. Because of its proximity to CNS, the white blood counts, protein levels, serum-glucose ratio, and other properties of the CSF can help differentiate CNS infections caused by distinct pathogens (Gomes, 2022), making it an important medical diagnostic tool. The circulation of CSF can also be determined non-invasively using Magnetic Resonance Imaging (MRI). The study and interpretation of CSF is critical to understand neurological disorders as its composition, quantity, and flow, changes with the disorders. (Hrishi & Sethuraman, 2019).

With this review, we aim to synthesize the knowledge gathered from previous studies to clarify if and how ASD is associated with changes in the properties of the CSF. More specifically, we aim to thoroughly assess the evidence supporting the hypothesis that the composition and properties of the CSF are altered in ASD, compared to neurotypical individuals.

Method

The search strategy followed the PRISMA guidelines (Fig 1). PubMed database was queried with the research string ("cerebrospinal fluid" or csf) and ("Autism" or "ASD") not diet not schizo* not antisiphon not hydrocep* to filter the studies related to schizophrenia, hydrocephalus, and antisiphon devices. The PubMed was last queried in January 2024 and included papers (total 272) that were published between 1977 and December 2023. The criteria for choosing the papers were:

1. CSF was analyzed in the context of ASD.
2. The paper was not a neuroimaging study, except when the focus was to characterize extra-axial CSF.
3. The paper was not a review or meta-analysis.

The papers were manually reviewed and screened by the first author (VS). Problematic cases were discussed or independently reviewed by the senior author (COR). Out of 272, only 50 fulfilled the selection criteria and are considered for this review. We also included 4 other research papers that were
not returned in the search results but were found by following the references of reviewed papers and are closely aligned with the aim of this review. The following data were collected from the studies:

- Author and year (column 1)
- Age of both study group (ASD participants) / control group (non-ASD or neurotypical) (column 2)
- Size of the study group (count of ASD participants whose CSF is analyzed) (column 3)
- Sex distribution (number of males and females) in the study group (column 3)
- Size of the control group (count of non-ASD or neurotypicals whose CSF is analyzed) (column 4)
- Sex distribution (number of males and females) in control group (column 4)
- Observation (CSF characteristic in the study group as compared to the control group) (column 5)

We manually collected the data from each study from the “abstract” and “results” sections and organized it in tabular form. We have used dashes (-) to denote missing values in the age/size column. To avoid bias, we also included studies with null results.
Results

A total of 54 papers were studied to find the characteristics of CSF in ASD. We organized the papers into seven categories based on their observed CSF properties. The categories are:

1. Immune markers
2. Extra-axial CSF
3. Folate deficiency
4. Protein / amino acid
5. Monoamine neurotransmitters (serotonin, dopamine)
6. Nanopeptides (oxytocin, arginine vasopressin)

7. Others (beta-endorphin, gangliosides)

Two studies (Ramaekers et al., 2020) and (Young et al., 1977) were mentioned in two different tables (“monoamine neurotransmitters”, “folate deficiency”) and (“immune markers”, “folate deficiency”), respectively. Fig 2 shows the distribution of research papers in each category.

The body of literature reviewed is biased concerning age and sex. Most of the studies included either only males or a large number of males in their research. Also, most human studies were conducted with infants or children, with very few studies in adults.

![Distribution of research papers in each category.](image)

Presence of neuroinflammation markers in CSF

Many comorbidities of ASD indicate an altered immune system, including allergies (Xu et al., 2018), gastrointestinal issues (Saurman et al., 2020), and autoimmune diseases (Hughes et al., 2018). These comorbid conditions add to the ASD burden, often resulting in poorer quality of life. The molecular properties of CSF change during inflammation and disease of the CNS (Świderek-Matysiak et al., 2023).

In a neuro-inflammatory study (Lepennetier et al., 2019), the CSF and serum of 75 subjects was tested for 36 cytokines (CCL1–3, CCL7, CCL8, CCL11, CCL13, CCL19, CCL20, CCL22–27, CXCL1, CXCL2, CXCL5, CXCL6, CXCL8, CXCL9, CXCL11–13, CXCL16, CX3CL1, IL-2, IL4, IL-6, IL-10, IL-16, GM-CSF, IFN-γ, MIF, TNFα, and MIB1β). The authors observed that 26 out of 36 cytokine levels were increased compared to the control group. Also, CSF cytokine concentrations were positively correlated with CSF
immune cell counts (CD4 and CD8 T cells, B cells, plasmablasts, monocytes, and NK-natural killer cells) (Lepennetier et al., 2019). Inflammatory molecules have been shown to impact neurodevelopment, and early-life inflammation has been linked with neurodevelopmental disorders like ASD cerebral palsy, epilepsy, and schizophrenia (Jiang et al., 2018). In ASD, a significant increase in proinflammatory cytokines and growth factors was found, especially the chemokine MCP-1 (12-fold increase) (Vargas et al., 2005). MCP-1 is a chemokine that is associated with innate immune reactions and is vital for monocyte and T-cell activation in regions of tissue injury (Vargas et al., 2005). In a postmortem study of ASD, the lymphocytes were increased in white and gray matter tissues of most brain regions for ~65% of participants with ASD as compared to controls (DiStasio et al., 2019), irrespective of age and sex.

Growth factors play a regulatory role in immune and vascular systems (Pardo et al., 2017). In a longitudinal study, a significant difference was found in CSF growth factors EGF and sCD40L (Pardo et al., 2017) in children (2 to 8 years of age) with ASD compared to controls. EGF is important for the growth, proliferation, and differentiation of numerous cell types and is involved in several pathways of neuronal function, whereas sCD40L modulates the function of B cells (Pardo et al., 2017). The CSF profiles of cytokines, chemokines, and growth factors did not change significantly in the follow-up performed 1.17 to 3.53 years later (Pardo et al., 2017). The same study found decreased levels of quinolinic acid, which indicates the inefficiency of kynurenine pathway to form quinolinic acid from tryptophan (Zimmerman et al., 2005). Decreased neopterin in CSF with increased biopterin suggested that the neuroinflammation in the subjects of this study was not due to the metabolic pathways (Zimmerman et al., 2005).

Tumor necrosis factor-alpha (TNF-α) is an inflammatory cytokine produced by macrophages/monocytes during severe inflammation (Idriss & Naismith, 2000) and its elevation is associated with several autoimmune diseases like rheumatoid arthritis, crohn’s disease, and psoriasis (Parameswaran & Patial, 2010). The presence of inflammation and immune system over-activation in ASD is supported by reports of elevated levels of TNF-α in the CSF of an all-male cohort (Chez et al., 2007). Another study found elevated levels of TNF-α in the serum but not the CSF of a group of participants with ASD (Zimmerman et
al., 2005). However, this study reported no significant correlation between the level of TNF-α in serum and CSF, and the use of small sample sizes may be responsible for non-conclusive tests. Presence of neuroinflammation is further supported by a recent study that found elevated levels of TNF-α and interleukins (Than et al., 2023) in ASD.

Despite immune dysregulation in ASD, initial studies found CSF immunoglobulin (antibodies) levels in the normal range in the ASD cohort when compared with previous studies (Young et al., 1977). Table 1 summarizes the studies related to immune markers in CSF.

Table 1: Immune markers in CSF

<table>
<thead>
<tr>
<th>Study</th>
<th>Age (study group / control group)</th>
<th>Study group (ASD participants)</th>
<th>Control group (Non-ASD participants)</th>
<th>Observations (in the study group)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Than et al. 2023</td>
<td>3 - 11 years / 1 - 18 years</td>
<td>26 (-)</td>
<td>8 (-)</td>
<td>Significantly increased TNF-α, IL-4, IL-21 levels in CSF</td>
</tr>
<tr>
<td>DiStasio et al. 2019</td>
<td>5 - 68 years / 1 - 64 years</td>
<td>25 postmortem (19 males, 6 females)</td>
<td>30 postmortem (19 males, 11 females)</td>
<td>Increased lymphocytes in ~65% of males and females, across all ages, in most brain regions, white/gray matter, and leptomeninges; more CD3⁺ T lymphocytes than CD20⁺ B lymphocytes and CD8⁺ than CD4⁺ T lymphocytes</td>
</tr>
<tr>
<td>Pardo et al. 2017</td>
<td>2 - 8 years</td>
<td>67 (55 males, 12 females)</td>
<td>54 (41 males, 13 females)</td>
<td>Significant differences in the growth factors in the CSF of the ASD group with respect to controls; profiles of cytokines, chemokines, and growth factors did not change significantly in ASD in the follow-up years</td>
</tr>
<tr>
<td>Chez et al. 2007</td>
<td>2.5 - 9.7 years</td>
<td>10 males</td>
<td>Compared with previous studies</td>
<td>CSF TNF-α was significantly increased in comparison to serum-TNF-α</td>
</tr>
<tr>
<td>Zimmerman et al. 2005</td>
<td>2.7 - 10 years / 2-14 years</td>
<td>12 (10 males, 2 females)</td>
<td>15 (6 males, 9 females)</td>
<td>Elevated levels of TNF-α in the serum but not the CSF of the autism group; quinolinic acid and neopterin were decreased, and biopterin was elevated in autism group</td>
</tr>
<tr>
<td>Vargas et al. 2005</td>
<td>3 - 10 years / 12 - 45 years</td>
<td>6 (4 males, 2 females)</td>
<td>9 (3 males, 6 females)</td>
<td>Significantly increased MCP-1(12-fold increase); no differences in expression of TARC or TGF-β1; increased cytokines (IL-6, IFN-γ, IL-8, MIP1β, NAP-2, IFN-γ inducing protein-10) and angiogenin; increased growth factors (MIF, VEGF, LIF, osteoprotegerin, HGF, PARC, FGF-4, FGF-9, IGFBP3, and IGFBP4)</td>
</tr>
<tr>
<td>Young et al. 1977</td>
<td>3.8 – 9.1 years</td>
<td>15 (11 males, 4 females)</td>
<td>Compared with previous studies</td>
<td>CSF immunoglobulin levels were within normal limits</td>
</tr>
</tbody>
</table>

Extra axial CSF in infants later diagnosed with ASD

The presence of increased CSF volume in the subarachnoid space surrounding the cortical surface is a brain abnormality referred to as extra axial cerebrospinal fluid (EA CSF). Having a large volume of CSF forces the ventricles to widen, causing pressure on brain tissues. This can eventually lead to brain damage. Many studies have confirmed that children later diagnosed with ASD had EA CSF from 6 to 24 months compared to neurotypicals (Hallahan et al., 2009; McAlonan et al., 2005; Shen, 2018; Shen et al., 2018; Shen & Piven, 2017). Excess CSF has been associated with an enlargement of the head circumference in ASD (Denier et al., 2022; Shen et al., 2013, 2018). EA-CSF has also been linked with enlargement of the perivascular spaces (fluid-filled channels that surround blood vessels in the brain) from 6 to 24 months in ASD, leading to sleep problems later in ages between 7 - 12 years (Garic et al., 2023). The amount of EA CSF at 6 months has also been claimed to be predictive of later ASD symptom severity (Shen et al., 2013). CSF volume was reported to stabilize before 4 years of age (Peterson et al., 2021). No significant difference in CSF volume was found for adults in one study (Creasey et al., 1986), although a different study reported subarachnoid CSF/meningeal CSF volume to be significantly different in ASD compared to controls in a male-only cohort of mean age 15 years (Tate et al., 2007). Finally, a study involving proband-sibling pairs (i.e., infants at elevated likelihood for ASD given the presence of an older sibling with a diagnosis of ASD) found the brain size of the younger siblings to be correlated with the scores on the Social Communication Questionaries of the older proband sibling in the groups where the younger sibling was diagnosed with ASD at 24 months but found no such association for EA CSF at 6, 12, or 24 months (Girault et al., 2022).

The results for the relationship between EA CSF and ASD are summarized in Table 2.
Table 2: Extra-axial CSF

<table>
<thead>
<tr>
<th>Study Group / Control Group</th>
<th>Study Group (ASD Participants)</th>
<th>Control Group (Non-ASD Participants)</th>
<th>Observations (in the study group)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Garic et al. 2023</td>
<td>6.5, 12.7, 24.7 months / 6.7, 12.6, 24.7 months</td>
<td>47 (ELA; ASD+: 40 males, 7 females) / 180 (ELA; ASD-: 102 males, 78 females)</td>
<td>Across all groups, enlarged PVS at 24 months was associated with greater EA CSF volume from ages 6 to 24 months and more frequent night wakings at school-age</td>
</tr>
<tr>
<td>Girault et al. 2022</td>
<td>6 months / 12 months / 24 months</td>
<td>42 ELA; ASD+ / 39 ELA; ASD+ / 42 ELA; ASD+</td>
<td>No significant association between proband autistic traits (SCQ score) and sibling EA CSF at 6, 12, or 24 months (for both the ASD+ and ASD- groups)</td>
</tr>
<tr>
<td>Denier et al. 2022</td>
<td>>=20 years</td>
<td>120 (all males) / 136 (all males)</td>
<td>Increased head circumference due to EA-CSF</td>
</tr>
<tr>
<td>Peterson et al. 2021</td>
<td>3 - 42 years</td>
<td>97 (all males) / 92 (all males)</td>
<td>No difference in EA CSF volume between ASD and neurotypical</td>
</tr>
<tr>
<td>Shen et al. 2018</td>
<td>2 - 4 years</td>
<td>159 (132 males, 27 females) / 77 (49 males, 28 females)</td>
<td>ASD group had an average of 15.1% more EA CSF than controls; enlarged head circumference in the ASD group</td>
</tr>
<tr>
<td>Shen et al. 2017</td>
<td>6 - 24 months</td>
<td>221 ELA (47 ASD+) / 122 TLA</td>
<td>Elevated levels of EA CSF in ELA group than TLA; 16% more EA CSF at 6 months in ELA ASD+ than in the ELA group</td>
</tr>
<tr>
<td>Shen et al. 2013</td>
<td>6 - 9 months</td>
<td>33 ELA (22 males, 11 females) / 10 ASD+ (10 ASD+)</td>
<td>Significantly elevated EA CSF in ELA infants at 6-9 months and continued until 1.5 - 2 years; the amount of EA CSF at 6 months was predictive of the severity of ASD symptoms; enlarged brain at an early age</td>
</tr>
<tr>
<td>Hallahan et al. 2009</td>
<td>Mean age: 18 years / 32 years</td>
<td>114 (96 males, 18 females) / 60 (53 males, 7 females)</td>
<td>Significantly larger volume of peripheral CSF in ASD than controls</td>
</tr>
<tr>
<td>Tate et al. 2007</td>
<td>Mean age: 14.7 years / 13.6 years</td>
<td>34 males / 26 males</td>
<td>Significantly different relationship between subarachnoid CSF/meningeal volume than controls</td>
</tr>
<tr>
<td>McAlonan et al. 2005</td>
<td>12 ± 1.8 years / 11 ± 1.2 years</td>
<td>17 (16 males, 1 female) / 17 (16 males, 1 female)</td>
<td>Increased total CSF volume</td>
</tr>
<tr>
<td>Creasey et al. 1986</td>
<td>18 - 39 years / 21 - 37 years</td>
<td>12 males / 16 males</td>
<td>No significant difference in volume of CSF</td>
</tr>
</tbody>
</table>

Abbreviations: ASD+: later diagnosed with ASD, ASD-: later diagnosed without ASD, ELA: Elevated likelihood for ASD, EA CSF: Extra axial cerebrospinal fluid, TLA: Typical likelihood for ASD, PVS: Perivascular spaces

Low folate level in CSF

Folate is a vitamin (B9) essential for brain health. It supports the creation of DNA and RNA, the formation of neurotransmitters, and the development of the nervous system during pregnancy (Balashova et al., 2018; Gordon, 2009). The predominant form of folate in cerebrospinal fluid is 5-Methyl-tetra-hydrofolate.
Cerebral folate deficiency (CFD) is caused by the malfunction in the folate receptor alpha (FRA), a protein that binds to folate (Gordon, 2009). FRA is created in the choroid plexus localized within the border of the cerebral ventricles and moves into the CSF (also released by the choroid plexus) to be transported to the brain. CFD can be caused by the presence of FRA autoantibodies that interfere with the function of that receptor.

The earliest study (Lowe et al., 1981) conducted on autistic and non-autistic neuropsychiatric patients found the CSF folate levels to be within the normal range in both groups. The subset of patients in the autistic group who were given oral folic acid supplements did not show clinical improvements (Lowe et al., 1981). Similarly, a more recent longitudinal study (two time points separated by 1-3 years) exploring the association between CFD and autism found no significant correlation between CSF 5-MTHF levels and autistic features (Shoffner et al., 2016). However, a few studies found low CSF 5-MTHF in ASD (Frye et al., 2013; Moretti et al., 2005; Ramaekers et al., 2007) and proposed oral d,l-leucovorin (folinic acid) (Moretti et al. 2005; Ramaekers et al. 2007; Frye et al. 2013) to alleviate ASD associated symptoms. In some cases (Frye et al., 2013, 2020; Moretti et al., 2005; Ramaekers et al., 2007) oral folic acid improved verbal communication, motor skills, and CSF 5-MTHF levels in the ASD group. Frye et al (2013) reported the presence of FRA in 75.3% (70/93) of the ASD group. A recent study found the CSF to have low folate in only 21% (8/38) of ASD participants when compared to controls (Ramaekers et al., 2020).

Table 3 summarizes the CSF folate deficiency papers in ASD.
Table 3: Folate levels in CSF

<table>
<thead>
<tr>
<th>Study group (ASD participants)</th>
<th>Control group (Non-ASD participants)</th>
<th>Observations (in the study group)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ramaekers et al., 2020</td>
<td>Low MTHF in 21% participants</td>
<td></td>
</tr>
<tr>
<td>Shoffner et al., 2016</td>
<td>CSF 5-MTHF levels vary significantly over time in an unpredictable way; no significant relationship to clinical features of autism</td>
<td></td>
</tr>
<tr>
<td>Frye et al., 2013</td>
<td>High prevalence (75.3%) of FRA; low CSF 5-MTHF; 44 children were given leucovorin calcium tablets; improvement in 44 treated vs. 26 untreated children on ratings of verbal communication, receptive and expressive language, attention</td>
<td></td>
</tr>
<tr>
<td>Ramaekers et al., 2007</td>
<td>CSF 5-MTHF was low in 23/25 (92%) in ASD; oral folic acid supplements led to normal CSF 5-MTHF</td>
<td></td>
</tr>
<tr>
<td>Moretti et al., 2005</td>
<td>Low CSF 5-MTHF; treatment with folinic acid resulted in improved CSF 5-MTHF concentration and better motor skills</td>
<td></td>
</tr>
<tr>
<td>Lowe et al., 1981</td>
<td>CSF folate levels were within the normal range in both ASD and control group</td>
<td></td>
</tr>
<tr>
<td>Young et al., 1977</td>
<td>CSF folate levels were within normal limits</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Study group (ASD participants)</th>
<th>Control group (Non-ASD participants)</th>
<th>Observations (in the study group)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ramaekers et al., 2020</td>
<td>Low MTHF in 21% participants</td>
<td></td>
</tr>
<tr>
<td>Shoffner et al., 2016</td>
<td>CSF 5-MTHF levels vary significantly over time in an unpredictable way; no significant relationship to clinical features of autism</td>
<td></td>
</tr>
<tr>
<td>Frye et al., 2013</td>
<td>High prevalence (75.3%) of FRA; low CSF 5-MTHF; 44 children were given leucovorin calcium tablets; improvement in 44 treated vs. 26 untreated children on ratings of verbal communication, receptive and expressive language, attention</td>
<td></td>
</tr>
<tr>
<td>Ramaekers et al., 2007</td>
<td>CSF 5-MTHF was low in 23/25 (92%) in ASD; oral folic acid supplements led to normal CSF 5-MTHF</td>
<td></td>
</tr>
<tr>
<td>Moretti et al., 2005</td>
<td>Low CSF 5-MTHF; treatment with folinic acid resulted in improved CSF 5-MTHF concentration and better motor skills</td>
<td></td>
</tr>
<tr>
<td>Lowe et al., 1981</td>
<td>CSF folate levels were within the normal range in both ASD and control group</td>
<td></td>
</tr>
<tr>
<td>Young et al., 1977</td>
<td>CSF folate levels were within normal limits</td>
<td></td>
</tr>
</tbody>
</table>

Abbreviations- FRA: Folate receptor autoantibodies, MTHF: Methyl-tetra-hydrofolate

Changes in the CSF protein levels

Amino acids are molecules that combine to form proteins. These proteins serve many cellular functions. A large proportion of proteins in the normal CSF is derived from blood, e.g., albumin which constitutes 35 - 80% of total protein in CSF. About 20% of the proteins in CSF are produced in the brain by neurons, glial cells, and leptomeningeal cells (Reiber, 2003). Changes in the brain-derived CSF protein concentration may indicate CNS disorder, impaired blood-brain barrier, or disruption in CSF flow (Reiber, 1994, 2003; Schilde et al., 2018; Wichmann et al., 2021). The CSF analysis in ASD found altered levels of albumin and several proteins. In adults with ASD, the overall protein concentration and albumin quotient (ratio of CSF and serum albumin (Andrews et al., 1994)) were found to be increased (Runge et al., 2020). An elevated concentration of ethanolamine (Perry, 1978) suggested CNS abnormality in ASD. STAT3 is a protein activated by ischemic or traumatic injury in the brain (Dziennis & Alkayed, 2008). In a rat model of autism, the STAT3 protein was found to be significantly elevated in CSF (Khera et al., 2022).
Long-term treatment with Guggulsterone (GST), a plant-derived extract used as an antidepressant, improved locomotor activity, memory, depressive behavior, and STAT3 levels in this animal model (Khera et al., 2022).

Astrocytes are glial cells that ensure the defense and support of CNS during development, across adulthood, and in aging. Glial fibrillary acidic protein (GFAP) and S-100 are two of the many proteins expressed in astrocytes, that provide strength to glial cells and maintain blood-brain barrier (Kuroda, 1983). In response to brain injury or other neuro-damaging conditions, astrocytes trigger processes (reactive astrogliosis) that change the level of GFAP (Verkhratsky & Nedergaard, 2018; Yang & Wang, 2015). The CSF GFAP levels were found to be higher in the ASD group than in controls of the same age range (Ahlsén et al., 1993; Rosengren et al., 1992). In contrast, similar S-100 protein concentrations were observed in both groups (Rosengren et al. 1992; Ahlsén et al. 1993).

To find the association between the CSF proteins and autistic traits in twins diagnosed with ASD and other neurodevelopmental disorders, a study measured 203 proteins in cerebrospinal fluid (n=86, ASD=19, neurotypical=41). The autistic traits correlated significantly with four CSF proteins (Smedler et al., 2021):

1. C-C motif chemokine ligand 23 (CCL23) – a chemokine active on immune cells like T lymphocytes and monocytes (Karan, 2021).
2. Agouti-related protein (AGRP) – synthesized in hypothalamic neurons that are involved in energy metabolism and appetite.
3. Chitinase-3-like protein 1 (CHI3L1) – protein marker of inflammation.
4. Lipopolysaccharide-induced TNF-α factor (LITAF).

CCL23, AGRP, CHI3L1 correlated negatively, and LITAF correlated positively with autistic traits. Within twin pairs, no CSF protein concentrations were significantly associated with autistic traits.

Proteins such as insulin-like growth factors, IGF-1, and IGF-2, are involved in the growth and development of the nervous system. In ASD, low CSF IGF-1 concentration was detected (Riikonen et al., 2006; Vanhala et al., 2001), but no difference was found in CSF IGF-2 levels (Riikonen et al., 2006).
Nerve growth factor (NGF), a protein similar to insulin (Andres & Bradshaw, 1980), is vital for the development and maintenance of sympathetic, sensory, and forebrain cholinergic neurons (Aloe et al., 2015). A study evaluating the CSF NGF concentrations found no significant differences in ASD compared to controls (Riikonen & Vanhala, 1999).

In the CSF of 3 children with ASD, including two siblings, succinyladenosine and succinyl-aminoimidazole carboxamide riboside purines were found (Jaeken & Van den Berghe, 1984), indicating a deficiency in the adenylosuccinate enzyme in the brain of at least a subgroup of individuals with genetically defined ASD (Jurecka et al., 2015). This enzyme is involved in the synthesis of purines and adenosine monophosphate.

Table 4 summarizes the results the relationship between the concentrations of amino acids/proteins in the CSF of individuals with ASD.
Table 4: Protein levels in CSF

<table>
<thead>
<tr>
<th>Study group (ASD participants)</th>
<th>Control group (Non-ASD participants)</th>
<th>Observations (in the study group)</th>
</tr>
</thead>
<tbody>
<tr>
<td>18 Wistar rats (PPA-induced rat model of autism)</td>
<td>12 Wistar rats</td>
<td>The level of CSF STAT3 protein is significantly elevated in the ASD model; long-term treatment with GST improved locomotor activity, memory, depressive behavior, and STAT3 level</td>
</tr>
<tr>
<td>19</td>
<td>41</td>
<td>Twin study; in CSF across individuals, autistic traits correlated negatively with CCL23, AGRP, and CHI3L1, and positively with LITAF; within twin pairs, no CSF protein concentrations were significantly related with autistic traits</td>
</tr>
<tr>
<td>36 (23 males, 13 females)</td>
<td>39 (6 males, 33 females)</td>
<td>Increased protein concentrations and albumin quotients in ASD</td>
</tr>
<tr>
<td>25 (20 males, 5 females)</td>
<td>16 (8 males, 8 females)</td>
<td>IGF-1 concentration was significantly lower; head circumferences correlated with IGF-1; no difference in IGF-2 concentrations</td>
</tr>
<tr>
<td>11 (7 males, 4 females)</td>
<td>11 (5 males, 6 females)</td>
<td>Levels of IGF-1 were significantly lower in ASD</td>
</tr>
<tr>
<td>14 (9 males, 5 females)</td>
<td>24 (12 males, 12 females)</td>
<td>No significant between-group difference in NGF in CSF</td>
</tr>
<tr>
<td>47 (32 males, 15 females)</td>
<td>10 (7 males, 3 females)</td>
<td>No difference in CSF S-100 protein; CSF GFAP in ASD was ~3x higher than in the control group</td>
</tr>
<tr>
<td>47 (32 males, 15 females)</td>
<td>13 (8 male, 5 females)</td>
<td>Higher CSF GFAP levels in ASD; similar S-100 protein concentrations in both groups</td>
</tr>
<tr>
<td>3 (2 males, 1 female)</td>
<td>82</td>
<td>CSF concentration of succinyladenosine and succinylaminoimidazole carboxamide riboside were significantly increased compared to controls</td>
</tr>
<tr>
<td>16</td>
<td>23</td>
<td>The mean concentration of ethanolamine in CSF was significantly elevated</td>
</tr>
</tbody>
</table>

Monoamine neurotransmitter synthesis in ASD

Serotonin and the catecholamines dopamine, adrenaline, and noradrenaline are all important monoamine neurotransmitters. These compounds are involved in many CNS functions, including motor control, cognition, and emotion, and autonomic functions such as cardiovascular, respiratory, and gastrointestinal control (Pons, 2010). The synthesis of serotonin and dopamine leads to the formation of 5-hydroxyindolacetic acid (5-HIAA) and homovanillic acid (HVA), respectively (Lenchner JR, & Santos C., 2023). Changes in the levels of 5-HIAA and HVA are associated with aggressive, impulsive, and depressive behavior (Seo et al., 2008). In ASD, the CSF HVA was found to be increased (Gillberg et al.,
1983; Gillberg & Svennerholm, 1987; Komori et al., 1995; Toda et al., 2006), indicating a disturbance in
dopamine synthesis. However, no significant difference was reported for 5-HIAA (Gillberg et al., 1983;
Gillberg & Svennerholm, 1987; Komori et al., 1995). A later study found no significant difference in the
mean HVA and mean 5-HIAA levels in the ASD and control groups (Narayan et al., 1993). A case report
of one male child with ASD reported low 5-HIAA values (Adamsen et al., 2011). Extending this study to a
larger ASD cohort (Adamsen et al., 2014), low 5-HIAA levels were found in 56% (26/46) participants. A
2020 study also reported reduced 5-HIAA concentration compared to controls in 34% (13/38) of the ASD
participants (Ramaekers et al., 2020).

Tryptamines, such as the serotonin and melatonin neurotransmitters, are derived from the essential
amino acid, tryptophan. Tryptamine is a trace amine that activates amine-associated receptors in the
brain of mammals and regulates the activity of dopaminergic, serotonergic, and glutamatergic systems
(Gainetdinov et al., 2018). Indoleacetic acid, a tryptamine metabolite, was found in typical concentration
in the CSF of people with ASD (Anderson et al., 1988), suggesting that the central metabolism of
tryptamine is likely normal in ASD. However, differences in the tryptophan metabolism were reported in
ASD (Boccuto et al., 2013; Kałużna-Czaplińska et al., 2017) particularly in relation to the kynurenine
pathway (Bryn et al., 2017; Carpita et al., 2023; Launay et al., 2023), but CSF analyses of metabolites
generated by the kynurenine pathway are lacking.

Tetrahydrobiopterin (BH4) participates in the synthesis of monoamine neurotransmitters like dopamine,
noradrenaline, and serotonin. This compound contributes to cellular metabolic pathways generating
energy and protecting cells from inflammation (Eichwald et al., 2023). Studies have shown that ASD is
related to the dysfunctional cerebral dopaminergic and serotonergic systems (Nakamura et al., 2010). In
the ASD group, the CSF BH4 levels were found to be significantly reduced compared to the control group
(Tani et al. 1994). Low serotonin levels (5-HIAA) in CSF were unchanged when 6R-L-erythro-5,6,7,8-
tetrahydrobiopterin (R-THBP) was used as an oral therapy (Komori et al., 1995), but half of the ASD
group (7 out of 14) showed improvement in autistic traits. Secretin, a digestive hormone, was found to
promote the metabolism of serotonin and dopamine in the CNS and improved speech and sociability in 58% (7/12) of the participants with ASD whose CSF HVA level was elevated (Toda et al., 2006).

Table 5 summarizes the results related to monoamine neurotransmitters.

Table 5: Monoamine neurotransmitters in CSF

<table>
<thead>
<tr>
<th>Study</th>
<th>Control</th>
<th>Observations (in the study group)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ramaekers et al., 2020</td>
<td>3.6 – 18 years / 4.4 - 16 years</td>
<td>38 (31 males, 7 females) 24 (12 males, 12 females)</td>
</tr>
<tr>
<td>Adamsen et al. 2014</td>
<td>-</td>
<td>98</td>
</tr>
<tr>
<td>Adamsen et al. 2011</td>
<td>4.5 years</td>
<td>1 male</td>
</tr>
<tr>
<td>Toda et al. 2006</td>
<td>4 - 16 years / 3 - 15 years</td>
<td>12 (6 males, 4 females) 17 (12 males, 5 females)</td>
</tr>
<tr>
<td>Komori et al. 1995</td>
<td>2 - 9 years / 2.8 - 7 years</td>
<td>14 (7 males, 7 females) 18 (17 males, 1 female)</td>
</tr>
<tr>
<td>Tani et al. 1994</td>
<td>2.3 - 22.5 years / 0 - 12 years</td>
<td>20 (15 males, 5 females) 10 (7 males, 3 females)</td>
</tr>
<tr>
<td>Anderson et al. 1988</td>
<td>5.2 - 10.8 years / 3.7 - 9 years</td>
<td>8 (7 males, 1 female) 10 (all males)</td>
</tr>
<tr>
<td>Narayan et al. 1993</td>
<td>2.9 - 8.5 years / 6.1 - 11.5 years</td>
<td>17 (12 males, 5 females) 15 (11 males, 4 females)</td>
</tr>
<tr>
<td>Gillberg et al. 1987</td>
<td>1 - 16 years / Mean age: 8.3 years</td>
<td>25 (20 males, 5 females) 20 (15 males, 5 females)</td>
</tr>
<tr>
<td>Gillberg et al. 1983</td>
<td>3 - 14 years / 3 – 14 years</td>
<td>13 (10 males, 3 females) 13 (10 males, 3 females)</td>
</tr>
</tbody>
</table>

Abbreviations- 5HIAA: 5-hydroxyindolacetic acid, R-BH4: 6R-5,6,7,8-tetrahydrobiopterin, NH$_2$: 7,8-dihydroneopterin, HVA: Homovanillic acid, IAA: Indoleacetic acid

Change in Oxytocin and Arginine vasopressin concentration in CSF

Oxytocin (OT) and arginine vasopressin (AVP) are nonapeptides that can cross the blood-brain barrier.

These peptides are mainly synthesized by neurons of the paraventricular nucleus (PVN) and supraoptic
nucleus (SON) of the hypothalamus (Higashida, 2016; Jin et al., 2007). Studies have demonstrated that AVP/OT neurons extend processes that cross the walls of the third ventricle to release these neuropeptides directly into the CSF (Grinevich et al., 2016; Taub et al., 2021). Both nonapeptides are found in the brains of males and females alike (Higashida et al., 2018; Neumann, 2008) and have an important role in neuronal function, social recognition, and social behavior in mammals, including humans (Higashida, 2016; Lukas & Neumann, 2013). Any change in the level of OT and AVP in CSF is indicative of impaired social behavior in mammals.

In the CSF, the effect of OT and AVP has mostly been studied on monkeys and rodent models (e.g., VPA-induced rat models of autism). In the VPA-induced model, the pregnant rats were injected with valproic acid (VPA). The offspring of these VPA-exposed mothers show behavioral, immunological, and physiological changes similar to those described in the autistic population (Liu et al., 2018).

CSF OT/AVP levels were altered in studies on monkeys and rat models of ASD. Low levels of OT in CSF (Dai et al., 2018; Gerasimenko et al., 2020) were found in adult VPA-induced rats and adult CD-157 knockout mice. The suggested therapy in the case of low OT concentration is to give oral nicotinamide riboside (Gerasimenko et al., 2020), a naturally occurring form of vitamin B3 (Conze et al., 2016), and aerosolized OT administration (Modi et al., 2014). These treatments provided a therapeutic effect on autistic-like behaviors in rodents and monkeys. The AVP studies established that CSF AVP concentrations correlate with social behaviors in monkeys (Oztan et al., 2021; Parker, 2022; Parker et al., 2018).

In OT/AVP studies on humans, the mean CSF AVP level was significantly lower in an all-male ASD group (Parker et al., 2018) as compared to controls. The mean CSF AVP concentration was found to be decreased in the ASD group (24 males, 12 females), irrespective of sexes (Oztan et al., 2018). Intranasal vasopressin treatment improved autism-like symptoms (Parker, 2022). Research reported that infants who were later diagnosed with ASD had very low mean neonatal CSF AVP concentrations (Oztan et al., 2018).
2020). In an OT study with 0-3 months infants, no difference in mean neonatal CSF OT concentrations was found in infants later diagnosed with ASD compared to control.

Altogether, the studies support the use of OT and AVP as CSF biomarkers in studying ASD or social symptoms in autism. Table 6 comprises the ASD-related studies evaluating the concentration of these nonapeptides in the CSF.

Table 6: Concentration of OT and AVP in the CSF

<table>
<thead>
<tr>
<th>Study Group</th>
<th>Control Group</th>
<th>Observations (in the study group)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parker 2022</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Infant monkeys</td>
<td>7 Rhesus monkeys (all males)</td>
<td>7 Rhesus monkeys (all males)</td>
</tr>
<tr>
<td>Oztan et al. 2021</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.3 - 6.3 years / 1.3 - 6.3 years</td>
<td>75 Rhesus monkeys (all males)</td>
<td>42-43 Rhesus monkeys (all males)</td>
</tr>
<tr>
<td>Wu et al. 2021</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adolescent rats</td>
<td>VPA-induced rat model 12 (all males)</td>
<td>15 (all males)</td>
</tr>
<tr>
<td>Gerasimenko et al. 2020</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adult mice</td>
<td>CD-157 knockout mice (all males)</td>
<td>Wild-type mice (all males)</td>
</tr>
<tr>
<td>Oztan et al. * 2020</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 - 3 months</td>
<td>9</td>
<td>21</td>
</tr>
<tr>
<td>Parker et al. 2018</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 - 5 years / 1 - 5 years</td>
<td>15 (male Rhesus monkeys; low social)</td>
<td>15 (male Rhesus monkeys; high social)</td>
</tr>
<tr>
<td>5.3 - 19 years / 5.3 - 19.5 years</td>
<td>7 (all males)</td>
<td>7 (all males)</td>
</tr>
<tr>
<td>Oztan et al. 2018</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.5 - 9 years</td>
<td>36 (24 males, 12 females)</td>
<td>36 (24 males, 12 females)</td>
</tr>
<tr>
<td>Dai et al. 2018</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adult rats</td>
<td>VPA induced rat model (12 male and 15 female rats)</td>
<td>21 male and 18 female rats</td>
</tr>
</tbody>
</table>

Abbreviations- AVP: Arginine vasopressin, VPA: Valproic acid, OT: Oxytocin, ir: immunoreactive

* ASD group (9/33); Control group (21/33); Females (3/33); Males (30/33)
Beta-endorphin levels and gangliosides in CSF

β-Endorphins are one of five groups of naturally occurring opioid peptides found in neurons of the hypothalamus and the pituitary gland. In stressful situations, the pituitary gland releases beta-endorphins into the CSF (Gifford & Mahler, 2012). Beta endorphins are associated with emotions like hunger, thrill, pain, and cognition (Pilozzi et al., 2020). Studies found no significant difference in beta-endorphin levels between the ASD and the control group (Nagamitsu, 1993).

Brain gangliosides play an important role in synaptic transmission, and increased synaptic activity leads to the release of more gangliosides (Lekman et al., 1995). Four major gangliosides (GM1, GD1a, GD1b, and GT1b) were found to be increased in the CSF of the ASD group (Lekman et al., 1995; Nordin et al., 1998) Table 7 presents the results related to beta-endorphin and gangliosides in CSF of ASD.

<table>
<thead>
<tr>
<th>Study Group</th>
<th>Control Group</th>
<th>Observations (in the study group)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nordin et al. 1998</td>
<td></td>
<td>Significantly higher concentration of ganglioside GM1 in ASD group but no significant differences in ganglioside GD1a, GD1b, GT1b, and total ganglioside concentration</td>
</tr>
<tr>
<td>Nagamitsu et al. 1997</td>
<td></td>
<td>No significant difference in β-endorphin levels in ASD</td>
</tr>
<tr>
<td>Lekman et al. 1995</td>
<td></td>
<td>Brain gangliosides, GM1, GD1a, GD1b and GT1b, and their sum was increased in CSF of ASD group</td>
</tr>
</tbody>
</table>

Discussion

Our systematic review highlights the various changes in the composition of CSF associated with ASD.

This systematic review provided clear evidence of increased cytokines (TNF-α, IFN-γ, IL-6, IL-8, MIP1β, NAP-2, IFN-γ), chemokines (MCP-1), lymphocytes, proteins, and growth factors in the CSF of the ASD population. ASD is also characterized by increased axial-CSF, GM1 ganglioside, and decreased folate, oxytocin, vasopressin, and serotonin (Fig 3a).
Different treatments were proposed to treat various deficiencies, such as nicotinamide riboside and aerosolized OT administration for low oxytocin, intranasal vasopressin (in animal models) for decreased AVP, folic acid supplements (Leucovorin) for folate deficiency, and secretin to promote dopamine and serotonin metabolism (Fig 3b).

![Fig 3: Summary of the CSF properties in ASD and the suggested treatments. Panel (a) summarizes the CSF properties that are increased, decreased, and not significantly different from neurotypicals. Panel (b) highlights the treatments, as mentioned in the literature for different abnormal physiological traits of CSF.](image)

These physiological characteristics of CSF in ASD led us to draw the conclusions discussed in the following subsections.

Neuroinflammation and active innate immune system

The increased presence of immune markers like cytokines, chemokines, and growth factors suggests an active innate immune system. Elevated CSF-TNF-α but normal blood serum-TNF-α indicates neuroinflammation. This unregulated inflammation can induce apoptosis or cells’ death (Idriss & Naismith, 2000) and lead to inflammatory diseases (Van Loo & Bertrand, 2023).

Extra-axial CSF increases between 6 months and 2 years of age in ASD

EA-CSF at a young age indicates a disruption in CSF absorption in the first year after birth when CSF production is elevated (Murphy et al., 2020). The CSF increases till age 2 and then plateaus. This elevation results in increased head circumference, third ventricle, and total CSF volume in ASD compared...
to typically developing individuals. The increased EA-CSF constitutes a promising biomarker for the early detection of ASD.

Folate deficiency is linked to autistic characteristics

Folate + S-adenosylmethionine (SAMe) is crucial in regulating the production of THBP (or BH4), which is a co-factor in the synthesis of monoamine neurotransmitters (Bender et al., 2017). Thus, folate deficiency in ASD can be linked to low BH4 and impaired monoamine synthesis, low serotonin levels, and high HVA. Research indicates that these deficiencies result in sleep disorders and disrupted psychomotor, social, and verbal skills (Galli et al., 2022; Sasa et al., 2003; Yoshimura et al., 2020), all traits associated with ASD. These observations explain the use of R-TBHP and folic acid as treatments to improve concentration, motor skills, and verbal communication in ASD. Fig 4 shows the relationship of ASD with folate deficiency.

Anxiety and sleep disorder in ASD are related to disturbed dopamine synthesis

Anxiety (Guerrera et al., 2022; van Steensel et al., 2011) and sleep disorders (Devnani & Hegde, 2015) are two of the most common comorbidities associated with ASD. Research has shown that the dopaminergic system is involved in anxiety disorder (Dong et al., 2020) and in the regulation of the sleep cycle (Oishi & Lazarus, 2017). CSF studies establish that high HVA levels are found in ASD, indicating a disturbance in dopamine synthesis. Thus, anxiety and sleep disorders in ASD can be attributed to defects in the dopamine pathway.
Impulsive behavior is related to low serotonin levels

Self-injurious behaviors (SIB) and aggression are some of the severe symptoms associated with ASD (Gulsrud et al., 2018). Low serotonin (synthesized as 5-HIAA) is found to be responsible for aggression and self-harming behaviors (Linnoila & Virkkunen, 1992; Seo et al., 2008), suggesting an association between autistic traits like SIB and altered serotonin pathways.

Disturbed tyrosine (TYR) and tryptophan (TRP) pathway in ASD

The TYR and TRP are the two important metabolic pathways (Fig 5) modulating mood, behavior, cognition, and neuroimmune interaction (Aquili, 2020). These pathways lead to the formation of metabolites like HVA, quinolinic acid, IAA, and 5-HIAA (Galla et al., 2021). Elevated HVA, low 5-HIAA, and quinolinic acid, as well as altered BH4 and NH2 levels indicate dysfunction in TYR and TRP pathways.

![Fig 5: Tyrosine and Tryptophan pathways leading to the formation of HVA, Quinolinic acid, IAA, 5-HIAA](image)

Limitations

This systematic review has some limitations. Most importantly, we used only one database (Pubmed) for the search, and the studies were systematically screened and reviewed by only one author (VS). Also, no review protocol was prepared in writing and registered before conducting the review. However, the two authors regularly discussed the search and review procedures, the intermediate and final outcomes of
this process, and the problematic cases. The senior author (COR) selectively reviewed papers and areas with inconsistent or seemingly problematic results to ensure consensus between the two authors.

Gaps and future directions

We found several gaps in the literature. For example, treatments that showed promising results (Chez et al., 2012; Frye et al., 2013; Komori et al., 1995; Toda et al., 2006) were not tested on large cohorts. Also, only 12 out of 54 studies were carried out on ASD adults. Adult studies on ASD would help understand its progression in later life and the physiological changes taking place with age. Furthermore, the research findings in ASD adults may motivate customized healthcare services to improve their quality of life. Also, many papers did not highlight the results by sex despite studying both males and females (Pardo et al., 2017; Ramaekers et al., 2020; Runge et al., 2020; Vargas et al., 2005). The reporting of research observations by biological sex is crucial because of between-sex differences. A disorder like ASD may present different physiological traits in females than males, thus requiring different treatment and healthcare services.

With this systematic review, we found that the impairment of different inter-connected systems characterizes ASD, leading to a significant change in CSF traits. This conclusion confirms our hypothesis that the properties and composition of CSF are altered in ASD.

Acknowledgments

This work was supported by a pilot grant from the Carolina Autism & Neurodevelopment (CAN) Research Center (PI: Christian O’Reilly) at the University of South Carolina. We acknowledge that the funding agency has no role in study design, collection, analysis or interpretation of data, the writing of the report, and the decision to submit the article for publication.

Author contributions

Vandana Srivastava: review and screening of papers, writing original draft, visualization, investigation.

Christian O’Reilly: methodology, writing- review and editing, supervision.
Conflict of interest

The authors declare no conflict of interest.
References

https://doi.org/10.1176/appi.ajp.21101002

https://doi.org/10.1016/j.biopsych.2015.04.013

Higashida, H. (2016). Somato-axodendritic release of oxytocin into the brain due to calcium
amplification is essential for social memory. The Journal of Physiological Sciences: JPS, 66(4),

Higashida, H., Yuhi, T., Akther, S., Amina, S., Zhong, J., Liang, M., Nishimura, T., Liu, H.-X., & Lopatina, O.
(2018). Oxytocin release via activation of TRPM2 and CD38 in the hypothalamus during
hyperthermia in mice: Implication for autism spectrum disorder. Neurochemistry International,

Neurocritical Care for Acute Neurological Conditions. Indian Journal of Critical Care Medicine:
Peer-Reviewed, Official Publication of Indian Society of Critical Care Medicine, 23(Suppl 2), S115–
S119. https://doi.org/10.5005/jp-journals-10071-23187

Pathological Mechanisms in Autism Spectrum Disorders. Frontiers in Cellular Neuroscience, 12,

https://doi.org/10.1002/1097-0029(20000801)50:3<184::AID-JEMT2>3.0.CO;2-H

Jaeken, J., & Van den Berghe, G. (1984). An infantile autistic syndrome characterised by the presence of

Jiang, N. M., Cowan, M., Moonah, S. N., & Petri, W. A. (2018). The Impact of Systemic Inflammation on
Neurodevelopment. Trends in Molecular Medicine, 24(9), 794–804.
https://doi.org/10.1016/j.molmed.2018.06.008

