Title: Clinical and economic burden of lower respiratory tract infection due to respiratory syncytial virus in young children in Germany

Authors in order:

Caroline Beese¹ – Lead author

Lea Bayer¹ – corresponding author

Bennet Huebbe¹

Jennifer Riedel²

Sima Melnik²

Gordon Brestrich¹

Christof von Eiff¹

Tobias Tenenbaum³

Affiliations:

¹ Pfizer Pharma GmbH, Berlin, Germany

² Gesundheitsforen Leipzig GmbH, Leipzig, Germany

³ Sana Klinikum Lichtenberg, Clinic for Child and Adolescent Medicine, Academic Teaching Hospital

Charité-Universitätsmedizin Berlin, Germany

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Conflict of Interest Statements:

CB, LB, BH, and CvE are all employees of Pfizer in Germany, the sponsor of this study. SM and JR are employees of Gesundheitsforen Leipzig GmbH, paid by Pfizer to conduct the study. TT is an expert in the field of RSV and received an honorarium from Pfizer for input on the study design and review of the results.

Funding:

This study was sponsored by Pfizer.
ABSTRACT

Background: Clinical and economic burden of infections due to respiratory syntactical virus (RSV) in children <2 years of age in Germany is still underestimated.

Methods: In a retrospective health claims analysis, we identified RSV inpatient and outpatient episodes based on year-round specific RSV ICD-10 diagnoses or unspecified lower respiratory tract infection diagnoses during the RSV-season. High-risk groups were defined by ICD-10 codes. Hospitalization costs per patient were incurred between the beginning and end of an RSV episode. All-cause costs were compared to a matched control group without RSV infections based on age, sex, and prematurity in the inpatient and outpatient sectors.

Results: The incidence of hospitalization due to RSV was substantially higher in infants (21/1,000) than in toddlers (5.4/1,000). Most hospitalizations occurred in the first six months of life; the highest hospitalization incidences were observed in the second month of life (46/1,000). Infants with risk factors had a 2.4 times higher risk for hospitalization than those without. The economic burden per episode was high in the first 3 months of life and especially for those with risk factors and/or prematurity. However, overall annual resource utilization for the healthcare system was higher for healthy children with no underlying risk factors than for those with risk factors.

Conclusion: RSV in children <2 years of age causes a considerable burden for the German healthcare system, both clinically and economically. Newborns, premature infants, children with chronic underlying risk factors are at highest risk for severe outcomes, but the overall disease burden affects healthy infants.
Introduction

Respiratory syncytial virus (RSV) is a leading cause of acute lower respiratory tract infections (acute LRTI) and hospitalizations for acute LRTI in young children (1). In 2019 the global burden of RSV was estimated to be 33 million episodes among children aged five years or younger, with 3.6 million hospitalizations, 26,300 RSV in-hospital deaths, and 101,400 RSV-attributable overall deaths (2). The majority of cases were accounted for by children under one year of age. By the age of two years, most children have had an RSV infection at least once (3). For industrialized countries, Li et al. (2022) also reported incidence rates for RSV-associated acute lower respiratory infections at 38.5/1000 in children aged 1-12 months and 24.3/1000 in children younger than 5 years of age (2). Children with certain risk factors, such as prematurity, congenital heart disease, or chronic lung disease, have an increased risk of RSV infections with severe outcomes (4). In Germany, there are only very few studies that have described the clinical burden of RSV in children, due to unspecific symptoms, limited standard-of-care testing and not least because of the lack of nation-wide mandatory reporting of RSV. Reporting of confirmed RSV cases to the Robert Koch Institute (RKI) became only recently mandatory in July 2023. Irrespective of mandatory reporting, the Federal Health Monitoring System (in German: Das Informationssystem der Gesundheitsberichterstattung des Bundes – GBE) makes inpatient data from the RKI, local ministries, epidemiological registries, and secondary data from the German social insurance publicly available (5). Therein, hospitalization cases are available by ICD-10 codes from the years 2000 to 2021, but no age stratification below the age of 1 year is available. Furthermore, data from GBE cannot be stratified by risk status for severe outcomes, preterm birth, months of life and calendar months. Furthermore, no data on other health care resource utilization such as ICU admission and ventilatory support are available, as well as length of hospitalization stay by risk status and prematurity are available.
The few studies that have described the clinical burden of RSV in children in Germany are either outdated or focused on single centers in Germany – making general, nation-wide conclusions challenging. For example, in a single-center study, the INSPIRE study, the authors reviewed medical records to identify RSV cases in hospitalized children under five years of age between 2015 and 2018 (6). Although the INSPIRE study showed for the first time that the highest number of RSV hospitalizations occurred in infants under six months of life in Germany, the study only included children from a single center and did not report any nation-wide or population-based incidence rates and did not provide more fine-grained estimates by e.g., months of life. Weigl et al. (2002) conducted a retrospective study on RSV cases in childhood that focused on inpatients from the years 1996-2001 from two pediatric hospitals in the city of Kiel (7). A mean incidence rate of 16/1000 was reported in children younger than 12 months. In comparison, data from the GBE show a hospital incidence rate of RSV in infants (<12 months) from 2017-2019 of 24.1/1000 per year (GBE-Bund, 5) – an increase of 50% within the last two decades. Given the limitations of the GBE data with respect to granularity of the age and risk group stratification, more evidence is needed to better understand the clinical burden of RSV in children in Germany.

In addition to the clinical burden, RSV infections pose a substantial economic burden to the healthcare system. At the global level, a recent review reported average costs of €3,452.00 per inpatient episode and €299 per outpatient episode among children under five years of age, summarizing data from Europe, North America, and Australia between 1987 and 2017 (8). Ehlken et al. (9) examined inpatient and outpatient costs for children under one year of age. Average inpatient costs of 2,601.00€ and average outpatient costs of 68€ were reported. However, this study used data from 1999 to 2002, which may not reflect the current economic burden of RSV.
To fill in the research gaps in the clinical and economic burden of RSV in children in Germany, we conducted a retrospective study using health claims data to assess the hospitalization incidence rate, mortality rate, and costs associated with RSV in children <2 years of age in Germany from 2014 to 2019, covering the pre-Covid-19 pandemic years.

Methods

Study design and data source

The study retrospectively analyzed claims data from the German Statutory Health Insurance (SHI) system using the German Analysis Database for Evaluation and Health Services Research (DADB), which is owned by “Gesundheitsforen Leipzig GmbH”. At the time of the data analyses, the DADB contained data on approximately 4.1 million insured persons (5% of the SHI population) and covered the period from 2013 to 2020. During the study period of 2014 to 2019, data from 3.9 million insured was available. Routinely collected health claims data are provided by 16 statutory health insurers operating nationwide and include patient characteristics, inpatient and outpatient diagnoses (International Classification of Diseases 10th revision codes, German modification (ICD-10-GM)) (10), drug prescriptions (Anatomical-Therapeutic-Chemical classification system; ATC level 5 code), and cost information. Further information is available on medical procedures (surgery and procedure keys; OPS), diagnosis-related groups (DRG) and incapacity to work. The data provided by the cooperating health insurers is delivered annually, pseudo-/anonymized and encrypted to prevent re-identification of individuals. The process of data collection and encryption has been approved in Germany in accordance with national law. The information in the DADB has proven to be a representative sample of the total German population. This is ensured by an annual comparison with data from the Federal Social Insurance Office (11). The DADB has been successfully used in submission to the German Health Technology Assessment authorities to describe patient demographics in several indications as part of the benefit-risk assessment of medicines (12, 13, 14).
For the current study, claims data were selected from January 1, 2014, and December 31, 2019. The study period was chosen to exclude the COVID-19 pandemic era to ensure results could be compared across the study years and to exclude irregular RSV-seasons during and after the COVID-19 pandemic (15).

Study population

Data from children were included in the analyses if they: (1) were aged 1-24 months and were observable for at least one year (365 days) and (2) had a diagnosis of RSV (ICD-10 codes: J12.1, J20.5, J21.0, B97.4) or a diagnosis of unspecified bronchiolitis, bronchitis, pneumonia or acute lower respiratory tract infections (UBP) based on ICD-10-GM codes (J20.8, J20.9, J21.8, J21.9, J18.0, J12.8, J12.9, J18.8, J18.9, J22). Patients with UBP diagnoses were only included if the diagnosis occurred during the respective RSV-season (Supplemental Table 1). according to Cai et al. (2022) (16). UBP diagnoses were incorporated to increase the sensitivity of capturing RSV without substantial loss of specificity (17). To be counted as a case, patients were required to have at least one principle or secondary RSV or UBP inpatient diagnosis or one confirmed outpatient diagnosis. Patients who deceased during the study period were included for the analysis of incidence and mortality rates but excluded from the cost analysis. The study population was divided into two age groups: infants (1-12 months) and toddlers (13-24 months). Since the exact date of birth is not available in DADB for data protection reasons, the age in months was estimated based on the year of birth and the number of insured days in the calendar year; hence all children were observable from birth. Consequently, infants ≤1 year (1-12 months) were fully observable in the year of birth and toddlers were fully observable between >1 year and <2 years (13-24 months). Therefore, toddlers could only be included in data analysis from 2015 onwards, whereas infants were included from 2014 onwards.

Definition of episode
The RSV population included in the analyses consisted of patients with RSV diagnoses in the reporting years and/or UBP diagnoses during the RSV season and was reported separately for the outpatient and inpatient healthcare sectors. Inpatient RSV/UBP cases without overnight stay in hospital have been excluded.

For inpatient RSV episodes, the episode started on the date of the first RSV-related diagnosis with no evidence of RSV 30 days before the first encounter of RSV (i.e., RSV index diagnosis). The episode start date could be brought forward once if the admission date of an inpatient UBP diagnosis was up to 30 days before the RSV index diagnosis. The length of an inpatient episode was extended to the date of a new RSV or UBP inpatient diagnosis that occurred within 30 days of the previous diagnosis. For inpatient UBP diagnoses to be included in RSV episode advancement or extension, the admission date of the UBP diagnosis or RSV index diagnosis had to be within the RSV season. Even outside the RSV season, a diagnosis of RSV could prolong RSV episodes. Consequently, inpatient RSV episodes were differentiated whether they occurred with and without UBP diagnosis and UBP episodes were identified with only UBP diagnoses within RSV season. For outpatient RSV episodes, an RSV episode started with the index diagnosis of outpatient RSV or UBP and lasted until the end of the quarter year period in which the index diagnosis was made. Outpatient UBP who had an inpatient RSV in the same quarter were excluded. Only outpatient diagnoses of UBP could be combined with outpatient diagnoses of RSV and were used to distinguish outpatient RSV episodes with and without UBP, and to define outpatient UBP episodes with only UBP diagnosis codes. For patients with both inpatient and outpatient diagnoses of RSV (same for UBP) within the same quarter, only inpatient diagnoses were considered.

Outcome measures
Study outcome measures included incidence rates, 90-day all-cause mortality rate, healthcare costs and healthcare resource utilization. The number of cases in the database were extrapolated to the annual birth cohorts published by the “Institute for Quality Assurance and Transparency in Healthcare” (IQTIG) (18). Base populations were based on IQTIG monthly birth cohorts. Hospitalization incidence rates were calculated as number of extrapolated cases divided by the mean population size at risk expressed as per 1,000 person-years and stratified by risk status (with or without preterm status or underlying medical risk factor), month of life and calendar month. Due to low numbers of fatal cases, mortality rates could only be computed across the entire study period from 2014-2019. The 90-day all-cause mortality rate was calculated as the number of deceased patients within 90 days after an inpatient or outpatient RSV episode divided by the total population size from 2014-2019. All-cause healthcare costs were calculated on a per episode basis and for different time windows (30-days, 90-days, 365 days, 2-years). Costs included inpatient, outpatient, and pharmacy costs separately. Healthcare resource utilization included hospital length of stay (LOS), the number of ICU treatments, and level and corresponding costs of ventilation use.

Preterm status was defined as either prematurity or extreme prematurity based on the presence of ICD-10 codes (P07.2 and P07.3). Risk status was defined as the presence of at least one risk factor based on ICD-10 codes for prematurity, chronic cardiac disease, chronic respiratory disease, immunosuppression, neurological disease, diabetes mellitus or a patient history of prophylactic immunotherapy (Supplemental table 2) and was defined as a binary variable (yes/no).

Study population for cost analysis

RSV-attributable costs were analyzed as mean costs per episode and additionally as all cause excess costs in comparison to a control group. To determine the excess costs for two years following an RSV episode,
a new patient population was identified, including only patients that had exactly one RSV episode within
the healthcare sector during the observation period of 2-years.

All-cause excess costs were determined by comparing the RSV population to a matched control group
based on month of life, sex, preterm status in a 1:4 matching ratio. The control group included patients
without an RSV diagnosis that could also be followed up for two years starting from the index date of the
matched RSV patient. Excess costs were defined as the difference between mean all-cause costs in the
RSV-cohort over a specific observation period and the mean all-cause costs in the control cohort over the
same observation period. Average annual economic burden was determined multiplying the extrapolated
mean annual hospitalization cases with the mean costs per episode for the respective risk and age group.
Mean all-cause cost values in the RSV population and the control group were compared using Mann-
Whitney-Wilcoxon test for continuous variables. When adjusting p-values for multiple comparisons, the
Benjamin-Hochberg procedure was used to limit the probability of false detections.

Ethical considerations: This study used aggregated and anonymized data, therefore not requiring approval
from Institutional Review Boards or Ethical Committees or informed consents from patients. The study
was conducted in accordance with legal and regulatory requirements and research practices described in
the “Good Epidemiological Practice guidelines issued by the International Epidemiological Association”

Results

Study population characteristics
Altogether, 15.7% of infants and 17.6% of toddlers in the database had risk factors and 6.1% of infants and 6.2% of toddlers were born prematurely. Overall, in the database 3,834 inpatient RSV episodes were identified in infants and 788 in toddlers. Correspondingly, among all inpatient episodes in infants, 30.6% occurred in those with underlying risk factor and 13.1% in those born prematurely. Among RSV inpatient episodes in toddlers, 38.8% occurred in those with at least one risk factor and 15.9% were born prematurely.

Clinical burden due to RSV

Incidence rates by study year and preterm/risk status

Between 2015 and 2019, the total annual hospitalization incidence rate was higher in infants (21/1,000) than in toddlers (5/1,000) (Table 1). Highest hospitalization incidence rates were observed in 2019 with 24/1,000 in infants and 7/1,000 in toddlers.

Compared to healthy infants, hospitalization incidence rates were 2.9 times higher in infants with extreme prematurity, 2.6 with prematurity, and 2.4 in infants with at least one risk factor. Hospitalization incidence rates were 8.3, 3.1 and 3.0 higher in toddlers with extreme and other preterm status and risk status respectively in comparison to healthy toddlers. Hospitalization incidence rates across the study years were highest for infants with extreme prematurity (Table 2).

Incidence rates by month of life and preterm/risk status

Most hospitalizations occurred during the first 6 months of life (61.4% of all cases in children <2 years of age and 74.0% of cases in infants). The overall hospitalization incidence rate peaked at the age of 2 months (hospitalization incidence rate across study years: 46/1,000). From age 3 months on, there was a gradual decrease in the RSV incidences until age 13-24 months. A similar trend was observed among full-term
infants, with a peak hospitalization incidence rate noted in the age group of 2 months olds (44/1,000).

Among infants with any preterm status, the hospitalization incidence rate peaked at the age of 3 months (85/1,000 across study years), initially decreasing sharply after the age of 3 months, and again after the age of 7 months. Among infants with underlying risk factors, the hospitalization incidence rate peaked in the age group of 1-month olds (77/1,000 across study years), followed by a decrease until 12 months (Figure 1). Incidence rates in infants under 6 months were 2.9 times higher than in infants after 6 months of age. Incidence rates in infants 1-3 months old were 1.4 times higher than infants 4-6 months old and 3.4 times higher than infants 7-12 months of age.

RSV mortality

Over the study period and within the analyzed data, 12 children died in the 90-days period following a hospital admission. A total of 8 infants and 5 toddlers died; of the children that died, 7 were born pre-maturely, while 6 were born at term. All children that died had at least one underlying risk factor. The resulting calculated mortality rate was 0.005%.

Economic burden and healthcare resource utilization related to RSV infections.

Hospital length of stay (LOS) and number of hospitalizations

During the 30-days’ time window, the median LOS was 5 days for both infants and toddlers. For infants and toddlers with any preterm status median LOS was 6 days. Among infants with extreme prematurity median LOS was 7 days and for those aged 1-3 months was 6 days. Over the maximum observation period of two years, the mean number of all-cause hospitalizations increased from 1.07 (30-days period) to 1.66 (2-years period) in infants in the RSV-cohort and from 1.07 to 1.79 in toddlers during the respective periods.
RSV-attributable cost and excess cost estimates

For the cost analysis, 3,376 hospitalized infants and 655 toddlers were identified. All-cause inpatient costs in the RSV cohort were significantly higher than in the control group (p < 0.001) over all observation periods (30, 90, 365 days, 2 years) and excess costs of RSV episodes increased with increasing observation time (Table 3 and 4).

Mean costs per inpatient episode were high for all infants (€3,912), with higher costs associated with younger age, preterm status, and risk status (Table 4). Mean inpatient episode costs were lower for toddlers than for infants but remained high, with average costs of €3,510 per episode.

The 1-year mean excess costs for hospitalizations were similar in infants (€4,446) and toddlers (€4,570). The mean excess costs per index year of an outpatient episode were €148 among all infants, and €277 among infants with an extreme prematurity status (ICD-10-GM: P07.2). Outpatient excess costs were similar for infants and toddlers (index year excess costs infants: €148, toddlers: €179).

ICU stays and ventilation use.

Approximately 1% of hospitalized infants and <1% of hospitalized toddlers required ICU treatment. Most infants that required ICU treatment during the 30-day period were diagnosed with bronchiolitis (72.7%), followed by pneumonia (27.3%), and bronchitis (12.1%). Among hospitalized infants that received ICU treatment, 7% required some form of ventilation use and <1% required mechanical ventilation. Due to the higher overall proportion of hospitalizations occurring in full term infants, 84.8% of ICU admissions occurred in infants born at term, and 51.5% in infants with an underlying risk factor or prematurity. Out of all episodes in infancy that required ICU treatment, 57.6% of ICU admissions occurred in the first 3
months of life and 84.8% in the first 6 months of life. The mean costs per episode with ICU stay was €19,181 among infants and €4,450 among toddlers. Costs of episodes that required mechanical ventilation were especially high, with mean costs of 71,242 € (Table 5).

Annual economic burden

The overall annual economic inpatient burden of RSV in infants was an estimate of 61 million euros, with 56% (34 million euros) of the annual economic burden associated with care for infants born at term without underlying risk factors and 44% (27 million euros) associated with care for infants with risk factors. Care for all toddlers adds additional annual costs of 14 million (7.5 million in healthy toddlers, and 6.5 million in those with underlying risk factors), leading to annual costs of inpatient care for children < 2 years of age of 75 million euros each year.

Discussion

In this retrospective cohort study using statutory health insurance data, we assessed the hospitalization incidence rate, mortality, and costs associated with RSV in infants and toddlers in Germany from 2014-2019. Our study presents recent, nation-wide, and population-based quantification of the RSV-burden in young children in Germany, including data from 6 consecutive years right before the beginning of the COVID-19 pandemic. Our study analyzed the hospitalization incidence rates by preterm/risk status and months of life, as well as the distribution of RSV cases per calendar month. The highest hospitalization incidence rate was observed in young infants aged 2 months, and the hospitalization incidence rate was substantially higher in children with underlying risk factors including prematurity. Additionally, our study demonstrated a considerable economic burden associated with RSV in Germany. Higher healthcare costs
were observed in young infants aged 1-3 months and children with a prematurity status. The highest costs were associated with ICU treatment or mechanical ventilation.

Low age below 6 months of life has been recognized as a risk factor for RSV in earlier studies (4, 20), as newborns have an immature immune system, and their small airways are especially affected by swelling and mucous production due to the infection and inflammation. Our study confirms low age as a major risk factor, with most hospitalizations occurring in the first six months of life and the highest incidence rates were reported between the first and second month of life across other risk factors than prematurity. Overall, our estimates – annual RSV hospitalization incidence rate of 21/1,000 in infants and 5/1,000 in toddlers – are slightly lower but in reasonable proximity to other hospitalization incidence rates estimated from European countries. Analyzing a nationwide database on RSV hospitalization cases, Jepsen (2018) (21) estimated a hospitalization incidence rate of 29/1,000 for infants and 6.3/1,000 for toddlers between 2010 and 2015 in Denmark. Jepsen also found the highest incidence rates between the first and second month of life, with a gradual decrease, thereafter, underlining the universal risk of RSV for newborns in Europe. A similar age-related incidence pattern was observed for instance by Demont et al. (2021) (22) in France. Our hospitalization incidences rates are also comparable to a recent US meta-analysis by McLaughlin et al. (23), who reported hospitalization rates between 8.4 and 40.8 per 1,000, with a pooled average of 19.4 in infants. Compared to estimates by Li (2021) (2) in industrialized countries, who estimates a disease burden of 38/1,000, disease burden estimates in Germany remain relatively low. A modelling study estimating RSV-associated hospitalizations in the European Union using time-series estimates by Johannesen (2022) (24), also reported substantially higher RSV-associated hospitalization incidence rates of 72.5 in children between 1-2 months old, 38.6 in children 3-6 months old and 17.5 per 1,000 in children aged 6-11 months for Germany (Del Riccio 2023) (25).
Hospitalization incidence rates were also notably higher in children with at least one underlying risk factor, including premature birth. Prematurity has been widely acknowledged as a risk factor for severe outcomes of RSV, globally (26, 27) and in Germany (4). Extreme prematurity in our study was associated with the highest hospitalization incidence rates in infants. Notably, the influence of premature birth and other risk factors on the risk for hospitalization seems to persist even in toddlers.

Like hospitalization incidence rates, associated inpatient costs and resource utilization underline the risk for severe outcomes of RSV associated disease with the studied risk factors. Inpatient costs were higher in the first months of life, and for those with preterm status and other underlying risk factors. This is in line with other recent cost estimates from other European countries. For example, Kramer et al. (2018) (28) reported similar mean costs per inpatient episode for infants born at term (3,437 €) and infants born prematurely (6,324 €) in hospitals in Lyon, France. In addition, Kramer estimated higher costs for infants aged <3 months (3,958 €) than infants >3 months old (3,234 €). Demont (2021) (22) also found the highest costs in infants <3 months old. Overall, our cost estimates are comparable to inflation adjusted estimates from Elhken’s study in Germany. Taking the consumer price index from 2002 to 2019 for Germany into account, the costs reported by Ehlken should have increased to 3,353€ for inpatients and 88€ for outpatients. In addition, a recent study by Niekler et al. (2023) (29) estimated similar costs for hospitalizations in infants (3,598€) in Germany. In terms of healthcare resource utilization, our study compares to a single-center retrospective study in Germany, conducted by Hartmann, 2022 (6). Hartmann estimated a similar median LOS of 5-days for children <6 months and higher median LOS in preterm infants (7.5). Hartmann observed a high rate of ICU admissions for children between 1 and 6 months (9.3%) but no ICU-admissions for children between 6-12 months, overall estimating slightly higher ICU-admissions rates than our study (1% for infants).
While the relative risk for RSV hospitalization was higher for infants and toddlers with underlying risk factors and preterm children, the highest overall clinical and economic burden was posed by healthy children.

Limitations and Implications

It is important to mention that using health claims to analyze epidemiological and economic burden has numerous strengths, but also several limitations. First, costs for outpatients are only available per calendar year, thus outpatient costs could only be aggregated across the diagnosis year and not per episode for all family insured persons. In addition, through health claims data, it is not possible to determine whether an RSV-specific laboratory detection assay was positive prior to ICD-10 coding, as virological confirmation is not a requirement, and the results of tests are not available in the health claims data. However, RSV-codes (J12.1, J20.5, and J21.0) are usually allocated after laboratory-confirmed RSV infection in the hospital setting (29). In the primary care setting, laboratory tests are not routinely administered, thus identification of RSV-infections in the outpatient setting through health claims data remains a significant challenge. Since there are no pathogen-specific treatment options in the primary care setting for RSV, it is likely that RSV is not routinely diagnosed and therefore costs data from the outpatient sector need to be interpreted with caution.

Conclusion

To our knowledge, this large observational study is the first to provide updated nation-wide, population-based hospitalization incidence rates in Germany and the corresponding economic burden. In addition, the study is the first to provide detailed epidemiological and economic estimates of the burden of disease of LRTI-RSV infections by months of life, risk status and preterm status in Germany. Overall, our study
shows a substantial clinical burden among young children with RSV infections in Germany. Both, newborns and children with a preterm status or a risk medical factor show an elevated and substantial risk of severe RSV infections, although according to our analyses most children who were hospitalized did not offer any risk factors prior to hospitalization. Also economically, RSV infections in young children pose a significant burden on the German healthcare systems. Our study identifies the most vulnerable demographics and shows that the overall disease burden remains high in young, healthy infants, emphasizing the need for broad protection already at birth.

Acknowledgements: Medical writing support was provided by Qi Yan, PhD, MS (Pfizer, Inc). We thank Julia Schiffner-Rohe for valuable discussions throughout the study process.
References:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>IR</td>
<td>Cases</td>
<td>IR</td>
<td>Cases</td>
<td>IR</td>
<td>Cases</td>
<td>IR</td>
</tr>
<tr>
<td>1-3</td>
<td>30.9</td>
<td>5,315</td>
<td>32.5</td>
<td>5,783</td>
<td>33.9</td>
<td>6,534</td>
<td>41.0</td>
</tr>
<tr>
<td>4-6</td>
<td>23.9</td>
<td>4,114</td>
<td>23.1</td>
<td>4,118</td>
<td>26.9</td>
<td>5,188</td>
<td>27.8</td>
</tr>
<tr>
<td>7-12</td>
<td>10.7</td>
<td>3,668</td>
<td>10.1</td>
<td>3,609</td>
<td>10.0</td>
<td>3,866</td>
<td>10.2</td>
</tr>
<tr>
<td>1-6</td>
<td>27.4</td>
<td>9,429</td>
<td>27.8</td>
<td>9,901</td>
<td>30.4</td>
<td>11,722</td>
<td>34.4</td>
</tr>
<tr>
<td>1-12</td>
<td>19.5</td>
<td>13,098</td>
<td>19.3</td>
<td>13,509</td>
<td>20.9</td>
<td>15,589</td>
<td>22.3</td>
</tr>
<tr>
<td>13-24</td>
<td>n.a.</td>
<td>n.a.</td>
<td>4.4</td>
<td>2,939</td>
<td>5.6</td>
<td>3,944</td>
<td>4.8</td>
</tr>
<tr>
<td>1-24</td>
<td>n.a.</td>
<td>n.a.</td>
<td>12.0</td>
<td>16,401</td>
<td>13.4</td>
<td>19,338</td>
<td>13.7</td>
</tr>
</tbody>
</table>
Notes. ICD-10 GM Code P07.2 denotes newborn children with extreme prematurity, born before the 29th gestational week. ICD-10 code-GM Code P07.3 denotes other preterm infants, infants born between after the 29th and before the 38th gestational week. Any risk status denotes children with at least one risk factor including preterm status.

Table 2: Hospitalization Incidence Rates 2014-2019 by Risk and Preterm Status

<table>
<thead>
<tr>
<th></th>
<th>Infants</th>
<th></th>
<th></th>
<th></th>
<th>Toddlers</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Healthy</td>
<td>P07.2</td>
<td>P07.3</td>
<td>Any Risk Status</td>
<td>Healthy</td>
<td>P07.2</td>
<td>P07.3</td>
</tr>
<tr>
<td>Incidence</td>
<td>17.3</td>
<td>49.85</td>
<td>44.36</td>
<td>40.82</td>
<td>4.0</td>
<td>33.4</td>
<td>12.3</td>
</tr>
<tr>
<td>Cases</td>
<td>10,743</td>
<td>149</td>
<td>1,866</td>
<td>4,718</td>
<td>2,430</td>
<td>106</td>
<td>525</td>
</tr>
</tbody>
</table>

(Average)

<table>
<thead>
<tr>
<th>Age Status</th>
<th>LOS Days</th>
<th>Median LOS</th>
<th>Episode costs (SD)</th>
<th>30-days excess costs</th>
<th>90-days excess costs</th>
<th>365-days excess costs</th>
<th>2-years excess costs</th>
<th>Outpatient excess costs (index year)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-12 months</td>
<td>5</td>
<td>3,912.12 (7,798.59)</td>
<td>3,534.34€</td>
<td>3,879.27 €</td>
<td>4,446.66€</td>
<td>4,904.20 €</td>
<td>147.97 €</td>
<td></td>
</tr>
<tr>
<td>1-3 months</td>
<td>6</td>
<td>4,651.57 (10,454.58)</td>
<td>4,011.95€</td>
<td>4,275.12 €</td>
<td>4,517.76 €</td>
<td>4,573.33 €</td>
<td>74.46 €</td>
<td></td>
</tr>
<tr>
<td>4-6 months</td>
<td>5</td>
<td>3,336.80 (5,083.86)</td>
<td>3,143.92€</td>
<td>3,440.26 €</td>
<td>3,832.44€</td>
<td>4,144.34 €</td>
<td>116.73 €</td>
<td></td>
</tr>
<tr>
<td>7-12 months</td>
<td>5</td>
<td>3,295.86 (3,904.64)</td>
<td>3,160.16€</td>
<td>3,715.43 €</td>
<td>5,095.86€</td>
<td>6,469.43 €</td>
<td>188.10 €</td>
<td></td>
</tr>
<tr>
<td>Full Term</td>
<td>5</td>
<td>3,6114.05 (6,980.16)</td>
<td>3,437.35€</td>
<td>3,792.42 €</td>
<td>4,405.96€</td>
<td>4,902.73 €</td>
<td>154.10 €</td>
<td></td>
</tr>
<tr>
<td>Any preterm status</td>
<td>6</td>
<td>5,932.67 (11,765.05)</td>
<td>4,191.80€</td>
<td>4,467.98 €</td>
<td>4,725.14€</td>
<td>4,914.19 €</td>
<td>91.46 €</td>
<td></td>
</tr>
<tr>
<td>Any risk status</td>
<td>6</td>
<td>5,660.17 (12,178.81)</td>
<td>4,683.75€</td>
<td>5,501.65€</td>
<td>6,305.00€</td>
<td>6,765.87€</td>
<td>273.61 €</td>
<td></td>
</tr>
<tr>
<td>P07.2</td>
<td>7</td>
<td>14,089.85 (27,316.03)</td>
<td>4,737.28€</td>
<td>5,813.57€</td>
<td>5,400.17€</td>
<td>4,488.38 €</td>
<td>277.47 €</td>
<td></td>
</tr>
<tr>
<td>P07.3</td>
<td>6</td>
<td>5,391.52 (9,752.89)</td>
<td>4,155.61€</td>
<td>4,378.72 €</td>
<td>4,680.36€</td>
<td>4,942.43 €</td>
<td>77.55 €</td>
<td></td>
</tr>
</tbody>
</table>

Note. ICD-10 GM Code P07.2 denotes newborn children with extreme prematurity, born before the 29th gestational week. ICD-10 code-GM Code P07.3 denotes other preterm infants, infants born between after the 29th and before the 38th gestational week. Risk status denotes children with at least one risk factor including preterm status. Any preterm status denotes children with ICD-10 code P07.2 or P07.3.

<table>
<thead>
<tr>
<th></th>
<th>30-days Median LOS</th>
<th>Episode costs (SD)</th>
<th>30-days excess costs</th>
<th>90-days excess costs</th>
<th>365-days excess costs</th>
<th>2-years excess costs</th>
<th>Outpatient excess costs (index year)</th>
</tr>
</thead>
<tbody>
<tr>
<td>13-24 months</td>
<td>5</td>
<td>3,510.36€ (5,432.86€)</td>
<td>3,371.51€</td>
<td>3,756.39€</td>
<td>4,570.32€</td>
<td>5,211.34€</td>
<td>179,40€</td>
</tr>
<tr>
<td>Full Term</td>
<td>5</td>
<td>3,377.67€ (5,475.18€)</td>
<td>3,259.34€</td>
<td>3,508.09€</td>
<td>4,046.48€</td>
<td>4,403.92€</td>
<td>769.15€</td>
</tr>
<tr>
<td>Any preterm status</td>
<td>5</td>
<td>3,337.67€ (5,475.18€)</td>
<td>3,259.34€</td>
<td>5,057.01€</td>
<td>7,314.23€</td>
<td>9,440.71€</td>
<td>198,32€</td>
</tr>
<tr>
<td>Any risk status</td>
<td>6</td>
<td>4,205.40€ (5,175.14€)</td>
<td>3,959.09€</td>
<td>4,680.73€</td>
<td>6,235.87€</td>
<td>7,680.11€</td>
<td>250,29€</td>
</tr>
<tr>
<td>P07.2</td>
<td>7</td>
<td>4,828.43€ (2,853.82€)</td>
<td>4,627.00€</td>
<td>4,750.16€</td>
<td>6,161.71€</td>
<td>8,101.28€</td>
<td>604,87€</td>
</tr>
<tr>
<td>P07.3</td>
<td>7</td>
<td>4,207.45€ (8,619.14€)</td>
<td>3,868.94€</td>
<td>5,120.49€</td>
<td>7,552.68€</td>
<td>9,717.83€</td>
<td>167,05€</td>
</tr>
</tbody>
</table>

Note. ICD-10 GM Code P07.2 denotes newborn children with extreme prematurity, born before the 29th gestational week. ICD-10 code-GM Code P07.3 denotes other preterm infants, infants born between after the 29th and before the 38th gestational week. Risk status denotes children with at least one risk factor including preterm status. Any preterm status denotes children with ICD-10 code P07.2 or P07.3.
Table 5: Percent of utilization of respiratory support and associated costs in infants by support level

<table>
<thead>
<tr>
<th>Ventilation Level</th>
<th>%</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>No respiratory support</td>
<td>93%</td>
<td>3,130.18 €</td>
</tr>
<tr>
<td>Oxygen therapy</td>
<td>2%</td>
<td>6,682.28 €</td>
</tr>
<tr>
<td>Non-invasive ventilatory support</td>
<td>2%</td>
<td>6,689.71 €</td>
</tr>
<tr>
<td>Noninvasive ventilation</td>
<td>2%</td>
<td>15,636.61 €</td>
</tr>
<tr>
<td>Invasive mechanical ventilation</td>
<td>1%</td>
<td>71,242.12 €</td>
</tr>
</tbody>
</table>

Note. Ventilation level was assessed based on OPS codes. Oxygen therapy (OPS 8-720). Noninvasive ventilatory support (OPS 8-711.4x), noninvasive ventilation (OPS 8-712.0), invasive mechanical ventilation (OPS 8-711.1x)
Figure 1: Hospital Incidence Rate per cross stratified by months of life and preterm status, risk status 2014-2019

Note. Risk status includes prematurity status.