Is SARS-CoV-2 elimination or mitigation best? Regional and disease characteristics determine the recommended strategy

Maria M. Martignoni, Julien Arino, and Amy Hurford

1Department of Mathematics and Statistics, Memorial University of Newfoundland, Canada
2Biology Department and Department of Mathematics and Statistics, Memorial University of Newfoundland, Canada
3Department of Mathematics, University of Manitoba, Winnipeg, Manitoba, Canada
4Department of Ecology, Evolution and Behavior, A. Silberman Institute of Life Sciences, Faculty of Sciences, Hebrew University of Jerusalem, Jerusalem, Israel

February 2, 2024

Abstract

Public health responses to the COVID-19 pandemic varied across the world. Some countries (e.g., mainland China, New Zealand, and Taiwan) implemented elimination strategies involving strict travel measures and periods of rigorous non-pharmaceutical interventions (NPIs) in the community, aiming to achieve periods with no disease spread; while others (e.g., many European countries and the United States of America) implemented mitigation strategies involving less strict NPIs for prolonged periods, aiming to limit community spread. Travel measures and community NPIs have high economic and social costs, and there is a need for guidelines that evaluate the appropriateness of an elimination or mitigation strategy in regional contexts. To guide decisions, we identify key criteria and provide indicators and visualizations to help answer each question. Considerations include determining whether disease elimination is: (1) necessary to ensure health care provision; (2) feasible from an epidemiological point of view; and (3) cost effective when considering, in particular, the economic costs of travel measures and treating infections. We discuss our recommendations by considering the regional and economic variability of Canadian provinces and territories, and the epidemiological characteristics of different SARS-CoV-2 variants.

Keywords: Elimination, mitigation, suppression, policies, public health, epidemiology, mathematical modelling, infectious disease modeling, importations, COVID-19, SARS-CoV-2, optimization, economy, Canada, epidemiology.

*Corresponding author: mmartignoni@mun.ca, maria.martignonimseya@mail.huji.ac.il
†Corresponding author: ahurford@mun.ca

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Introduction

Non-pharmaceutical Interventions (NPIs) have greatly reduced the spread of SARS-CoV-2 [42, 15], the virus that causes COVID-19, and include: travel measures, such as self-isolation, quarantine, and testing requirements applying to individuals arriving from other jurisdictions; and community measures, such as physical distancing, gathering size restrictions, and business and school closures, that apply to residents. However, these restrictions substantially reduced economic activity, increased unemployment rates, and undermined social wellbeing [40, 81, 78].

As NPIs have substantial economic and societal costs, it is important to establish criteria to adjust restrictions to control infection spread with minimal cost.

Canada is the second largest country in the world by area, extending from the Pacific to the Arctic Oceans with ten provinces and three territories widely differing in their geography, population, and economies. Canada is also a federal state, with responsibility for health care divided between the federal government, responsible for: regulation of entry into the national territory; approval of medications and vaccines; the health of First Nations living on reserves, the military, and inmates in the federal prison system, and with the provinces and territories responsible for most of the remaining health care issues, including the implementation of health policies, and entry to, and movement within, their borders. Geographic, economic and jurisdictional differences, as well as differences in health care capacity, have driven broad inter-provincial variation in the type and timing of NPIs implemented to limit viral spread [71, 18, 124], which has in turn led to different COVID-19 epidemics in different Canadian jurisdictions.

Prior to the establishment of the Omicron variant in December 2021, the Atlantic provinces (New Brunswick, Nova Scotia, Prince Edward Island, and Newfoundland and Labrador) and Northern Canada (Nunavut, Yukon, and Northwest Territories) generally implemented a containment strategy [92] that resulted in periods of elimination of community infections [47] consistent with an ‘elimination’ or ‘zero-COVID strategy’ [19, 10, 45] (see Fig. 1a). These provinces and territories have relatively small population sizes [102], and in Newfoundland and Labrador, for example, elimination was achieved through strict border control of few ports of entry (through which travellers from the rest of Canada and abroad could enter the province), contact tracing, testing, and rigorous restrictions to end community transmission when community outbreaks occurred [92]. In contrast, provinces with large urban centers, such as Ontario and Quebec, may have implemented ‘mitigation’ or ‘suppression’ strategies, aiming to flatten the epidemic curve and keep the number of cases below the critical care capacity, with some community transmission [10, 32, 20] (see Fig. 1b). At times during 2020 and 2021, these provinces reported high case counts [50], nearly reaching the critical care capacity in December 2020 and March 2021 [22, 21, 34].

Whether an elimination or mitigation strategy is the preferable response to pandemic threats has been matter of debate (e.g., [2, 109, 37, 61, 72, 83]). Early in the COVID-19 pandemic, countries implementing an elimination strategy were praised for obtaining better public health outcomes, economic growth, civil liberties, and general population well-being [82, 10, 9, 43]. However, by late 2021, and especially with more people becoming vaccinated and the spread of the more transmissible Omicron (B.1.1.529) variant of concern, most countries had abandoned the elimination strategy [8, 26, 46], and the societal costs of strict restrictions were increasingly highlighted [13, 75, 118]. These observations indicate that neither elimination, nor mitigation is the indisputable optimal strategy, and that the preferred strategy may vary regionally and change over time.
Box 1: Common errors and misconceptions that bias against recommending an elimination strategy

- Multiple studies have shown that travel measures do not have a substantial role when community outbreaks are occurring [7, 117, 112, 16, 24], which may lead to the misconception that travel measures are unimportant. However, in regions with no community cases, travel measures become critical to ensure that mild community restrictions can remain in place for a reasonable period of time.

- Recommendations have considered whether travel measures should be implemented [119, 24], but may have overlooked coordinated implementation of multiple components of a public health response. An elimination strategy might involve travel measures when there are no community cases, an aggressive containment response to community cases when they occur, and a plan to continue the elimination strategy only until the conditions for the implementation of the elimination strategy are no longer met, for example, when the population becomes highly vaccinated [82].

- International guidelines considered as best-practice in several countries [119, 120] are not necessarily applicable to small jurisdictions or remote communities with self-determination of health care (e.g., economically smaller Canadian provinces or Indigenous communities), which may bias against elimination strategy recommendations. While elimination may be unsustainable and economically damaging at the country level, in smaller regions an elimination strategy may provide benefits, for example, helping to protect health system capacity.

- Differential equations are frequently used to model infectious diseases (e.g., the Susceptible-Infectious-Recovered (SIR) compartmental models [59]) and treat infectious individuals as a continuous quantity. Such models can predict a wave of infection caused by a fractional number of individuals after community NPIs are relaxed [41], which is an artifact of the model choice. This limitation can be overcome by modelling the expected number of outbreaks, and then modelling each community outbreak individually (e.g. [47, 101, 38]).

- Results of stochastic simulations are often reported as means of an ensemble of simulations with community outbreaks starting on different days. The ensemble mean may show no elimination of infection, although elimination does occur for individual simulations. Therefore, the results of stochastic models (including agent-based models) should be carefully reported (e.g. [54]).

Infection severity, health care capacity, the efficiency of case detection, the vaccination status of a population, and the economic and societal costs of NPIs have a fundamental role in determining if an elimination or a mitigation strategy should be preferred. Many such indicators are highlighted in Guidance for a strategic approach to lifting restrictive public health measures [91] and other guidance documents by Canadian provincial public health [93], the Public Health Agency of Canada [90], and the World Health Organization [120]. Yet, lacking are quantitative descriptions that specify the relative importance and inter-relatedness of indicators, and how these quantities combine to determine epidemiological quantities that guide decisions.

A further issue that has not previously been highlighted, is that the most relevant epidemiological quantities for regions implementing an elimination strategy are different than for
those implementing mitigation or suppression. When a mitigation strategy is implemented, travel-related cases make only a negligible contribution to epidemic dynamics [7, 117, 112], and the infection dynamics are mainly determined by the pathogen spread rate within a community (e.g., by indicators such as the basic or control reproduction numbers of the infection [30, 36, 57]). On the other hand, travel measures, including testing and post-arrival quarantine or self-isolation, may be a more critical component of the combined public health response in regions implementing an elimination strategy. In this case, other forms of assessment such as the evaluation of the efficiency of travel measures, including testing and quarantine policies [128, 107, 89, 106, 6, 101], and the probability of elimination under specific community NPIs (i.e., capacity limits or school and business closures) for hypothetical community outbreak scenarios [88, 14, 44, 38], are key to inform public health responses.

Due to these fundamental differences in the key quantities and modelling approaches used to forecast the epidemiological dynamics of mitigation and elimination, it has been challenging to develop methods that allow a quantitative comparison of the two strategies for decision-making purposes (see also Box 1, in which we highlight some common errors and misconceptions when deciding whether an elimination strategy should be implemented). Here, we identify key epidemiological and regional characteristics to evaluate whether disease elimination or mitigation is desirable, and we outline criteria to guide this decision. We highlight three main questions that should be answered to determine the circumstances when elimination is a recommended approach (see Fig. 2). Namely, is elimination:

1. necessary to ensure health care provision?
2. epidemiologically feasible?
3. cost effective?

We discuss each of these questions separately, and consider which role different criteria may play during an unfolding pandemic. Although our discussion will mainly focus on the approach to SARS-CoV-2 of different Canadian provinces and territories, our conclusions have broad implications that apply widely outside the Canadian context.
Fig. 1: Visual representation of (a) an elimination, and (b) a mitigation strategy. When an elimination strategy is implemented, a community outbreak initiated by an infected traveler is detected after a time interval T_d. Following outbreak detection, strict restrictions to reduce the number of cases are implemented during the time interval T_e (red regions). Strict restrictions are released when the number of cases drops from I_{max} to below a minimum I_{end} (green region). The time interval between the time of detection for two consecutive outbreaks is T_i. When a mitigation strategy is implemented, prolonged periods of moderate restrictions are enacted (yellow regions). While epidemiological indicators governing the community infection dynamics, such as the control or basic reproduction numbers, are helpful to characterize disease spread when mitigation is implemented, other indicators that explicitly consider the number, frequency, and severity of outbreaks (e.g., T_e, T_i, I_{max}, I_{start}, and I_{end}) are needed to characterize the epidemiological dynamics when an elimination strategy is implemented (see also Fig. 2). Red persons correspond to community cases. Blue persons correspond to travel-related cases that infect individuals in the community (i.e., ‘spillover’). For simplicity, travel-related cases that do not cause community cases are not shown in the figure. Shaded cases correspond to hospitalized cases. The width of a person corresponds to the average duration of an active case and the relationship between incidence, prevalence, and hospital occupancy is investigated in the supplementary information, section A. [Adapted from [68]]

1. Is elimination necessary to ensure health care provision?

During the pandemic, in many countries a main purpose of NPI implementation was to ensure that the number of severe cases did not rise above hospital or Intense Care Unit (ICU) capacity. High pathogen transmissibility, high rates of asymptomatic cases, and low testing efficiency, are all factors that could cause a community outbreak to go undetected for several days. In regions with low resource capacity (e.g., jurisdictions with low hospital, contact tracing or testing capacities), the number of cases when the outbreak is initially detected may already have the potential to approach, or exceed, available resources for control and health care capacity [12, 113, 48]. This is particularly true of hospital and ICU occupancy limits, because due to the delay between exposure and hospitalization, and because hospital stays are often
many days, peak hospital occupancy usually occurs weeks after the implementation of strict community NPIs and can be substantially higher than hospital occupancy at the time of strict NPI implementation (see supplementary information, section A). Thus, in these regions the implementation of strict community measures as soon as the outbreak is detected may be necessary to prevent hospital and ICU burden, spurring the implementation of an elimination approach. This choice is accompanied by implementation of travel measures after the outbreak is eliminated, meaning that the costs and disruptions of strict border control are outweighed by the benefits associated with protecting the capacity of the health care system.

On the other hand, regions with higher resource capacity may be able to detect a new outbreak before the number of hospitalizations reaches the potential to near the regional capacity. In these cases, a disease mitigation approach consisting of moderate community NPIs may be sufficient to ensure hospital capacity limits are not exceeded, and strict travel measures may lead to unnecessary costs and disruptions, that could negatively affect the compliance with other public health measures [127, 33]. Even when health care capacity is high, concerns regarding pathogen variants that are highly transmissible or virulent, and uncertainty in how cases will respond to interventions may justify the precautionary implementation of an elimination approach (or a ‘wait-and-see approach’ [88]) rather than a mitigation approach, in order to delay pathogen spread until more information is available, vaccines or therapy is developed, or response preparedness is enhanced [49, 35, 1, 6].

Disease severity will also determine whether elimination or mitigation is preferable. The occurrence of severe disease depends on characteristics of a population including the proportion with different ages, co-morbidities, vaccination and immunity statuses, associations between these variables, and where these factors may be heterogeneous within a population [97, 111]. For instance, it maybe be reasonable to recommend a SARS-CoV-2 elimination approach for regions whose populations have a high prevalence of co-morbidities, or a low proportion of individuals vaccinated [5, 60]. On the other hand, a lower proportion of cases requiring hospitalization arising from high vaccination rates, or the spread of a less severe variant, may reduce the need of an elimination strategy. For instance, the SARS-CoV-2 variant of concern Omicron (B.1.1.529) established and spread in Canada when a large proportion of the population had already received at least two doses of vaccine, reducing the rates of severe disease with respect to other variants (see vertical axis, Fig. 3).
Fig. 2: The figure summarizes the three possible criteria presented in this manuscript that can be used to determine whether elimination or mitigation strategy is preferable, and key regional and disease characteristics and relevant quantities that should be considered to answer each of the questions. The meaning of the different parameters is shown in Fig. 1.

2 Is elimination epidemiologically feasible?

For elimination to be feasible, the duration of the strict restrictions needs to be balanced with a reasonable period when restrictions are relaxed to release the population for the adverse impacts of strict public health measures (i.e., the proportion of green zones to red zones in Fig. 1a needs to be high). This requires both that many weeks elapse between community outbreaks initiated by infected travellers, and that once the outbreak is detected strict community NPIs are sufficient to rapidly decrease infection prevalence.

The probability that a travel-related case initiates a community outbreak depends on travel measures, infection prevalence in neighboring regions, pathogen characteristics, such as its transmissibility, airborne transmission, incubation time or testing efficiency [66, 96, 123], community NPIs and vaccination levels [47]. The time before an outbreak can be considered under control (i.e., when the probability that further community infections may occur is very low) depends on peak incidence and on the effectiveness of the strict NPIs in reducing community transmission. Peak incidence (as discussed in 1) determines the approximate maximum from which new daily cases must decline, and the effectiveness of strict community NPIs determines the speed of the decline. The speed of the decline depends on pathogen transmissibility, and on the efficiency of contact tracing, testing, and isolation [42, 100]. Thus, local socio-geographic characteristics, pathogen characteristics, and characteristics of the local population can make an elimination strategy more or less feasible from a purely epidemiological point of view, and this feasibility should be continuously reassessed given evolving pathogenic traits and compliance with public health measures.

When a disease is highly transmissible, outbreaks occur often, as prevalence may be higher in other connected regions, and as the virus spreads easily even when restrictions are in place [47], allowing only short or no periods of mild restrictions. For example, it may not have been epidemiologically feasible to eliminate the SARS-CoV-2 Delta variant in Melbourne, Victoria,
Australia, even with strict NPIs. On October 21, 2021, Melbourne residents exited an 11 week lockdown because vaccination targets had been met, but at this time daily reported cases in Victoria were 2,232: the second highest that had been reported for any Australian state [53].

In Newfoundland and Labrador there were 10 months between the last reported case associated with the initial community outbreak (original SARS-CoV-2 virus) in March 2020, and the next community outbreak (Alpha variant) that began in February 2021 [92]. The more transmissible and virulent Delta variant was introduced into Newfoundland and Labrador in April 2021, and over the next 8 months several community outbreaks were reported in smaller regions across the province, with much shorter periods between community outbreaks than previously observed [92]. Nonetheless, elimination was achieved (and therefore feasible) in Newfoundland and Labrador for the original, Alpha, and Delta variants, but not for the more transmissible and less virulent Omicron variant. In Fig. 3 (horizontal axis), we provide estimates of the expected average percent of days with mild restrictions between two consecutive outbreaks if an elimination strategy is implemented (i.e., the percentage of days when mild (green) restrictions are implemented during the period T_i, see Fig. 1a), based on the travel measures applied in Newfoundland and Labrador and for different SARS-CoV-2 variants of concern (see supplementary information, section B, for methodology). The effectiveness of the same public health measures varies depending on the pathogen or variant considered, making different strategies preferable at different points in time. Additionally, as discussed in 1, different COVID-19 variants can be characterised by different rates of severe illness, and their variant emergence will coincide with different vaccination rates in the population. These considerations affect the risk of exceeding hospital capacity (Fig. 3, vertical axis).

Lastly, for an elimination strategy to be feasible it is not only important to achieve fast outbreak detection and implementation of strict community restrictions, but it is also necessary that strict measures are relaxed when they are no longer needed, because during an ongoing pandemic there remains a risk of disease re-introduction, and the population may be asked to comply with strict public health measures once again. The World Health Organization defines an outbreak as over when two incubation periods have passed with no further cases reported (i.e., 28 days for COVID-19 [86]), however, a more precise approach could be to relax measures when there is a high probability that the number of cases in the community is zero [86]), and to consider how quickly the reported cases were isolated. Contact tracing efficiency and population compliance will affect when community NPI relaxation can feasibly occur [70, 17]. Thus, faster reopening may occur in regions characterised by social cohesiveness, such as rural areas where ‘everyone knows everyone’, and where infected people and their contacts are easier to identify and reach [121, 64]. On the other hand, contact tracing might be impractical in larger and more densely populated areas making an elimination strategy more challenging to implement.
Is elimination epidemiologically feasible?

Fig. 3: Estimated average hospitalization per 1000 cases considering vaccination rates at the time each SARS-CoV-2 variant was established in the Canadian province of Newfoundland and Labrador (vertical axis) and estimated percent of days with mild NPIs between two consecutive community outbreaks if an elimination strategy is implemented (i.e., ratio of T_e/T_i on the horizontal axis, see Fig. 1). When high transmissibility does not allow for periods with no community cases between outbreaks, and when the risk of severe disease is relatively low, elimination is no longer feasible, and mitigation is preferred. Estimates used for producing the figure and their derivation are provided in the supplementary information, section B. [Adapted from [68]].

Is it cost effective?

Discussing costs when it comes to fighting a pandemic threat is challenging, and there are trade-offs to be considered. Minimal public health restrictions may lead to many infections, hospitalizations, and deaths, while strict public health restrictions may lead to economic, social and psychological damages [81, 85]. Considering such costs involves finding a complex balance between medical needs, and social and economic freedom. This said, certain costs, whether social, economic, or medical, are unequivocally larger in some regions relative to others. When deciding if elimination or mitigation is preferable, an important consideration is the trade-off between the economic cost of implementing travel measures, which tend to be higher for a disease elimination strategy; and the costs of treating infections, which tend to be higher for a disease mitigation strategy due to higher number of infections [10, 122].

Travel measures, such as travel declaration forms and testing requirements that are verified at arrival are less costly, and can feasibly be enforced, in regions with few ports of entry. The costs of requiring arriving travellers to quarantine or self-isolate are less in regions with low travel volumes, while the cost of reducing travel-related infections in Canada’s economically larger provinces, i.e., Ontario and Quebec, are substantial due to the large volume of trade occurring across the inter-provincial and international borders [103, 104]. Travel measures may be less costly and more feasible in Atlantic Canada, where there are few ports of entry into most of the four provinces. Furthermore, during the pandemic, international arrivals to Canada occurred mostly first into provinces outside of Atlantic Canada [94], with with
federal travel measures applying to these travellers before onward travel, which may have
substantially reduced the risk of disease importation to Atlantic Canada. The implementation
of travel measures in regions whose economies strongly depend on tourism can also be very
costly for the country, especially if not well timed [98, 39].

The cost of treating a fixed number of infections is proportionally higher in smaller eco-
nomic regions, compared to larger economic regions, because of large differences in the size of
the economies (see horizontal axis of Figure 4) and relatively similar costs of treating infec-
tions. The costs of strict community NPIs, such as complete business closures, might also be
higher in economically larger regions relatively to economically smaller regions. In Fig. 4 the
pre-pandemic number of international travelers arriving to Canadian provinces and territories
is shown versus their yearly Gross Domestic Product (GDP) in 2019. Areas characterised
by low GDP and low travel volumes, such as Northern or Atlantic Canada, might opt for
disease elimination to reduce pandemic costs by implementing travel measures to reduce the
risk of community infections initiated from travel-related cases. Additionally, due to the
lower travel volumes in these regions, elimination may also be more epidemiologically feasible
(see point 2). Economically larger provinces (e.g., Ontario, Quebec, British Columbia, and
Alberta), might consider mitigation to be an economically preferable strategy.

In addition to economic costs, social and mental health costs need to be considered when
discussing NPI implementation [2]. Elimination may provide more freedoms during periods of
mild restrictions, however, social interactions are substantially limited during periods of strict
restrictions, which may cause high occurrence of mental health issues, such as depression and
anxiety, or domestic violence [23, 25, 95]. Mitigation requires prolonged periods of moderate
restrictions that can be exhausting and negatively impact the population [40, 81, 78]. Social
and mental health costs of these two strategies are experienced unequally across population
groups. Different social and psychological stress levels can arise depending on personal living
situations, employment sector, gender, ethnicity, and social determinants of health [81], and
it is misleading to report only whether elimination or mitigation guarantees lower social costs
at a population level without also stratifying these costs for population groups. In many cases
social costs of NPIs are to be paid in the future, and it is only recently that researchers have
developed methods to determine the direct and indirect impact of NPIs implementation on
a population’s health and social functioning [126, 116, 62, 31, 76]. For these reasons, it is
premature to discuss which of elimination or mitigation may be preferred in terms of social
cost.
Fig. 4: Daily number of international travelers (averaged over April 2018 to March 2019, [103]) and 2018 yearly GDP [105] obtained for different provinces and territories in Canada. Mitigation may be recommended in regions with high travel volumes, as in these regions travel measures might be less feasible and more costly. The two letter abbreviations denote Alberta (AB), British Columbia (BC), Manitoba (MB), New Brunswick (NB), Newfoundland and Labrador (NL), Northwest Territories (NT), Nova Scotia (NS), Nunavut (NU), Ontario (ON), Prince Edward Island (PE), Quebec (QC), Saskatchewan (SK), Yukon (YT). Data for the Northwest territories (NT) for the same time period are not available.

Discussion

During the pandemic, the World Health Organization recommended a risk-assessment approach that considers local epidemiology, public health measures and capacity, and contextual factors to determine if restrictions on international travel should be implemented [119]. Yet, quantitative criteria to evaluate whether an elimination or a mitigation strategy is preferable, and guidelines applicable to subnational jurisdictions, are lacking. We propose a conceptual framework to guide the decision to implement an elimination or a mitigation strategy in response to a pandemic threat. We hope that our framework will inspire new modelling approaches to support and regularly reassess this decision.

So far, the focus of many epidemiological optimization models has been to determine the optimal level of social distancing needed to minimize infections and the socio-economic costs of interventions [11, 99, 55, 41, 3, 63, 125, 4, 77, 52]. However, as noted in [41] and [54], common modelling formulations can produce highly erroneous results when applied to situations where infection prevalence can be zero in reality (see also considerations listed in Box 1). Therefore, new mathematical tools are urgently needed to quantitatively optimize the trade-off between elimination and mitigation. We also emphasize that for proper quantitative comparison of response strategies, future modelling should explicitly consider a distinction between community cases and travel-related cases, and include statistics that are relevant for the characterisation of community outbreaks occurring when an elimination strategy is implemented, such as the efficiency of border testing and quarantine policies and the probability of a traveller initiating a community outbreak [128, 47, 101, 107, 106], the expected size of such an outbreak [88, 38, 44], the probability that a community outbreak has been eliminated, such
that strict NPIs might be relaxed [86, 14, 79], vaccination strategies [69, 89] and elimination exit strategies [47, 70, 115] for regions with low infection prevalence.

Our analysis supports the application of local, rather than global, public health measures and responses [73, 71, 74, 56]. Indeed, in large regions urban and rural areas might be characterised by different geographical features, health care services, economies, and therefore disease dynamics [73, 71, 74]. We provide arguments to support the implementation of local travel measures, even if these occur within a country, as these measures can be considered a cost effective strategy to maintain a healthier economy and less restrictive social distancing in such regions. Considering the relative importance of the criteria presented here, and their inter-relatedness in determining whether elimination or mitigation may be best, is an important future research area.

Finally, although we discussed the dichotomy between implementing elimination and mitigation, alternative approaches to these two strategies can also be considered [84]. One of such example is the regulated planning of intermittent intense measures of short duration, that occur after periods when measures are relaxed, called ‘precautionary breaks’ or ‘circuit breakers’ [58, 29]. This strategy was first adopted by Singapore [51], and then implemented in other countries such as the United Kingdom and Canada [67, 110].

Acknowledgement

MM is grateful to the Azrieli foundation for the award of the Azrieli fellowship. MM, JA, and AH were funded by the Natural Sciences and Engineering Research Council of Canada-Public Health Agency of Canada Emerging Infectious Disease Modelling Consortium. MM and AH received funding from the Department of Health and Community Services, Newfoundland and Labrador, Canada.

References

[103] Statistics Canada. Table 24-10-0041-01 International travellers entering or returning to Canada, by type of transport DOI: https://doi.org/10.25318/2410004101-eng.

[104] Statistics Canada. Table 12-10-0088-01 Interprovincial and international trade flows, basic prices, summary level (x 1,000,000), DOI: https://doi.org/10.25318/1210008801-eng.

[105] Statistics Canada. Table 36-10-0402-02 Gross domestic product (GDP) at basic prices, by industry, provinces and territories, growth rates (x 1,000,000).

