Title: Comparison of two automated compute tomography perfusion analysis packages in stroke patients within 24 hours of onset

Authors: Nak-Hoon Kim, MD,1* Sue young Ha, MD,2* Gihoon Park, MSc,2 Jong-Hyeok Park, MSc,2 Dongmin Kim, PhD,2 Leonard Sunwoo, MD, PhD,3 Sung Hyun Baik, MD, MSc,3 Cheolkyu Jung, MD, PhD,3 Wi-Sun Ryu, MD, PhD,2 Beom Joon Kim, MD, PhD1

Affiliations
1. Department of Neurology, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
2. Artificial Intelligence Research Center, JLK Inc., Seoul, Republic of Korea
3. Department of Radiology, Seoul National University Bundang Hospital, Seongnam, Republic of Korea

*Equally contributed as first authors

Correspondence to:
Dr. Wi-Sun Ryu, MD, PhD, Artificial Intelligence Research Center, JLK Inc., 5, Teheran-ro 33-gil, Gangnam-gu, Seoul, South Korea. E-mail: wisunryu@jlkgroup.com

or
Professor Beom Joon Kim, MD, PhD, Department of Neurology and Cerebrovascular Center, Seoul National University Bundang Hospital, Seongnam-si, Gyeonggi-do, Republic of Korea. E-mail: kim.bj.stroke@gmail.com
Abstract

Background: The analysis of computed tomography perfusion (CTP) scans plays a pivotal role in the diagnosis and management of acute ischemic stroke, aiding in extending the treatment window for endovascular therapy (EVT). This study aims to compare the volumes of ischemic core and hypoperfused tissue as estimated by JBS-10K – a newly developed automated CTP analysis package, and RAPID.

Method: This retrospective study analyzed data from 327 patients admitted to a single stroke center in Korea from January 2021 to May 2023, who underwent CTP scans within 24 hours of symptom onset. The concordance correlation coefficient and Bland-Altman plots were utilized to compare the volumes of ischemic core and hypoperfused lesion between the software packages. Agreement with early (within 3-hour from CTP) follow-up infarct volumes on diffusion-weighted imaging (DWI, n = 217) was also evaluated.

Results: The mean age was 70.7±13.0 and 137 (41.9%) were female. Ischemic core volumes by JBS-10K and RAPID in the threshold of relative cerebral blood flow (rCBF) < 30% had excellent agreement (ρ = 0.845 [95% CI, 0.811 to 0.874]). Excellent agreement was observed for time to maximum of the residue function (Tmax) > 6 seconds between JBS-10K and RAPID (ρ = 0.835 [95% CI, 0.806 to 0.863]). Although early follow-up infarct volume showed substantial agreement in both packages (JBS-10K ρ = 0.751 and RAPID ρ = 0.632), ischemic core volumes at the threshold of rCBF <30% tended to overestimate ischemic core volumes.

Conclusion: CTP analysis using JBS-10K and RAPID demonstrated excellent agreement with each other in patients undergoing CTP within 24 hours of symptom onset.
Introduction

In the rapidly evolving field of neuroimaging, the analysis of computed tomography perfusion (CTP) scans has become a cornerstone in the diagnosis and management of acute ischemic stroke.\(^1\) CTP scans have played a major role in expanding the time window for endovascular treatment (EVT) in patients with ischemic stroke.\(^2,3\) Using perfusion scans, clinical trials that compare EVT with medical treatment for patients with anterior circulation large vessel occlusion beyond 6 hours have shown the clinical benefit of EVT in the extended time window.\(^2,3\) Furthermore, our group has demonstrated that even beyond 24 hours, selected individuals identified through perfusion imaging can benefit from EVT.\(^4\) In this context, accurately measuring the ischemic core is crucial because the likelihood of a positive clinical outcome markedly diminishes when the volume of the infarct surpasses 70 mL.\(^5\)

To streamline the analysis of perfusion and minimize variations among different observers, various commercial CTP software solutions have been introduced.\(^6\) These solutions automatically identify the ischemic core and penumbral regions. Nonetheless, there has been considerable inconsistency in the parameters of CTP and the quantitative benchmarks set for delineating the ischemic core and penumbra.\(^7\) Gradually, relative CBF (rCBF) has emerged as the preferred metric for determining the ischemic core.\(^8\) A threshold for the time to peak of the residue function (Tmax) exceeding 6 seconds has been identified as a reliable predictor for tissues at risk of infarction if there is no reperfusion.\(^9\) However, the extent to which different software solutions can be used interchangeably, especially in terms of their clinical significance for planning treatment and estimating prognosis, remains uncertain. Previous research has indicated significant discrepancies in the calculated volumes of the ischemic core across different software, leading to inconsistent predictions of final infarct volume after mechanical thrombectomy.\(^7,10\)

Previous research has shown that the epidemiology of stroke, encompassing its frequency, contributing factors, and death rates, differs markedly across ethnic groups.\(^11-13\) For example, Asians have a higher propensity for large vessel occlusion due to intracranial arterial stenosis when compared to Caucasians.\(^12\) Consequently, ischemic core thresholds derived from studies on Caucasian populations may lead to
an overestimation of ischemic core volumes in Asian patients. Additionally, disparities in ischemic core volume may be influenced by various comorbidities, such as hypertension and diabetes, as well as delays in both seeking and receiving timely stroke treatment. Nevertheless, most studies to date have primarily focused on non-Asian populations.

In this study, we compared the volumes of ischemic core and hypoperfused area estimated by RAPID (iSchemaView Inc, Menlo Park, CA) and JBS-10K (JLK Inc., Seoul, Korea), both of which are automated CTP analysis packages using a delay-insensitive algorithm. In addition, we aimed to evaluate the agreement of patient selection eligible for EVT between the two packages.

Methods

Study design and Study population

In this retrospective study using prospectively collected data, we included patients who were admitted to Seoul National University Bundang Hospital between January 2021 and May 2023 and underwent CTP scans within 24 hours of symptom onset. We excluded patients with 1) severe motion artifacts on CTP or poor contrast bolus arrival, 2) failed automated perfusion calculation by RAPID and JBS-10K, and 3) hemorrhage on CTP scans. A subset of patients with available follow-up diffusion-weighted image (DWI) underwent within 3 hours from CTP and was used to compare the baseline ischemic core volumes predicted by the CTP with the early follow-up infarct volumes.

The study protocol was approved by the institutional review board of Seoul National University Bundang hospital, and patients or their legal representatives provided a written informed consent.

Clinical data collection

Using a standardized protocol, we prospectively collected demographic data, prior medication history, and the presence of vascular risk factors including hypertension, diabetes mellitus, hyperlipidemia, coronary artery disease, atrial fibrillation, and smoking history. Stroke subtypes were determined by experienced a vascular
neurologist, using a validated MRI-based classification system built on the TOAST criteria.15

Imaging and image reconstruction

All CTP scans were performed using a 256-Slice CT scanner (Brilliance iCT 256, Philips Healthcare, Best, the Netherlands). The imaging parameters for CTP scans were as follows: 80 kV, 150 mAs, collimation 60×1.25 mm, rotation time 0.4 seconds. For arterial phase scan, 30 scans over 60 s and a scan delay of 2 seconds were used. A total of 50 mL of iodinated contrast agent (Iomeprol 400; Bracco Imaging, Milan, Italy) followed by 50 mL of saline flush was administered intravenously at a rate of 5 mL/s. Brain coverage was 8 cm.

Automated software analyzing CTP

JBS-10K is a fully automated CTP software to visualize and quantify ischemic core and hypoperfused area, which relies on a block-circulant singular value decomposition (cSVD) method. A default setting of rCBF < 30% was used for defining the ischemic core. In addition, we used the RAPID solution, a fully automated CTP software to evaluate the two software programs’ prediction. For assessing of hypoperfused tissue volume, we used the default setting of both packages (Tmax > 6s). Both software packages carry out automated registration, segmentation, and motion correction, employing a delay-insensitive method, and conducting post-processing (Figure 1).

Early follow-up infarct volume measurement

Follow-up DWI were collected within 3 hours of the CTP scans. Areas of infarction were automatically segmented using a validated deep learning algorithm (JBS-01K, JLK Inc., Seoul, Korea).16 Automatically segmented infarct areas underwent visual inspection by a stroke neurologist (W-S. Ryu) and were manually corrected as necessary.

Statistical analysis

Data were presented as mean ± standard deviation, median (interquartile range), and number (percentage), as appropriate. To compare the volumes of ischemic core
and hypoperfused areas using two software packages, we utilized the concordance correlation coefficient (ρ) with 95% confidence intervals (CIs) and further investigated the data using reduced major axis regression. The magnitude of agreement was classified as follows: values from 0.0 to 0.2 indicating poor agreement; 0.21 to 0.40 indicating fair agreement; 0.41 to 0.60 indicating moderate agreement; 0.61 to 0.80 indicating substantial agreement; and 0.81 to 1.0 indicating excellent agreement. Additionally, Bland-Altman plots were used to assess the agreement of ischemic core volumes and hypoperfused areas as determined by the two packages. For the comparison between follow-up infarct volumes and ischemic core volumes analyzed by the two packages, both concordance correlation coefficients and Bland-Altman plots were employed. In the subgroup analysis, concordance correlation coefficients and Bland-Altman plots were utilized after stratifying patients by endovascular treatment and early infarct volume, arbitrarily divided at 20 mL. The agreement between ischemic core volume and follow-up infarct volume, categorized according to the DAWN clinical trial’s criteria, was assessed using Cohen’s kappa. P value of < 0.05 was considered statistically significant. All statistical analyses were performed using STATA (version 16.0, StataCorp LP, College Station, TX).

Results

Baseline characteristics of study population

Among the 327 patients included for the analysis, the mean age was 70.7 (SD 13.0) and 41.9% were women (Table 1). The median of the initial NIH stroke scale score was 9 (interquartile range [IQR] 4 to 17). The most common stroke etiology was identified as cardioembolism. Of the 205 (62.7%) patients who received revascularization therapy, 83 (25.3%) underwent intravenous thrombolysis alone, 59 (18.0%) underwent endovascular treatment alone, and 63 (19.3%) received combined therapy. The median interval between last well known to CTP was 192 min (IQR, 101 to 395 min). The median interval between CTP and DWI was 41 min (IQR, 27 to 100 min).

Concordance correlation analysis of the volumes of ischemic core and hypoperfused area by RAPID vs. JBS-10K
The mean difference between ischemic core volumes calculated by JBS-10K and RAPID was 1.68 mL (95% CI, -3.96 to 7.31; p = 0.56). There was excellent agreement in between JBS-10K and RAPID (p = 0.845 [95% CI, 0.811 to 0.874]; Figure 2A). In the Bland-Altman plot, the limits of agreement were -41.9 and 38.6 mL (Figure 2B). When we confined the analysis for patients whose ischemic core volume was not zero by both JBS-10K and RAPID (n = 90), the mean difference was 0.53 mL (95% CI, -6.63 to 7.69 mL) and we observed excellent agreement in between JBS-10K and RAPID (p = 0.807 [95% CI, 0.735 to 0.878]; Supplementary Figure 1).

The mean difference between hypoperfused tissue volumes calculated by JBS-10K and RAPID was 11.51 mL (95% CI, 6.08 to 16.94; p = 0.09). There was excellent agreement between JBS-10K and RAPID (p = 0.835 [95% CI, 0.806 to 0.863]; Figure 2C). In the Bland-Altman plot, the limits of agreement were -86.4 and 109.4 mL (Figure 2D). When the analysis was confined to patients receiving EVT (n = 122), there was excellent agreement in ischemic core volumes and substantial agreement in hypoperfused tissue volumes between JBS-10K and RAPID (Supplementary Figure 2).

Comparison of ischemic core volumes calculated by software tools and follow-up infarct volumes on diffusion-weighted images

In patients with available early follow-up DWI (n = 217), there was substantial agreement between follow-up infarct volumes and ischemic core volumes as determined by JBS-10K (p = 0.751 [95% CI, 0.701 to 0.801]; Figure 3A) and RAPID (p = 0.632 [95% CI, 0.556 to 0.708]; Figure 3C) at the default rCBF threshold of <30%. The limits of agreement for the volumes of the ischemic core and the follow-up infarct volume were comparable between the two packages (Figures 3B and 3D). Nevertheless, at the default rCBF threshold of <30%, both packages tended to overestimate infarct core volumes as indicated the slope of the reduced major axis being under one. Furthermore, in patients with visible infarcts on the follow-up DWI (n = 187), the ischemic core volume determined by RAPID was zero in 123 (65.8%) cases, whereas it was zero in 104 (55.6%; p = 0.04) cases as determined by JBS-10K.

When dividing patients by early follow-up infarct volume (<20 mL [n=193] vs. ≥20 mL [n=24]), both packages exhibited similarly poor agreement with early follow-
up infarct volume ($\rho = 0.195$ for JBS-10K and $\rho = 0.181$ for RAPID, respectively; Supplementary Figure 3). However, in patients whose early follow-up infarct volume was ≥20 mL, JBS-10K showed fair agreement ($\rho = 0.510$; 95% CI, 0.258 to 0.762), while RAPID demonstrated poor agreement ($\rho = 0.191$; 95% CI, -0.161 to 0.543). Setting the rCBF threshold to <26% improved the correlation between early follow-up infarct volume and ischemic core volumes determined by JBS-10K, as shown by both the concordance correlation coefficient and Bland-Altman analysis (Supplementary Figure 4).

Mismatch volume analysis and application of clinical trial’s criteria
The median mismatch volumes determined by JBS-10K and RAPID were 23.26 (IQR 0 to 85.33) and 23 (0 to 101), respectively, and there was substantial agreement between the mismatch volumes determined by JBS-10K and RAPID ($\rho = 0.747$; 95% CI 0.707 to 0.787; Figure 4A). The mean difference in mismatch volume between the two software tools was 13.19 mL (95% CI, 7.71 to 18.66 mL; Figure 4B).

When considering early infarct volume as a standard reference and categorizing ischemic core volumes by JBS-10K and RAPID according to the DAWN trial’s criteria, similar Cohen’s kappa values were observed for JBS-10K (0.55) and RAPID (0.51). However, in the medium-sized ischemic core volume groups (20–30 mL and 30–50 mL), the ischemic core volumes determined by both JBS-10K and RAPID exhibited poor agreement with early infarct volumes.

Discussion
In the present study, which involved 327 patients with ischemic stroke who underwent CTP imaging within 24 hours of their last known well time, we found that ischemic core volumes estimated by JBS-10K—a newly developed CTP scan analysis package utilizing a delay-insensitive algorithm—were comparable to those estimated by RAPID. Moreover, in patients with large ischemic core (≥ 20 mL), ischemic core volumes estimated by JBS-10K demonstrated a higher correlation with early follow-up infarct volumes on DWI than those estimated by RAPID. Additionally, we observed that the default threshold of rCBF < 30% tends to overestimate ischemic core volumes in comparison with early follow-up infarct volumes on DWI.
We observed an excellent agreement between ischemic core volumes calculated by RAPID and JBS-10K. This correlation remained high even after excluding patients with ischemic core volumes of zero as determined by either JBS-10K or RAPID. Additionally, hypoperfused lesion volumes identified using the default settings of both software tools also demonstrated a substantial agreement. Consequently, mismatch volumes calculated by both software tools exhibited a substantial agreement. When applying the criteria used in the DAWN trial,2 ischemic core volumes calculated by the two packages showed overall good agreement with early follow-up infarct volumes. However, for medium-sized ischemic core volumes (20-30 mL and 30-50 mL), the results from both packages differed substantially compared with early infarct volumes on DWI. These findings suggest that ischemic core volume in CTP scans, analyzed by automated software packages, should be interpreted with caution in patients with medium-sized ischemic core volumes.

DWI is considered the gold standard for measuring ischemic core.18 Our results showed that automated CTP analysis packages tend to overestimate ischemic core volume in overall patients, which is in line with previous studies.19-21 Compared to JBS-10K, RAPID was more likely to predict ischemic core as zero even in patients whose ischemic core exceeded 20 mL. This discrepancy may result from differences in preprocessing images to correct patient motion and post-processing to reduce noise in both rCBF maps and Tmax maps. Moreover, our results contrast with a prior study demonstrating that CTP analysis packages tend to underestimate follow-up infarct volume on various imaging modalities such as DWI, FLAIR, and non-contrast CT.22 This discrepancy may result from different study populations: consecutive patients presenting at the hospital within 24 hours of onset versus patients undergoing mechanical thrombectomy. In addition, shorter time intervals from last known well to CTP scans (median 168 vs. 402 min) and from CTP to follow-up images (median 0.7 vs. 18.7 hours) in our study may have led to smaller follow-up infarct volumes on DWI, subsequently leading to the overestimation of ischemic core volume in CTP scans by software tools. Given that DWI is the gold standard for measuring ischemic core and CTP scans are screening tools to select patients who may benefit from intervention, a more stringent rCBF threshold is required to accurately estimate infarct core, as shown in our analysis employing an rCBF threshold of 26%, which in turn ultimately provides opportunities for more patients with ischemic stroke to regain functional independence.
The interpretation of our findings must be contextualized within the inherent limitations of this research. Conducted as a retrospective analysis at a single stroke center, our study's observational nature is susceptible to the influence of unmeasured confounding variables. The software utilized for analysis reflects the versions available at the time of the study, acknowledging that subsequent updates and modifications could affect the applicability of our results. Moreover, the management of patients included in this study was guided by the outcomes from the RAPID software, introducing a potential source of bias. Furthermore, we utilized follow-up infarct volumes that were automatically segmented by validated software. This approach may limit to compare our results with prior studies that utilized a threshold for apparent diffusion coefficients of 620×10^{-6} mm2/s.

In conclusion, there was substantial agreement between ischemic core volumes and hypoperfused lesion volumes as determined by the JBS-10K and RAPID software packages. Furthermore, ischemic core volumes calculated by JBS-10K and RAPID at the default rCBF threshold of <30% also showed substantial agreement with early follow-up infarct volumes. However, when making decisions regarding EVT, CTP parameters should be interpreted with caution.
References

Figure Legends

Figure 1. A representative case employing JBS-10K and RAPID. (A) Color map produced by RAPID, indicating an ischemic core volume (rCBF < 30%) of 10 ml and total hypoperfused tissue (Tmax > 6 seconds) of 168 ml. (B) Color map generated by JBS-10K, showing an ischemic core volume (rCBF < 30%) of 8.8 ml and total hypoperfused tissue (Tmax > 6 seconds) of 159.1 ml. (C) Early follow-up DWI taken 110 minutes after CTP, following endovascular treatment with TICI 2a, reveals patchy areas of abnormally restricted diffusion in territories of the right middle cerebral artery (Top). RAPID DWI, based on the threshold of the apparent diffusion coefficient, estimated a total infarct volume of 3 mL (Middle). JBS-01K, utilizing a deep learning algorithm, estimated a total infarct volume of 14.61 mL (Bottom). CTP = computed tomography perfusion; rCBF = relative cerebral blood flow; Tmax = time to maximum of the residue function; DWI = diffusion-weighted image.

Figure 2. Comparison of ischemic core volumes and hypoperfused tissue volumes by JBS-10K and RAPID. (A) Scatter plot illustrating ischemic core volumes as determined by JBS-10K and RAPID, with the slope and intercept of the reduced major axis being 1.052 and -2.492, respectively. (B) Bland-Altman plot for the analysis of agreement in ischemic core volumes. (C) Scatter plot illustrating hypoperfused tissue volumes as determined by JBS-10K and RAPID, with the slope and intercept of the reduced major axis being 1.318 and -8.890, respectively. (D) Bland-Altman plot for the analysis of agreement in hypoperfused tissue volumes. The green dotted line represents the line of perfect concordance, while the blue line denotes the reduced major axis. For B and D, the blue solid line and the red dotted lines represent the mean difference and the limits of agreement between JBS-10K and RAPID, respectively.

Figure 3. Comparison of early follow-up infarct volume on diffusion-weighted image and ischemic core volumes by JBS-10K and RAPID. (A) Scatter plot illustrating follow-up infarct volumes and ischemic core volumes as determined by JBS-10K, with a concordance correlation coefficient of 0.751, and the slope and intercept of the reduced major axis being 0.713 and -0.611, respectively. (B) Bland-Altman plot for the analysis of agreement in between follow-up infarct volumes and ischemic core volumes by JBS-01K. (C) Scatter plot illustrating follow-up infarct volumes and ischemic core volumes as determined by RAPID, with a concordance correlation coefficient of 0.632, and the slope and intercept of the
reduced major axis being 0.775 and 0.772, respectively. (D) Bland-Altman plot for the analysis of agreement in between follow-up infarct volumes and ischemic core volumes by RAPID. The green dotted line represents the line of perfect concordance, while the blue line denotes the reduced major axis. For B and D, the blue solid line and the red dotted lines represent the mean difference and the limits of agreement between follow-up infarct volume and ischemic core volumes calculated by JBS-10K (B) and RAPID (D).

Figure 4. Comparison of mismatch volumes by JBS-10K and RAPID. (A) Scatter plot depicting mismatch volumes as measured by JBS-10K and RAPID, with a slope of 1.458 and an intercept of -9,071 on the reduced major axis. The green dotted line represents the line of perfect concordance, the blue line denotes the reduced major axis. (B) Bland-Altman plot illustrating the agreement in mismatch volumes between JBS-10K and RAPID. The blue line represents the mean difference, and the red dotted lines denote the limits of agreement.
Tables

Table 1. Baseline characteristics

<table>
<thead>
<tr>
<th>Variables</th>
<th>(N = 327)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, year</td>
<td>70.7±13.0</td>
</tr>
<tr>
<td>Sex, women</td>
<td>137 (41.9%)</td>
</tr>
<tr>
<td>Initial NIHSS score</td>
<td>9 (4 - 17)</td>
</tr>
<tr>
<td>Pre-stroke mRS 2 or less</td>
<td>279 (88.4%)</td>
</tr>
<tr>
<td>Previous stroke history</td>
<td>71 (21.7%)</td>
</tr>
<tr>
<td>Hypertension</td>
<td>229 (70.0%)</td>
</tr>
<tr>
<td>Diabetes</td>
<td>117 (35.8%)</td>
</tr>
<tr>
<td>Hyperlipidemia</td>
<td>163 (49.9%)</td>
</tr>
<tr>
<td>Smoking</td>
<td>79 (24.2%)</td>
</tr>
<tr>
<td>Atrial fibrillation</td>
<td>110 (33.6%)</td>
</tr>
<tr>
<td>Stroke subtype</td>
<td></td>
</tr>
<tr>
<td>Large artery atherosclerosis</td>
<td>104 (34.0%)</td>
</tr>
<tr>
<td>Small vessel occlusion</td>
<td>27 (8.8%)</td>
</tr>
<tr>
<td>Cardioembolism</td>
<td>112 (36.6%)</td>
</tr>
<tr>
<td>Undetermined</td>
<td>41 (12.5%)</td>
</tr>
<tr>
<td>Other determined</td>
<td>22 (7.2%)</td>
</tr>
<tr>
<td>Revascularization therapy</td>
<td></td>
</tr>
<tr>
<td>Intravenous thrombolysis</td>
<td>83 (25.4%)</td>
</tr>
<tr>
<td>Endovascular treatment</td>
<td>59 (18.0%)</td>
</tr>
<tr>
<td>Combined</td>
<td>63 (19.3%)</td>
</tr>
<tr>
<td>Time data</td>
<td></td>
</tr>
<tr>
<td>Last known well to arrival, min</td>
<td>147 (73 - 292)</td>
</tr>
<tr>
<td>Arrival to CTP, min</td>
<td>28 (24 - 38)</td>
</tr>
<tr>
<td>CTP to DWI, min (n = 217)</td>
<td>41 (27 - 100)</td>
</tr>
</tbody>
</table>
NIHSS=National Institute of Health Stroke Scale; mRS=modified Rankin Scale; CTP=compute tomography perfusion; DWI=diffusion-weighted image.
Table 2. Comparison of ischemic core volumes by JBS-10K and RAPID versus early follow-up infarct volume stratifying by the DAWN trial

<table>
<thead>
<tr>
<th>Follow-up infarct volume on DWI</th>
<th>JBS-10K</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0-20 mL</td>
<td>175</td>
<td>7</td>
<td>7</td>
<td>4</td>
</tr>
<tr>
<td>20-30 mL</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>30-50 mL</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>> 50 mL</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>13</td>
</tr>
<tr>
<td>Follow-up infarct volume on DWI</td>
<td>RAPID</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0-20 mL</td>
<td>182</td>
<td>5</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>20-30 mL</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>30-50 mL</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>> 50 mL</td>
<td>4</td>
<td>0</td>
<td>1</td>
<td>9</td>
</tr>
</tbody>
</table>

DAWN=DWI or CTP Assessment with Clinical Mismatch in the Triage of Wake-Up and Late Presenting Strokes Undergoing Neurointervention with Trevo; DWI=diffusion-weighted image.