Performance of Immunological Assays for Universal and Differential Diagnosis of HTLV-1/2 Infection in Candidates for Blood Donations from the Brazilian Amazon

Felipe Araujo Santos1,2; Cláudio Lucas Santos Catão1,2; Júlia Pereira Martins3,4; Uzamôr Henrique Soares Pessoa2; Isabelle Vasconcelos Sousa2,5; Jean Silva Melo6,7; Gláucia Lima Souza1,2; Nilberto Dias Araújo1,2,6; Fábio Magalhães-Gama2,3,4; Cláudia Maria de Moura Abraham2; Emmily Myrella Vasconcelos Mourão7; Vanessa Peruhype-Magalhães4; Jordana Graziella Alves Coelho-dos-Reis4,8; Andréa Teixeira-Carvalho3,4; Antonio Carlos Rosário Vallinoto9,10; Gemilson Soares Pontes1,6,7; Márcio Sobreira Silva Araújo3,4; Olindo Assis Martins-Filho1,3,4 & Allyson Guimarães da Costa1,2,5,6*

1Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus, Brazil;
2Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil;
3Programa de Pós-Graduação em Ciências da Saúde, Instituto René Rachou - Fundação Oswaldo Cruz (FIOCRUZ) Minas, Belo Horizonte, Brazil;
4Grupo Integrado de Pesquisas em Biomarcadores, Instituto René Rachou - FIOCRUZ Minas, Belo Horizonte, Brazil;
5Programa de Pós-Graduação em Enfermagem, Escola de Enfermagem de Manaus, Universidade Federal do Amazonas (UFAM), Manaus, Brazil;
6Programa de Pós-Graduação em Imunologia Básica e Aplicada, Instituto de Ciências Biológicas, UFAM, Manaus, Brazil;
7Laboratório de Virologia, Instituto Nacional de Pesquisa da Amazônia (INPA), Manaus, Brasil;
8Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil;
9Programa de Pós-graduação em Biologia de Agentes infecciosos e Parasitários, Universidade Federal do Pará (UFPA), Belém, Brasil;
10Laboratório de Virologia, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil.

*Correspondence: Allyson Guimarães da Costa, Rua Terezina, 495, Adrianópolis, Manaus, Amazonas, Brazil, CEP: 69057-070. Phone: +55 92 98153-5233, E-mail: allyson.gui.costa@gmail.com

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
ABSTRACT

The present study compares the ability of distinct immunological assays (chemiluminescence immunoassay-CLIA, western blot-WB and flow cytometry-FC-Simplex and Duplex) to detect anti-HTLV antibodies in candidates for blood donations at the Amazonas State Blood Center (Brazil) between January 2018 and December 2022.

Overall, 257,942 samples from candidates for blood donations were screened using CLIA, which led to 0.15% seropositivity for HTLV (409 samples). A total of 151 candidates for blood donations were enrolled for retesting with CLIA followed by additional testing using WB and FC-Simplex and Duplex analysis. Our results demonstrated that 62% (93/151), 20% (30/151) and 17% (26/151) of the samples presented positive results with retesting using CLIA, WB and FC-Simplex analysis, respectively. Additional analysis of the CLIA, WB and FC-Simplex results revealed an overall agreement of 56% for CLIA and WB (22 co-negative; 30 co-positive samples), 48% for CLIA and FC-Simplex (21 co-negative; 24 co-positive samples) and 80% for WB and FC-Simplex (51 co-negative; 23 co-positive samples). Considering the WB as the reference standard for the diagnosis of infection with HTLV-1/2, we observed that the CLIA results of ≤3.0 RLU and >10.0 RLU in the retest can be used define a negative or positive result, respectively, and could be used as new specific cut-off values. The overall agreement between WB and FC-Duplex for accomplishing the differential diagnosis was evaluated and demonstrated 100% correspondence for the diagnosis of HTLV-1 (15/15) and HTLV-2 (7/7). Our findings demonstrate that gaps in the diagnosis of infection with HTLV-1/2 could be overcome by the simultaneous use of distinct immunological assays during retesting of candidates for blood donations.

Keywords: HTLV-1/2, universal diagnosis, differential diagnosis, sensitivity, specificity.

1. INTRODUCTION

Discovered in 1980, human T-lymphotropic virus (HTLV) is an oncogenic retrovirus that has 4 types (HTLV-1, HTLV-2, HTLV-3 and HTLV-4). HTLV-1 and HTLV-2 are viruses that are considered to be of medical importance and are related to adult T-cell leukemia/lymphoma (ATLL), neurodegenerative diseases such as HTLV-1 associated myelopathy/tropical spastic paraparesis (HAM/TSP) and hairy cell infections [1–3]. It is estimated that 3 to 5% of HTLV-1 infections may evolve into these pathologies, while
HTLV-2 infection still needs to be better characterized regarding its relationship with these clinical diseases [4–10].

Transmission of the virus in humans can occur through sexual contact, blood transfusions, transplants with contaminated organs, breastfeeding of newborns and accidents with or sharing of contaminated sharp instruments [7,11–13]. HTLV-1/2 infections are estimated to affect approximately 10 to 20 million people worldwide and depending on the region, prevalence can range between 5% and 27% [1,14]. Areas of Japan, the Caribbean Islands, Africa, South America, some regions of Romania and the Middle East are endemic for HTLV-1, while HTLV-2 is found in pygmies in Central America, African countries, and indigenous populations of the Americas [1,2,15].

In Brazil, the first cases of HTLV were detected in 1986, in a community of Japanese descendants in Mato Grosso do Sul [16]. Subsequently, the detection of the virus in different Brazilian regions and states was described, with a greater number of cases in the states of Bahia, Maranhão and Pará, although the infection is considered endemic and has a heterogeneous distribution [17,18]. In the northern region of Brazil, reports have shown a high prevalence of HTLV-1/2 infection in blood donors from the states of Amapá (0.71%) and Pará (0.91%), although in Amazonas the number of cases is considered low (0.13%) [19–21].

Due to their higher sensitivity, the screening of patients or blood donors for HTLV-1/2 is initially carried out with the enzyme immunosorbent assay (ELISA), chemiluminescent immunoassay (CLIA) and the particle agglutination assay (PA). Subsequently, confirmatory assays are performed using western blot (WB), line immunoassay (INNO-LIA) and quantitative real-time polymerase chain reaction (qPCR). These assays have a high specificity for detecting specific antibodies for different HTLV antigens, as well as molecular detection of the genetic material of the provirus [22,23]. In addition to these tests, a new method for screening and differential diagnosis of HTLV-1/2 infection based on the flow cytometry technique presented promising results for screening with the FC-Simplex IgG1 (HTLV) and differential diagnosis for HTLV-1/2 infection with the FC-Duplex IgG1 (HTLV-1/2) assay [24–26].

WB is considered to be the reference standard for the detection and diagnosis of HTLV-1/2 infection, although it has limitations regarding seroconversion in newly infected individuals, in addition to high costs due to the limited availability of tests [27–29]. Moreover, the difficulty of automating these assays is noted, with the use of CLIA being
proposed for blood centers since it has excellent sensitivity and the ability to track infection, despite false-positive results [28,30–32]. Thus, a study was carried out in order to compare the performance of distinct immunological assays (CLIA, WB, FC-Simplex and Duplex) to detect anti-HTLV antibodies in candidates for blood donations at the Amazonas State Blood Center (Brazil).

2. MATERIALS AND METHODS

2.1 Study design

A longitudinal study was carried out with blood donor candidates from the state of Amazonas, Brazil, who were evaluated at the Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM) and who had a positive result for HTLV-1/2 infection via the CLIA in the period from January 2018 to December 2022. The state of Amazonas has a low prevalence of HTLV-1/2 infection, which was previously estimated to be 0.13% [20].

2.2 Ethical statement

Ethical approval for the study was obtained from the Research Ethics Committee at the HEMOAM Foundation (approval number #5.348.608, CAEE: 57153922.5.0000.0009). All procedures are in accordance with Resolution 466/12 of the Brazilian Ministry of Health and the Declaration of Helsinki. All the participants read and signed the informed consent form before enrollment.

2.3 Characteristics of the study population

Individuals aged 18 years or older who were seropositive for anti-HTLV-1/2 in the CLIA screening test were interviewed. Those who accepted and signed the informed consent form (ICF) were subjected to a CLIA retest, in addition to the WB, FC-Simplex and FC-Duplex assays. The results of immunological assays were not used for medical decisions regarding diagnosis and treatment. Furthermore, participants who tested positive for HTLV-1 or HTLV-2 infection via the WB assay were considered to have a defined diagnosis.
2.4 Acquisition of clinical and laboratory data

Sociodemographic and clinical information was collected through a questionnaire and from the records of the Serology Laboratory using the HEMOSYS system. HEMOSYS data were updated at the time of applying the ICF.

2.5 Collection and processing of biological samples

Venous blood for immunological assays was collected using a vacuum system in tubes with EDTA and separating gel (BD Vacutainer EDTA® K2 and BD gel SST® Advance II). Subsequently, the biological samples were centrifuged, and aliquots of ±700 uL were prepared and frozen at -80 ºC until the CLIA, WB, FC-Simplex and FC-Duplex assays were carried out.

2.6 Chemiluminescence assay (CLIA)

The chemiluminescence assay (CLIA) was carried out in the serology sector of the HEMOAM Foundation as a screening and retesting step to detect donors that were positive for HTLV-1/2 infection. The procedure consists of a two-step immunoassay for the qualitative detection of antibodies to HTLV-1 and HTLV-2 in serum, using the Alinity s rHTLV-I/II kit (Abbott®). The immunoassay is performed with a closed system and chemiluminescent microparticle technology (Alinity i-SCM 02 Ai01767, Abbott®). The tests were carried out following the guidelines of the kit and equipment’s manufacturers, with results expressed in relative light units (RLU).

2.7 Western blot assay

The western blot (WB) assay was performed with the HTLV blot 2.4 kit (MP diagnostics®), following the guidelines of the manufacturer of the kit. The WB is qualitative enzyme immunoassay uses for detection of the antibodies to HTLV-1/2 in human serum and is used as a confirmatory step methodology that is capable of detecting and distinguishing virus types 1 and 2, generating positive, negative or indeterminate results.

2.8 Flow cytometry assay

The FC-Simplex IgG1 (HTLV) assay was developed as a qualitative support methodology for the detection of infections with HTLV, and uses commercial cells infected with the virus [24,26]. This technology uses a system for detecting IgG1 antibodies on a competitive immunofluorescence platform using flow cytometry, with MT-2 cells as antigenic support. The assay aims to select positive samples, but without distinguishing between viral types, and functions as a screening step for FC-Duplex IgG1 HTLV.
Subsequently, the FC-Duplex IgG1 (HTLV-1/2) assay was performed as a supporting assay for the differential diagnosis of HTLV-1/2 infection, using commercial cells infected with the viruses [25]. The assay uses a system for detecting IgG1 antibodies in a competitive immunofluorescence platform using flow cytometry, using MT-2 and MoT cell lines stained with the fluorochrome Alexa Fluor 647 (AF647) as antigenic support. In both tests, the results are expressed as a percentage of positive fluorescent cells (PPFC), which were obtained with the detection system after acquiring the samples in the FACSCalibur cytometer and analyzing the MFI with the FlowJo software (v10.1).

2.9 Statistical analysis

Prisma GraphPad Software version v.8.1 (GraphPad Prism, San Diego, CA, USA) was used to create graphs and perform the statistical analyses. The Shapiro-Wilk test was used to verify the distribution and normality of the variables, which showed a non-parametric distribution. Comparison of RLU and PFFC data was performed using the Mann-Whitney test. The level of statistical significance in all the analyses was defined as p<0.05.

3. RESULTS

During the study period (Jan, 2018 to Dec, 2022), 409 samples from the 257,942 candidates for blood donations (0.15%) presented a positive result for anti-HTLV-1/2 IgG during screening using the CLIA, which was carried out at HEMOAM. The median reactivity of the positive samples was 1.79 RLU. Table 1 summarizes the demographical and laboratorial records of the candidates for blood donations with positive results for HTLV-1/2 during serological screening using the CLIA.

After the initial screening using the CLIA, donor candidates with positive results were invited to provide a new blood sample for retesting using the CLIA to confirm seropositivity for HTLV-1/2 antibodies (Figure 1). A total of 151 donor candidates agreed to participate in the retesting using the CLIA. Data analysis revealed that 93 out of the 151 samples (62%) exhibited positive results in the retest with the CLIA, with a median reactivity of 2.50 RLU (Figure 1a). Comparative analysis between positive CLIA results obtained during screening and the retest presented a high correlation “r” score (0.89, p<0.0001) (Figure 1b).
The 93 samples were additionally tested using two other immunological tests (WB and FC-Simplex). The results demonstrated that 30 samples (20%) presented positive results in the WB and 26 (17%) in the FC-Simplex (Supplementary Table 1). Additional analysis of the scattering distribution of the CLIA results of the retesting allowed the identification of three clusters, which were further classified as: low RLU (1.0-1.3), intermediate RLU (>1.3-3.0) and high RLU (>3.0-400), comprising 22%, 35% and 43% of tested samples, respectively. Data from the WB were also classified into three categories, considering the band profiles, as: negative (no reactivity or reactivity to proteins other than p19 or p24), indeterminate (reactivity to HTLV specific bands that do not meet the criteria for HTLV-1/2 seropositivity) and positive results (reactivity to p19, GD21 and rgp46-I for HTLV-1 or reactivity to p24, GD21 and rgp46-II for HTLV-2), comprising 57%, 11% and 32% of the tested samples, respectively. The results of FC-Simplex analysis were subsequently classified into two categories according to the magnitude of the PPFC results as: negative (PPFC≤20%) and positive (>20%) comprising 74% and 26% of the tested samples, respectively (Figure 2a).

For further analysis of the results obtained during the retesting, the data from the CLIA, WB and FC-Simplex were analyzed considering the distinct categories of results obtained in each assay (low, intermediate and high - CLIA, positive, negative and indeterminate - WB, negative and positive - FC), as previously proposed in the Figure 2a. Comparative analysis of the CLIA and WB revealed an overall agreement of 56% (22 co-negative and 30 co-positive samples), while the CLIA and FC-Simplex yielded 48% of agreement (21 co-negative and 24 co-positive samples). Comparison between the WB and FC-Simplex demonstrated higher agreement (80%) with 51 co-negative and 23 co-positive samples (Figure 2b).

Using the WB as a reference method for confirmatory diagnosis of HTLV-1/2 infection, our findings demonstrated that any CLIA result of ≤3.0 RLU should be considered a negative result while a CLIA result of >10.0 RLU should define a positive result.

In order to accomplish the differential diagnosis of HTLV-1 and HTLV-2 infection, the WB and the FC-Duplex assay were carried out in parallel batches. The WB results for HTLV-1 from HTLV-2 for differential diagnosis were considered according to the manufacturer instructions and the FC-Duplex results were classified using the criteria previously proposed by Pimenta de Paiva et al. [25]. According to their criteria, the
differential diagnosis of HTLV infection using FC-Duplex can be achieved as the $\Delta PPFC = (MT-2 1:32 - Mot 1:32)$. Using this criterion, out of 22 of the tested samples, fifteen were classified as HTLV-1 and seven as HTLV-2. Comparative analysis between the WB and FC-Duplex results (criterion 1) demonstrated 100% agreement for HTLV-1 (15/15) and HTLV-2 (7/7) (Figure 3). Pimenta de Paiva et al. [25] proposed two additional criteria for differential diagnosis of HTLV infection using FC-Duplex. The use of these criteria did not show outstanding agreement when compared with the WB reference diagnosis [criterion 2 (HTLV-1 (15/15), HTLV-2 (4/7) with 3/7 misclassifications); criterion 3 (HTLV-1 (15/15), HTLV-2 (5/7) with 2/7 misclassifications)] (Supplementary Figures 1 and 2).

4. DISCUSSION

During the 5 years of screening blood donors that were reactive for HTLV-1/2 at the HEMOAM Foundation, we detected 409 individuals who were considered unfit to donate due to reactive serology for the virus when using the CLIA. At the time of the donation attempt, these individuals are flagged in the HEMOSYS system as having pending issues. They are subsequently contacted by the blood center and asked to return for a retest to confirm the diagnosis. This procedure occurs in accordance with guidance of the Brazilian Ministry of Health and Law 17,344, which makes the diagnosis and monitoring of individuals infected with HTLV mandatory, so that they can be treated for their serological condition [22].

During the study period (2018 to 2022), we identified a prevalence of 0.15% of anti-HTLV antibodies (n= 257,942 eligible donors during the study period). We observed a slight increase in this prevalence when we compared it with data from previous surveys carried out in the same region of Brazil, which identified a prevalence of 0.13% (n=87,402) in the period from 2001 to 2003, and 0.14% (n=6,865) in the period from 2008 to 2009 when using ELISA. This indicates that the prevalence in the state was generally maintained [20,33]. It is important to consider that the present study presented a longer survey period and covered a greater number of donors, though a similar prevalence was observed. These data demonstrate that Amazonas continues to be one of the states with the lowest prevalence when compared to others in the northern region of Brazil, such as Amapá (0.71%) and Pará (0.91%) [34,35].

Despite the low prevalence of HTLV-reactive blood donors in the city of Manaus, new studies must be carried out, especially considering other populations that are not
blood donors, such as riverine and indigenous people. Conducting research with other populations would provide complementary data and give a better overview of the prevalence of the HTLV virus in Amazonas. If new surveys are carried out on blood donors, it would be interesting to use the same assay methodologies as in the present study, with the aim of providing a safer comparison, taking into account that ELISA and CLIA may differ in terms of the screening and diagnosis process [30,35,36].

In our study, of the 151 individuals resubmitted to the CLIA, 93 (62%) were positive and were selected to undergo confirmatory retests. Using the WB, the main methodology used to confirm the type of HTLV, we identified 30 (20%) positive, 10 (7%) indeterminate and 111 (73%) negative samples. In addition, via the FC-Simplex, 26 (29%) positive and 67 (71%) negative samples for HTLV were identified. Indeterminate cases in the WB assay may be associated with the individual’s seroconversion period, as well as cross reactions, which make accurate diagnosis of HTLV difficult. Cross-reactivity may be linked to individuals who had a recent *P. falciparum* infection, as studies in endemic areas have shown that infection by the parasite can interfere with the result and is capable of producing false positives in the WB [37]. Noteworthy, the Amazon is considered an endemic area for malaria in the country, with 99% of autochthonous cases, and this could contribute to the number of indeterminate cases observed [35,38].

Regarding the comparison of the assays evaluated, when we categorized them into low, intermediate and high RLU (Figure 2a) according to the CLIA sensitivity cut-off point, it was identified that the low and intermediate zones were negative in the WB and the FC-Simplex. The CLIA’s very low cut-off point is a good factor for using this methodology as a screening test, as has been observed in other studies carried out to verify the application of this assay during screening [30–32,36]. However, false-positive results in immunological assays need to be evaluated and minimized, as this impacts the quality of life of candidates for blood donations with a positive result during screening tests. In our study, we propose that the RLU values currently used in the CLIA need to be revised, and any CLIA results of \(\leq 3.0 \) RLU should be considered negative results while CLIA results of \(>10.0 \) RLU would define a positive result. Other studies reinforce these findings and state that the assays need to be revised, and sequential tests can be used, with different methodologies or adjustments in the cutoff values in the CLIA used to screen blood donors in Brazil, thus avoiding the use of confirmatory assays [39–41].
Despite the CLIA's weaknesses in relation to the seroconversion period of individuals, in addition to cross-reactivity, the test appears to be efficient in preventing the passage and distribution of blood bags contaminated with the HTLV virus. However, it does not have the same efficiency when used as a diagnostic method for the virus, due to its low agreement (56%) when compared to the WB. On the other hand, the FC-Simplex assay (still in the validation phase) showed better performance (agreement = 80%), and can be used to confirm the screening process, before confirming the differential diagnosis with the WB or qPCR [26]. Additionally, we observed that the FC-Duplex, the assay responsible for the viral distinction between HTLV-1 and HTLV-2 as a phase after FC-Simplex, also presented excellent results, with 100% agreement when compared to the WB for the samples analyzed [25,26]. Although these results are promising, we note that only criterion 1 (MT-2 1;32 minus MoT 1;32) was considered satisfactory for agreement with the WB results, whereby 15 (100%) reactive samples were identified for HTLV-1 and 7 (100%) for HTLV-2. This highlights the ability of the FC-Duplex to distinguish other viruses from HTLV, while also being a low cost and accessible assay for blood banks in Brazil [25].

It is important to highlight that our study has some limitations. In the initial survey of individuals that were reactive for HTLV, 409 blood donors that were reactive for the virus were identified. However, due to the lack of updating of records in the institution's database, it was not possible to obtain contact with a significant number of individuals, and a large portion did not show interest in returning for a new CLIA, which ended up having a significant impact on the number of participants in the study. In addition, we did not perform the qPCR technique, which would have provided valuable data for comparison with other methodologies, in addition to being useful to elucidate the serological status of the ten samples that were categorized as indeterminate in the WB. Finally, due to the state of Amazonas being an endemic area for malaria, it is important to evaluate possible co-infection in these individuals so as to eliminate possible biases.

5. CONCLUSION

Our results demonstrate the low seroprevalence of HTLV among candidates for blood donation in the state of Amazonas. They also demonstrate that levels are lower than those of other states in the northern region of Brazil. We also showed that the CLIA is highly effective in the screening stage of candidates for blood donations, although it
presents many false-positive results and the need for confirmatory tests. In addition, FC-
simplex and FC-Duplex were able to identify reactive samples, and could make the
distinction between HTLV-1/2. It is therefore a promising methodology for confirming
HTLV infection when compared with WB, which is the reference assay. Furthermore, our
findings indicate that gaps in the diagnosis of HTLV-1/2 infection could be overcome by
the simultaneous use of distinct immunological assays during retesting of candidates for
blood donations.

DATA AVAILABILITY STATEMENT
The original contributions presented in the study are included in the article/supplementary
material, further inquiries can be directed to the corresponding author/s.

ETHICS STATEMENT
The present study was submitted to and approved by the Ethical Committee at Fundação
HEMOAM, under the protocol registration number #739.563/2014. The participants read
and signed the informed consent form prior to inclusion in the study. The study fulfills the
principles of the Declaration of Helsinki and resolution 466/2012 of the Brazilian National
Health Council for research involving human participants.

CONFLICT OF INTEREST
The authors declare that the research was conducted in the absence of any commercial
or financial relationships that could be construed as a potential conflict of interest.

AUTHOR CONTRIBUTIONS
FAS, JGAC-R, AT-C, MSSA, GSP, OAM-F and AGC conceptualized and designed the
study. FAS, CLSC, JPM, UHSP, IVS, JSM, GLS, NDA, EMVM, CMMA and AGC recruited
all the individuals for the study and performed the experiments. FAS, JPM, MSSA, OAM-F
and AGC analyzed the data. FAS, MSSA, OAM-F and AGC wrote the manuscript. VP-M,
JGAC-R, AT-C, ACRV, GSP, FM-G, OAM-F and AGC revised the manuscript. All authors
read and approved the final version of the manuscript.
FUNDING

Financial support was provided in the form of grants from Fundação de Amparo à Pesquisa do Estado do Amazonas (FAPEAM) (Pró-Estado Program #002/2008, #007/2018 and #005/2019, PRODOC Program #003/2022; STARTUP PARA O SUS Program #012/2022 and POSGRAD Program #002/2023), Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG) (APQ-00821-20 – PPSUS Program #03/2020), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) (PROCAD-Amazônia 2018 Program - #88881.200581/2018-01). FAS, CLSC, JPM, IVS and GLS have fellowships from FAPEAM, FAPEMIG and CAPES (MSc students). JSM was research fellow from CAPES (PhD student). UHSP have fellowships from FAPEAM (scientific initiation student). JGAC-R, ACRV, MSSA, OAM-F and AGC are research fellows from CNPq. OAM-F participated in the fellowship program supported by the Universidade do Estado do Amazonas (PROVISIT N° 005/2023-PROPESP/UEA). The funders had no role in study design, the decision to publish, or preparation of the manuscript.

REFERENCES

28. Namen-Lopes MSS, Martins ML, Drummond PC, Lobato RR, Carneiro-Proietti ABF. Lookback study of HTLV-1 and 2 seropositive donors and their recipients in

FIGURE CAPTIONS

Figure 1. Seroprevalence for anti-HTLV antibodies in candidates for blood donations at the Amazonas State Blood Center. a) Anti-HTLV reactivity profile of 409 candidates for blood donations using CLIA during screening (2018 – 2022). CLIA results of 151 candidates for blood donations at retesting (2023). b) Correlation analysis between CLIA RLU values during screening and retesting. CLIA: chemiluminescence assay; RLU: relative light units.

Figure 2. Performance of different immunological assays to detect anti-HTLV antibodies. a) CLIA results were classified as low, intermediate or high based on the RLU values; the western blot results were categorized as negative, indeterminate or positive, according to band profile, and FC-Simplex results were defined as negative or positive, according to the PPFC values. b) Comparison of CLIA vs WB, CLIA vs FC-Simplex and WB vs FC-Simplex results. CLIA: chemiluminescence assay; RLU: relative light units; WB: western blot assay; PPFC: percentage of positive fluorescent cells.

Figure 3. Differential diagnosis of HTLV-1/2 infection after retesting using the FC-Duplex IgG1. a) Anti-MT-2 (1:32) and anti-MoT (1:32) reactivity used to define the HTLV-1 and HTLV-2 diagnosis according to criterion 1, previously proposed by Pimenta de Paiva et al. [25]. b) Agreement between FC-Duplex HTLV-1/2 IgG1 and western blot results. PPFC: percentage of positive fluorescent cells; WB: western blot assay.

Supplementary Figure 1. Differential diagnosis of HTLV-1/2 infection after retesting using the FC-Duplex IgG1. a) Anti-MT-2 (1:32) and anti-MoT (1:1,024) reactivity used to define the HTLV-1 and HTLV-2 diagnosis according to criterion 1, previously proposed by Pimenta de Paiva et al. [25]. b) Agreement between FC-Duplex HTLV-1/2 IgG1 and western blot results. PPFC: percentage of positive fluorescent cells; WB: western blot assay.

Supplementary Figure 2. Differential diagnosis of HTLV-1/2 infection after retesting using the FC-Duplex IgG1. a) Anti-MT-2 (1:32) and anti-MoT (1:2,048) reactivity used to define the HTLV-1 and HTLV-2 diagnosis according to criterion 1, previously proposed by Pimenta de Paiva et al. [25]. b) Agreement between FC-Duplex HTLV-1/2 IgG1 and western blot results. PPFC: percentage of positive fluorescent cells; WB: western blot assay.
Figure 1

(a) Blood Bank Records

Samples Submitted to Retesting

CLIA(+) at Screening (2018 - 2022) (n=403)

CLIA(+) at Screening (2018 - 2022) (n=151)

CLIA at Retesting (2023) (n=151)

3rd Tercile (> 3.0)

2nd Tercile (1.3-3.0)

1st Tercile (0.9-1.3)

62% (93/151)

(b) Samples Submitted to Retesting

CLIA at Retesting - (2023)

CLIA(+) at Screening - (2018 - 2022)

(-/-) (+/-) (+/+)

10^{-1} 10^{0} 10^{1} 10^{2} 10^{3}

RLU

RLU

r = 0.8967

62% (93/151)

38% (58/151)
Anti-HTLV Immunological Assays at Retesting (2023)

Figure 2
Figure 3