Frequency of lipoprotein(a) testing and its levels in Pakistani population

Hijab Batool¹, Madeeha Khan²,³, Quratul Ain²,⁴, Omar R. Chughtai¹,

Muhammad D. Khan¹, Mohammad I. Khan⁵,⁶, Fouzia Sadiq²*

¹Chemical Pathology, Chughtai Institute of Pathology, Lahore, Pakistan
²Directorate of Research, Shifa Tameer-e-Millat University, Pitras Bukhari Road, H-8/4, Islamabad 44000, Pakistan
³Atta ur Rehman School of Applied Biosciences, National University of Sciences and Technology, H-12, Islamabad 44000, Pakistan
⁴Translational Genomics Laboratory, Department of Biosciences, COMSATS University Islamabad, Islamabad Pakistan
⁵Department of Vascular Surgery, Shifa International Hospital Pitras Bukhari Road, H-8/4, Islamabad 44000, Pakistan
⁶Shifa Tameer-e-Millat University, Pitras Bukhari Road, H-8/4, Islamabad 44000, Pakistan
*director.research@stmu.edu.pk

Abstract

Background: Lipoprotein(a) [Lp(a)] is a highly atherogenic particle identified as an independent risk factor for the development of atherosclerotic cardiovascular disease (ASCVD). This study aimed to investigate the frequency of Lp(a) testing and incidence of elevated Lp(a) in the Pakistani population.

Methods: For this observational study, Lp(a) and lipid profile data from five years (June 2015 to October 2020) were acquired from the electronic patient records of a diagnostic laboratory (Chughtai Laboratories, Lahore). The association of age, total cholesterol (TC), high-density lipoprotein (HDL), low-density lipoprotein cholesterol (LDL-C), non-HDL, and triglyceride (TG) levels with two thresholds for Lp(a), that is, <30 mg/dL and ≥30 mg/dL, was calculated using the Kruskal Wallis test, while the association between Lp(a) levels and lipid variables was calculated using Spearman correlation.
Results: For five years, 1060 tests were conducted, averaging 212 tests per year. Of these tests, 37.2% showed Lp(a) levels above 30 mg/dL. There were no significant differences observed in the results between males and females. However, younger individuals displayed significantly higher Lp(a) levels. Additionally, there was only a weak correlation between Lp(a) levels and other lipid variables.

Conclusion: Despite being recognized as a risk factor for ASCVD in the Pakistani population, only a small proportion of the large population had their Lp(a) tested. Moreover, a significant proportion of the population lies above the threshold.

Introduction

Lipoprotein(a) [Lp(a)] is a macromolecular structure comprising a lipid core of cholesteryl esters and triacylglycerols surrounded by an outer shell of phospholipids, free cholesterol, and apolipoprotein B-100 (apoB-100) particles linked to apolipoprotein a [apo(a)] glycoprotein. Lp(a) is synthesized exclusively in hepatocytes and is a major carrier of oxidized phospholipids (OxPLs), which can trigger multiple pro-inflammatory pathways. Circulating levels of Lp(a) are determined by the LPA gene locus and are not influenced by dietary or environmental factors.

Data from randomized control trials suggest that diets lower in saturated fats, hormone replacement therapy (HRT) and liver disease result in lowered Lp(a) levels, whereas kidney disease results in a marked elevation of Lp(a). Evidence from several studies suggests that elevated Lp(a) is an independent risk factor for the development of cardiovascular diseases (CVD), including aortic valve stenosis, coronary heart disease, myocardial infarction, and stroke. Several international guidelines have included Lp(a) testing in their recommendations particularly for those having a high risk of cardiovascular diseases. The plasma Lp(a) levels are genetically determined and generally remain stable; however, genetic variability exists among different ethnic groups, with greater levels observed in Africans than in Caucasians, Hispanics, and Asian populations.

Generally, an Lp(a) concentration of 50 mg/dL is considered a high-risk threshold. High Lp(a) levels (>50 mg/dL) were estimated to be prevalent in 20% of the population. Elevated Lp(a) has been identified as a causal risk factor in the Pakistani population; however, Lp(a) testing is not considered in routine ASCVD diagnosis.

This study aimed to investigate the incidence of Lp(a) testing and elevated Lp(a) levels in the Pakistani population.

Methods

Study population

For this retrospective study, anonymized Lp(a) data from the last five years (June 2015 to October 2020) was acquired from the electronic patient records of Chughtai Diagnostic Laboratories, Lahore, with collection centers across the country.

Lp(a) and Lipid Profile Analysis
The Lp(a) levels were measured by immunoturbimetric assay (Alinity c Lp(a) kit, Product 01R1420, Abbott Laboratories, Illinois, USA). The lipid profile data for low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein (HDL), total cholesterol (TC), and triglycerides (TG) of 191 subjects were measured using a homogenous assay (Abbott Alinity ci analyzer).

Statistical analysis

The data for study variables, that is, age, Lp(a), TC, HDL, LDL, non-HDL, and TG, were reported as the minimum, maximum, median, and interquartile range (IQR). The association between Lp(a) levels and gender was calculated by using the Mann-Whitney U test. The level of significance was set at p <0.05. Differences in the significance of Lp(a) levels among different age groups were calculated using the Kruskal Wallis test. The association of age and TC, HDL, LDL, non-HDL, and TG levels with two thresholds for Lp(a), that is, <30 mg/dL and ≥30 mg/dL, was calculated using the Kruskal-Wallis test. Statistical analysis and data visualization were performed using SPSS v27.

Results

In this study, a total of 1060 individuals were included. The details of the study’s variables, such as age, Lp(a), TC, HDL, LDL, non-HDL, and TG, are presented in Table 1. The median age of participants was 47 years. The median Lp(a) level was 20.75 (9.8-43.85) mg/dL. Among these, 37.5% (n=395) had Lp(a) levels above 30 mg/dL, while 21.3% (n=225) had Lp(a) levels above 50 mg/dL. The data for lipid variables were available for 190 individuals, where the median levels of TC, HDL, LDL, and non-HDL have been provided (Table 1).

<table>
<thead>
<tr>
<th>Data Characteristics</th>
<th>Minimum</th>
<th>Maximum</th>
<th>Median</th>
<th>IQR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (n=1060)</td>
<td>3.0</td>
<td>98.0</td>
<td>47.0</td>
<td>37.0-58.0</td>
</tr>
<tr>
<td>Lp(a) (n=1060)</td>
<td>1.3</td>
<td>281.3</td>
<td>20.7</td>
<td>9.8-43.8</td>
</tr>
<tr>
<td>TC mg/dL (n=190)</td>
<td>104.0</td>
<td>1010.0</td>
<td>192.0</td>
<td>156.7-222.5</td>
</tr>
<tr>
<td>HDL-C mg/dL (n=190)</td>
<td>18.0</td>
<td>86.0</td>
<td>39.0</td>
<td>32.0-46.2</td>
</tr>
<tr>
<td>LDL-C mg/dL (n=190)</td>
<td>50.0</td>
<td>800.0</td>
<td>123.0</td>
<td>94.7-162.2</td>
</tr>
<tr>
<td>Non-HDL mg/dL (n=190)</td>
<td>62.0</td>
<td>990.0</td>
<td>149.5</td>
<td>114.7-184.2</td>
</tr>
</tbody>
</table>
The levels of Lp(a) did not show a significant difference (p=0.45) between genders. Figure 1 displays the frequency distribution of Lp(a) levels in both male and female participants. The levels of Lp(a) were compared across various age groups, including those under 20 years, between 20 to 40 years, between 40 to 60 years, and over 60 years. The results showed that there were significant differences between the groups (p=0.03) (Table 2). The median Lp(a) level for those ages below 20 years was 31.2 (9.1-92.2) mg/dL, while 23.3 (10.2-47.6) mg/dL for those aged above 60 years. Higher Lp(a) levels were observed in the younger population aged less than 20 years (Figure 2). Significant differences were observed for TC, LDL, and TG when comparing the association of study variables among the thresholds of Lp(a). There was no association found between age and HDL or non-HDL levels and Lp(a) thresholds. (Table 3).

Figure 1. Gender-based Lp(a) frequency distribution in the Pakistani population, a)females b)males

Table 2: Association of gender and age with lipoprotein (a) levels

<table>
<thead>
<tr>
<th>Data Variables</th>
<th>N (%)</th>
<th>95% CI (Q1-Q3)</th>
<th>Lp(a) levels Median (IQR)</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>TG mg/dL (n=190)</td>
<td>38.0</td>
<td>891.0</td>
<td>134.5</td>
<td>97.0-215.0</td>
</tr>
<tr>
<td>Lp (a) (n=190)*</td>
<td>1.3</td>
<td>281.3</td>
<td>19.2</td>
<td>9.2-47.4</td>
</tr>
<tr>
<td>Age (n=190)*</td>
<td>3.0</td>
<td>83.0</td>
<td>41.5</td>
<td>30.7-52.0</td>
</tr>
</tbody>
</table>

IQR- Interquartile range, Lp (a)- Lipoprotein (a), TC- Total cholesterol, TG- Triglycerides, HDL-C- High-density lipoprotein cholesterol
* Lp(a) levels and age data were gathered from 190 patients who had complete lipid profiles out of a larger group of 1060 patients with LP(a) data.
Table 1: Lp(a) Levels in Different Age Groups of Males and Females

<table>
<thead>
<tr>
<th>Gender</th>
<th>Age (years)</th>
<th>Male (IQR)</th>
<th>Female (IQR)</th>
<th>IQR</th>
<th>CI</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><20</td>
<td>43.0 (4.0)</td>
<td>36.6-73.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>20-40</td>
<td>287.0 (27.0)</td>
<td>25.8-33.3</td>
<td>18.7 (8.5-37.5)</td>
<td>0.03</td>
</tr>
<tr>
<td></td>
<td>40-60</td>
<td>501.0 (47.0)</td>
<td>29.1-34.7</td>
<td>20.9 (10.1-43.2)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>>60</td>
<td>229.0 (22.0)</td>
<td>31.1-40.5</td>
<td>23.3 (10.2-47.6)</td>
<td></td>
</tr>
</tbody>
</table>

Figure 2. Trends of Lp(a) levels in different age groups of males and females

[Bar chart showing Lp(a) levels in different age groups for males and females.

IQR- Interquartile range, CI- Confidence Interval]
Table 3. Association of age, TC, HDL, LDL, non-HDL, and TG with Lp(a) thresholds i.e., <30 mg/dL and ≥30 mg/dL

<table>
<thead>
<tr>
<th></th>
<th>Lp(a)</th>
<th></th>
<th>Lp(a)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><30 mg/dL (n=119)</td>
<td>≥30 mg/dL (n=71)</td>
<td></td>
</tr>
<tr>
<td>N=190</td>
<td>Median</td>
<td>IQR (Q1-Q3)</td>
<td>Median</td>
</tr>
<tr>
<td>Age (Years)</td>
<td>42.0</td>
<td>31.0-52.0</td>
<td>40.0</td>
</tr>
<tr>
<td>TC (mg/dL)</td>
<td>183.0</td>
<td>150.0-216.0</td>
<td>204.0</td>
</tr>
<tr>
<td>HDL-C (mg/dL)</td>
<td>38.0</td>
<td>32.0-45.0</td>
<td>42.0</td>
</tr>
<tr>
<td>LDL-C (mg/dL)</td>
<td>114.0</td>
<td>93.0-152.0</td>
<td>135.0</td>
</tr>
<tr>
<td>Non-HDL (mg/dL)</td>
<td>147.0</td>
<td>112.0-181.0</td>
<td>159.0</td>
</tr>
<tr>
<td>TG (mg/dL)</td>
<td>142.0</td>
<td>102.0-242.0</td>
<td>115.0</td>
</tr>
</tbody>
</table>

IQR- Interquartile range, TC- Total cholesterol, TG- Triglycerides, HDL-C- High-density lipoprotein cholesterol, LDL-C- Low density lipoprotein cholesterol

Figure 3. Spearman correlation between Lp(a), age, and lipid variables
Discussion

This study presents the levels and incidence of Lp(a) testing in Pakistan. The results of the present study show that only 1060 tests were performed over five years. Among these, 21.2% had Lp(a) levels above 50 mg/dL, which is identified as a risk threshold based on the EAS/ESC guidelines, while 37.2% had Lp(a) levels above 30 mg/dL, which is categorized as a risk category according to the AHA guidelines 14,16.

The median Lp(a) level in the present study was 20.75 mg/dL. Previously, higher mean levels were observed for those with acute coronary syndrome (47.03 mg/dL, n=90) and diabetics (47.65 mg/dL, n=68) 24,25. These levels were slightly higher than those observed in the Southeast Asian population (Figure 4) 26. Elevated Lp(a) levels have been identified as a risk factor for coronary heart disease in the Pakistani population; however, Lp(a) testing is generally not performed routinely 23,27. This is also evident from the present study where only 1060 tests were booked over a span of five years in one of the largest diagnostic laboratories with centres all over Pakistan. Lp(a) testing is not highly adopted worldwide and heterogeneity regarding the incorporation of Lp(a) testing in patient care still exists 28–31.

Figure 4. Median Lp(a) median values reported in the present study compared to the levels reported in other ethnicities

<table>
<thead>
<tr>
<th>Ethnicity</th>
<th>Median Lp(a) Median (mg/dL)</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>African</td>
<td>20.75</td>
<td>775</td>
</tr>
<tr>
<td>South Asian</td>
<td>20.75</td>
<td>1829</td>
</tr>
<tr>
<td>Chinese</td>
<td>20.75</td>
<td>443</td>
</tr>
<tr>
<td>Latin American</td>
<td>20.75</td>
<td>1469</td>
</tr>
<tr>
<td>South-east Asian</td>
<td>20.75</td>
<td>1221</td>
</tr>
<tr>
<td>European</td>
<td>20.75</td>
<td>851</td>
</tr>
<tr>
<td>Arab</td>
<td>20.75</td>
<td>1352</td>
</tr>
<tr>
<td>Our Study</td>
<td>20.75</td>
<td>1060</td>
</tr>
</tbody>
</table>

The results of the present study show that Lp(a) levels were significantly higher in younger individuals than in those aged 60 years or above. Similar results were observed in a study conducted in a multi-ethnic population with a history of ASCVD 32. Since elevated Lp(a) levels result in premature ASCVD, this could be the reason for higher Lp(a) observed in younger population. Moreover, the levels of Lp(a) were weakly correlated with other lipid variables such as TC, HDL, LDL-C, and TG. Previous studies have shown a weak correlation between Lp(a)
levels and other lipid variables. However, higher Lp(a) levels were observed with higher LDL-C levels. A similar relationship was demonstrated in the studies conducted by Nicholls et al (2010). Triglyceride levels were negatively correlated with Lp(a) levels which is consistent with the results of other studies. This could be either due to binding of apo(a) to the apoB of VLDL particles during the VLDL synthesis leading to the synthesis of VLDL-like particles that can be further metabolized by lipolysis or this could be due to Lp(a) metabolism by enzymes involved in TG and VLDL metabolism.

The major limitation of this study is that since the data were collected from a referral laboratory, details of the disease status of the individuals were not available. The details of the comorbidities and predisposition to cardiac events are unknown. Moreover, the details of the medications and their impact on lipid levels are not known.

Conclusion

The present study showed that only a small fraction of the population is registered for Lp(a) testing. A significant proportion of our study population had Lp(a) levels above the suggested threshold. Elevated Lp(a) levels are an independent risk factor for ASCVD in the Pakistani population. Being a country with the highest rate of mortality due to cardiovascular diseases, it is imperative to screen the general population for ASCVD risk stratification, and the inclusion of Lp(a) testing can be helpful in early screening.

Authors’ contributions

Conceptualization: Fouzia Sadiq.

Methodology: Hijab Batool, Omar R. Chughtai, and Muhammad D. Khan.

Resources: Hijab Batool, Quratul Ain, Omar R. Chughtai, and Muhammad D. Khan.

Supervision: Mohammad I. Khan and Fouzia Sadiq.

Validation: Hijab Batool.

Visualization: Madeeha Khan and Quratul Ain.

Writing - original draft: Hijab Batool, Madeeha Khan, and Quratul Ain.

Writing - review & editing: Hijab Batool, Madeeha Khan, Quratul Ain, Omar R. Chughtai, Muhammad D. Khan, Mohammad I. Khan, and Fouzia Sadiq.

Acknowledgements

We are thankful to Mr. Amjad Nawaz, Shifa Tameer e Millat University, Islamabad, for helping in conducting statistical analysis.
References

