Characteristics and completeness of reporting of systematic reviews of prevalence studies in adult populations: a meta-epidemiological study.

Diana Buitrago-Garcia a, b, William Gildardo Robles-Rodriguez c, Javier Eslava-Smalbach d, Georgia Salanti a *, Nicola Low a * †

a. Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland
b. Graduate School of Health Sciences, University of Bern, Bern, Switzerland
c. Fundación Universitaria de Ciencias de la Salud-FUCS, Bogotá, Colombia
d. Universidad Nacional de Colombia, Bogotá, Colombia

* GS and NL are joint senior authors
† Corresponding author: Nicola Low. Email: nicola.low@unibe.ch

Postal address: Institute of Social and Preventive Medicine, University of Bern, Mittelstrasse 43, Bern, CH-3012, Switzerland

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Abstract

Background: The Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) statement, first published in 2009, has been widely endorsed, and compliance is high in systematic reviews of intervention studies. Systematic reviews of prevalence studies are increasing in frequency, but their characteristics and reporting quality have not been examined in large studies.

Objective: To describe the characteristics of systematic reviews of prevalence studies in adults, evaluate the completeness of reporting, according to the PRISMA 2009 checklist, and explore which publication characteristics are associated with the completeness of reporting.

Study design: We did a meta-epidemiological study. We searched 5 databases from January 2010 to December 2020 to identify systematic reviews of prevalence studies in adult populations. We used the PRISMA 2009 checklist to assess completeness of reporting and recorded additional characteristics. We conducted a descriptive analysis of review characteristics and linear regression to assess the relationship between compliance with PRISMA and publication characteristics.

Results: We included 1172 systematic reviews of prevalence studies. The number of reviews increased from 25 published in 2010 to 273 in 2020. The median PRISMA score for systematic reviews was 17.5 out of 23 maximum and, for systematic reviews with meta-analysis, 22 out of 25 maximum. Completeness of reporting, particularly for key items in the methods section was suboptimal. Systematic reviews published more recently, that included more co-authors, that included a meta-analysis, used a reporting or conduct guideline, or were published in an open access journal were associated with increased compliance with PRISMA 2009.

Conclusions: This study highlights aspects of systematic reviews for prevalence studies for which special attention is needed. Development of a specific tool to assess the risk of bias in
prevalence studies and an extension to the PRISMA statement could improve the conduct and
reporting of systematic reviews of prevalence studies.

Keywords: Systematic reviews, prevalence, reporting
What is new?

Key findings

- This study assessed both the characteristics and completeness of reporting of 1172 systematic reviews of prevalence studies.

- The number of published systematic reviews of prevalence increased 11-fold from 25 in 2010 to 273 in 2020.

- The median PRISMA 2009 score for systematic reviews was 17.5 out of 23, and 22 out of 25 for systematic reviews with a meta-analysis.

What this adds to what was known?

- The completeness of reporting of systematic reviews of prevalence has improved over time but reporting is still suboptimal.

- Reviews that include a meta-analysis have, on average, higher compliance with PRISMA reporting guidelines than systematic reviews without a quantitative synthesis.

- To assess the risk of bias in prevalence studies, most authors use tools that were not designed for prevalence studies.

Implications

- Journals publishing reviews of prevalence studies need to encourage more compliance with PRISMA reporting guidelines.

- Development of a specific tool to assess the risk of bias in prevalence studies and an extension to the PRISMA statement could improve the conduct and reporting of systematic reviews of prevalence studies.
1 INTRODUCTION

Prevalence studies quantify the occurrence of a disease and can be used to contribute to estimation of the burden of disease and as a measure to evaluate healthcare interventions [1, 2]. Systematic reviews (SRs) of prevalence studies allow the synthesis of evidence from prevalence studies, which also inform burden of disease estimates and provide a resource for policymakers to help set priorities [1]. The volume of SRs of prevalence studies is increasing, but the methods used to conduct them have been reported to be variable and suboptimal [3, 4]. The usefulness of any systematic review depends on the completeness of reporting and the information provided in the included publications. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement was first published in 2009 to help with transparent and complete reporting of systematic reviews that assess the benefits or harms of interventions [5]. Since then, extensions to the PRISMA statement have covered other study designs, including diagnostic test accuracy [6], protocols [7], and network meta-analysis [8]. An update to the statement, PRISMA 2020, included items that are also applicable to systematic reviews of aetiology, prognosis, and prevalence studies, whilst still being designed primarily for reviews of studies of health interventions [9]. Studies have shown that the PRISMA statement and extensions have improved the reporting of systematic reviews [10-12]. The completeness of reporting of SRs of prevalence is, to our knowledge, unknown. The objectives of this study were to describe the characteristics of SRs of prevalence studies in adults, the completeness of reporting, and to explore study level characteristics associated with the quality and completeness of reporting.
2 MATERIALS AND METHODS

We conducted a meta-epidemiological study of SRs of prevalence studies. The protocol was registered in PROSPERO (CRD42020151625). We report our findings according to the PRISMA checklist 2020 (Appendix A) [9].

2.1 Search methods

We searched MEDLINE-Ovid, Embase-Ovid, CINAHL and LILACS from January 2010 to December 2020 without language restrictions. Also, we searched grey literature in opengrey.com [13], (Appendix B).

2.2 Eligibility Criteria

We included SRs of studies conducted in adults (individuals aged ≥18 years) in any setting that assessed the prevalence of a disease, symptom, risk factor or behaviour as their primary aim. We excluded SRs of diagnostic test accuracy and of incidence studies (unless prevalence estimates were also presented separately). We also excluded overviews of SRs, studies that conducted a meta-analysis or pooled prevalence data without reporting a SR process and conference abstracts since it was not possible fully assess the completeness of reporting.

2.3 Study selection and data extraction

One author screened titles and abstracts (DBG), and a second author (WR) verified 20% of the records using the online tool Rayyan [14]. One reviewer extracted data using a pre-piloted form (DBG) and a second author verified the extraction in 20% of included studies (WR). We resolved disagreements through discussion. We extracted the following information from each eligible article: publication year, journal and journal impact factor (Web of Science journal citation reports 2021 or, if not available, the impact factor reported on the journal’s website), country of the first author, number of authors, medical speciality and targeted condition/symptom/risk factor/behaviour, population, primary objective, design of the included
studies, geographic coverage of prevalence data (worldwide, regional, and country), type of numerical data extracted from the included studies (numerator, denominator versus a prevalence estimate), number of studies included in the qualitative and quantitative synthesis, tool used to assess the risk of bias or quality of the included studies, statistical methods applied for meta-analysis, and methods or approaches used to assess heterogeneity. In addition, we extracted information about the use of guidelines or recommendations to report a SR, such as the PRISMA checklist [5], the Reporting Guidelines for Meta-analyses of Observational Studies (MOOSE) [15], or for conduct, such as the Cochrane Handbook for Systematic Reviews of Interventions [16].

2.4 Assessment of the completeness of reporting

The completeness of reporting of each SR was assessed using the PRISMA checklist published in 2009 [5], which was appropriate for the publication dates of the included studies. The PRISMA 2009 checklist has 27 items. Evaluating and reporting on the risk of bias across studies (e.g., publication bias, selective outcome reporting) is important in SRs of comparative studies, but the relevance and interpretation of this type of bias in evidence from prevalence studies is less clear. We therefore decided to exclude two items related to reporting bias (items 15 in the methods and item 22 in the results) [17]. We assigned each of the 25 items one point if the item was adequately reported or no points if the item was not reported. For some items, we awarded half a point if the information was partially reported (Appendix C). The maximum score for SRs without meta-analysis was 23 points, and 25 points if a meta-analysis was done.

2.5 Data analysis

We summarized the study characteristics (discipline, number of studies etc.) using proportions or medians with interquartile ranges (IQR). The completeness of reporting for each review was calculated as a) the achieved PRISMA reporting score, and b) the scaled reporting score, which
was the achieved score divided by the maximum possible value; the scaled reporting score
takes values between 0 and 1. Completeness of reporting was summarized as, a) the median
(IQR) PRISMA scores, and b) the proportion of SRs that completely reported, partially reported,
or did not report, each PRISMA item. Suboptimal reporting for an item was defined as less than
70%, based on a previous study [10].

We conducted univariable and multivariable linear regression analyses to assess the
relationship between the scaled reporting score and the year of publication, the journal impact
factor, the journal's publishing model (open access or not), the number of co-authors, the
number of studies included in the review, the use of a guideline to report or conduct the
systematic review, the medical specialty and the type of review (SRs with or without a meta-
analysis). All analyses were performed using R version 4.3.1 [18].

3 RESULTS (1020 words)

We screened 9580 references and included 1172 systematic reviews that fulfilled our inclusion
criteria. The main reason for exclusion was because the primary aim of the review was not to
assess prevalence. (Figure 1).
3.1 Characteristics of the reviews

The number of SRs of prevalence increased from 25 in 2010 to 273 in 2020 (Figure 2). There were 387 SRs with only a qualitative synthesis and 785 SRs with a meta-analysis. The median number of studies included in all SRs was 25 IQR (14, 46). The SRs were published across 661...
different journals, with PLOS ONE being the most frequent (n=46), followed by BMC Public Health (n=21), and BMC Infectious Diseases (n=20) (Table 1, Table S1). First authors were affiliated with institutions in 65 countries, amongst whom half were in five countries: the United Kingdom (n=155), the United States (n=120), Iran (n=107), Brazil (n=105), and China (n=98) (Figure S1, Table S2). Most SRs evaluated the prevalence of a medical condition or risk factor (1,036, 88 %) irrespective of region or country (765, 65%). About half of the SRs (567, 48%) were conducted to assess the prevalence of psychiatric conditions, infectious diseases, cardiology, and neurology. (Figure S2, Table S3). Prevalence data were extracted from diverse populations; most commonly from general adult populations (436, 37%), followed by adults with a specific condition (382, 33%), older populations (100, 9%), women (89, 8%) or workers (34, 3%) (Table 1, Table S4).

Table 1. Characteristics of systematic reviews of prevalence studies in adults, published between 2010-2020

<table>
<thead>
<tr>
<th>Variable</th>
<th>Systematic reviews without meta-analysis (n=387)</th>
<th>Systematic reviews with meta-analysis (n=785)</th>
<th>Total (n=1172)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Journal impact factor</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median (IQR)</td>
<td>3.6 (2.2,5.4)</td>
<td>4.1 (2.8,6.7)</td>
<td>3.9 (2.6,6.5)</td>
</tr>
<tr>
<td>Number of co-authors</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median (IQR)</td>
<td>4 (3,6)</td>
<td>6 (4,7)</td>
<td>5 (4,7)</td>
</tr>
<tr>
<td>Number of studies included in the review</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median (IQR)</td>
<td>22 (13,39)</td>
<td>24 (14,47)</td>
<td>25 (14,46)</td>
</tr>
<tr>
<td>Top five journals where systematic reviews of prevalence are published, n (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PLOS ONE</td>
<td>11 (2.8)</td>
<td>35 (4.5)</td>
<td>46 (3.9)</td>
</tr>
<tr>
<td>BMC Public Health</td>
<td>5 (1.3)</td>
<td>16 (2.0)</td>
<td>21 (1.8)</td>
</tr>
<tr>
<td>BMC Infectious Diseases</td>
<td>4 (1.0)</td>
<td>16 (2.0)</td>
<td>20 (1.7)</td>
</tr>
<tr>
<td>Journal of Affective Disorders</td>
<td>4 (1.0)</td>
<td>13 (1.7)</td>
<td>17 (1.5)</td>
</tr>
<tr>
<td>BMJ Open</td>
<td>1 (0.3)</td>
<td>10 (1.3)</td>
<td>11 (0.9)</td>
</tr>
<tr>
<td>Top five country of affiliation first author, n (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>United Kingdom</td>
<td>55 (14)</td>
<td>100 (13)</td>
<td>155 (13)</td>
</tr>
<tr>
<td>United States</td>
<td>38 (9.8)</td>
<td>82 (10)</td>
<td>120 (10)</td>
</tr>
<tr>
<td>Iran</td>
<td>30 (7.8)</td>
<td>77 (9.8)</td>
<td>107 (9.1)</td>
</tr>
<tr>
<td>Brazil</td>
<td>47 (12)</td>
<td>58 (7.4)</td>
<td>105 (9)</td>
</tr>
</tbody>
</table>
Top five populations included in systematic reviews of prevalence, n (%)

<table>
<thead>
<tr>
<th>Population</th>
<th>26 (6.7)</th>
<th>72 (9.2)</th>
<th>98 (8.4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adults in general</td>
<td>146 (38)</td>
<td>290 (37)</td>
<td>436 (37)</td>
</tr>
<tr>
<td>Adults with a specific condition or characteristic</td>
<td>101 (26)</td>
<td>279 (36)</td>
<td>380 (32)</td>
</tr>
<tr>
<td>Older adults</td>
<td>47 (12)</td>
<td>53 (6.8)</td>
<td>100 (8.5)</td>
</tr>
<tr>
<td>Women (including pregnant women)</td>
<td>29 (8)</td>
<td>60 (7.6)</td>
<td>89 (7.6)</td>
</tr>
<tr>
<td>Workers</td>
<td>16 (4.1)</td>
<td>18 (2.3)</td>
<td>34 (2.9)</td>
</tr>
</tbody>
</table>

Geographic scope of prevalence, n (%)

<table>
<thead>
<tr>
<th>Scope</th>
<th>254 (66)</th>
<th>511 (65)</th>
<th>765 (65)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Worldwide</td>
<td>254 (66)</td>
<td>511 (65)</td>
<td>765 (65)</td>
</tr>
<tr>
<td>Region</td>
<td>60 (16)</td>
<td>87 (11)</td>
<td>147 (13)</td>
</tr>
<tr>
<td>Country</td>
<td>73 (19)</td>
<td>187 (24)</td>
<td>260 (22)</td>
</tr>
</tbody>
</table>

Top five specialties for conducting systematic reviews of prevalence, n (%)

<table>
<thead>
<tr>
<th>Specialty</th>
<th>38 (9.8)</th>
<th>168 (21)</th>
<th>206 (18)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infectious Diseases</td>
<td>38 (9.8)</td>
<td>168 (21)</td>
<td>206 (18)</td>
</tr>
<tr>
<td>Psychiatry</td>
<td>68 (18)</td>
<td>118 (15)</td>
<td>186 (16)</td>
</tr>
<tr>
<td>Cardiology</td>
<td>26 (6.7)</td>
<td>68 (8.7)</td>
<td>94 (8.0)</td>
</tr>
<tr>
<td>Neurology</td>
<td>28 (7.2)</td>
<td>51 (6.5)</td>
<td>79 (6.7)</td>
</tr>
<tr>
<td>Endocrinology</td>
<td>23 (5.9)</td>
<td>52 (6.6)</td>
<td>75 (6.4)</td>
</tr>
</tbody>
</table>

Aim of the review, n (%)

<table>
<thead>
<tr>
<th>Aim</th>
<th>353 (91)</th>
<th>683 (87)</th>
<th>1,036 (88)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estimate prevalence</td>
<td>353 (91)</td>
<td>683 (87)</td>
<td>1,036 (88)</td>
</tr>
<tr>
<td>Estimate prevalence, compare prevalence estimates and/or evaluate associations</td>
<td>34 (9)</td>
<td>102 (13)</td>
<td>136 (12)</td>
</tr>
</tbody>
</table>

Data extracted to conduct systematic reviews of prevalence, n (%)

<table>
<thead>
<tr>
<th>Data extracted</th>
<th>273 (71)</th>
<th>318 (41)</th>
<th>591 (50)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prevalence estimation</td>
<td>273 (71)</td>
<td>318 (41)</td>
<td>591 (50)</td>
</tr>
<tr>
<td>Numerator and denominator</td>
<td>89 (23)</td>
<td>339 (43)</td>
<td>428 (37)</td>
</tr>
<tr>
<td>All the above</td>
<td>25 (6.5)</td>
<td>128 (16)</td>
<td>153 (1)</td>
</tr>
</tbody>
</table>

Authors reported using the PRISMA Statement, n (%)

<table>
<thead>
<tr>
<th>Used/Not used</th>
<th>163 (42)</th>
<th>472 (60)</th>
<th>635 (54)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Used</td>
<td>163 (42)</td>
<td>472 (60)</td>
<td>635 (54)</td>
</tr>
<tr>
<td>Not used</td>
<td>224 (58)</td>
<td>313 (40)</td>
<td>537 (46)</td>
</tr>
</tbody>
</table>

Authors reported using of MOOSE guidelines for meta-analysis of observational studies, n (%)

<table>
<thead>
<tr>
<th>Used/Not used</th>
<th>22 (5.7)</th>
<th>125 (16)</th>
<th>147 (13)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Used</td>
<td>22 (5.7)</td>
<td>125 (16)</td>
<td>147 (13)</td>
</tr>
<tr>
<td>Not used</td>
<td>365 (94)</td>
<td>660 (84)</td>
<td>1,025 (87)</td>
</tr>
</tbody>
</table>

Authors reported using other guidelines (e.g., Cochrane Handbook), n (%)

<table>
<thead>
<tr>
<th>Used/Not used</th>
<th>17 (4.4)</th>
<th>48 (6.1)</th>
<th>65 (5.5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Used</td>
<td>17 (4.4)</td>
<td>48 (6.1)</td>
<td>65 (5.5)</td>
</tr>
<tr>
<td>Not used</td>
<td>370 (96)</td>
<td>737 (94)</td>
<td>1,107 (94)</td>
</tr>
</tbody>
</table>

In total, 62% of SRs described the use of a reporting or conducting guideline. The PRISMA checklist was the most cited, followed by the MOOSE guideline [15]. Most authors included
studies that answered their review questions without limiting by study design (623, 53%) (Table 1, Table S5-S6). Among SRs that performed meta-analysis, most (703, 90%) used a random-effects model, 10 (1.2%) used a fixed effects model, while 47 (7%) of SRs did not specify the model (Table S6). Only 163 (21%) of SRs reported a method used for statistical transformation of prevalence values, such as the Freeman-Tukey double arcsine, log, or logit functions. Heterogeneity among studies was assessed in 720 (92%) SRs, mainly using the I² statistic.

3.2 Completeness of reporting

3.2.1 PRISMA scores

The median PRISMA score for SRs with qualitative synthesis was 17.5 IQR (15.0, 19.0) out of a possible 23, and for SRs with meta-analysis, it was 22 IQR (20.5, 23.5) out of a possible 25 (Table S7). Figure 2 shows an increasing reporting score over the years. The median scaled reporting score for all included SRs was 84.8 IQR (76.0, 92.0).
Figure 2. PRISMA score and number of publications (n) by year of publication and type of systematic review.

3.2.2 Reporting of selected PRISMA items

Over 80% of the included SRs complied with more than 70% of the PRISMA checklist items. Two SRs (0.5%) and 66 SRs with meta-analysis (8%) were entirely compliant with PRISMA 2009. Completeness of reporting was achieved in less than 70% of the included SRs in the reporting of the existence of a protocol for the review, the search strategy, the additional analyses, and the evaluation of the risk of bias in the included studies (Figure 3). Findings for these items are reported below.
Protocol: Only 296 out of 1172 (25%) of all SRs published a protocol, which could be accessed, while 62 (6%) mentioned a protocol without information on access details (Table S8). For SRs alone, the number with any protocol was 1/387 in 2010 and 9/387 in 2020; for SRs with a meta-analysis, 1/785 review had a protocol in 2011 and 91/785 in 2020.

Search strategy: In 607 (52%) SRs, authors adequately reported information about the search strategy for at least one database. In 498 (42%) reviews, authors only reported the keywords used for conducting their search, and 67 (6%) did not provide any information.

Assessment of risk of bias: In the methods section, 798 (68%) review authors reported the use of any tool to assess the quality or risk of bias in included studies (Table S9). For 12 (2%) reviews, authors mentioned using a tool but did not report the items assessed or tool. The most frequently reported tool was the Newcastle-Ottawa Scale 153 (19%), which is a tool for assessing the quality of non-randomized studies [19]. In 284 (24%) reviews, authors reported the use of a tool designed explicitly for assessment of quality or risk of bias in prevalence studies. The most frequent was the tool developed by the Johanna Briggs Institute [20]. The risk of bias in the included studies was adequately reported in the results section in 675/1172 (58%) reviews. Completeness of reporting of the study-level risk of bias assessment in the results was lower than in the methods section (58%). In 56 reviews (7%) authors reported assessing the risk of bias but there was no description of this in the results. In 25 reviews (3%), authors used the assessment of the quality of the studies to exclude studies from the review.

Additional analyses: 526 (67%) of 785 SRs with meta-analysis reported in the methods section additional analyses such as sensitivity, subgroup analysis, or meta-regression. We observed an increase over the years, from 8 (1%) reviews in 2010 to 161 (21%) in 2020. Additional analysis results were presented adequately in the results section in 576 out of the 785 of SRs with meta-analyses (73%).
Reporting of funding sources: 764/1172 SRs reported their source of funding (65%). The reporting of this item improved over the years; from 26 (2%) in 2010 to 252 (21%) in 2020.

Figure 3. Percentage of adequate reporting of PRISMA items in 2009 in 387 systematic reviews without meta-analysis (SR-M) and 785 systematic reviews with meta-analysis (SR+M).

a (M), item in methods section; (R), item in results section.

3.3 Factors associated with the completeness of reporting

Inclusion of a meta-analysis in the SRs and citing the use of a reporting or methodological guideline were the factors most strongly associated with a higher scaled reporting score (Table 2). Publishing in an open access journal, the journal impact factor and the number of co-authors were also positively associated with higher scaled reporting scores.
Table 2. Univariable and multivariable linear regression between characteristics of the published systematic reviews of prevalence studies and scaled reporting score according to the PRISMA guidelines

<table>
<thead>
<tr>
<th>Variable</th>
<th>Univariable analysis</th>
<th>Multivariable analysis<sup>a</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Coefficient (95% CI)</td>
<td>P value</td>
</tr>
<tr>
<td>Year</td>
<td>1.20 (0.96, 1.40)</td>
<td><0.001</td>
</tr>
<tr>
<td>Impact Factor</td>
<td>0.05 (0.01, 0.10)</td>
<td>0.019</td>
</tr>
<tr>
<td>Open access journal</td>
<td>No</td>
<td>1.40 (-0.08, 2.90)</td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Number of authors</td>
<td>0.67 (0.43, 0.91)</td>
<td><0.001</td>
</tr>
<tr>
<td>Number of studies included in the review</td>
<td>2.60 (1.00, 4.20)</td>
<td>0.001</td>
</tr>
<tr>
<td>Report the use of guidelines to report or conduct systematic reviews<sup>b</sup></td>
<td>No</td>
<td>Reference</td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td>8.90 (7.50, 10)</td>
</tr>
<tr>
<td>Systematic review includes a meta-analysis</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Medical field</td>
<td>Other</td>
<td>Reference</td>
</tr>
<tr>
<td>Psychiatry</td>
<td>1.20 (-0.95, 3.30)</td>
<td></td>
</tr>
<tr>
<td>Infectious Diseases</td>
<td>0.45 (-1.60, 2.50)</td>
<td></td>
</tr>
<tr>
<td>Neurology</td>
<td>0.42 (-2.60, 3.40)</td>
<td></td>
</tr>
<tr>
<td>Cardiology</td>
<td>0.73 (-2.00, 3.50)</td>
<td></td>
</tr>
<tr>
<td>Endocrinology</td>
<td>-0.30 (-3.40, 2.70)</td>
<td></td>
</tr>
<tr>
<td>Surgery</td>
<td>-1.20 (-4.30, 1.90)</td>
<td></td>
</tr>
<tr>
<td>Lifestyle characteristics</td>
<td>-0.45 (-4.40, 3.50)</td>
<td></td>
</tr>
</tbody>
</table>

^a Model includes all variables reported in the table.

4 DISCUSSION

This meta-epidemiological study found an 11-fold increase in the number of SRs of prevalence from 25 in 2010 to 273 in 2020. The median PRISMA score for SRs was 17.5 IQR (15,19), and for SRs with meta-analysis was 22 IQR (20.5, 23.5). The items with the lowest compliance (<70%) were the availability of a protocol, search methods, assessment of the risk of bias in methods and results, additional analyses, and sources of funding. In multivariable analysis, SRs
which were published more recently or with more co-authors, conducted a meta-analysis and
reported the use of a guideline were on average more compliant with the PRISMA 2009
checklist. Also, publication in an open access journal and higher journal impact factor were
positively correlated with PRISMA 2009 checklist compliance.

4.1 Strengths and limitations
Strengths of this study include the detailed assessment of characteristics of SRs of prevalence,
including 11 years of publications in 1172 SRs. In addition to recording whether PRISMA
checklist items were reported, we extracted information for several items and conducted a
multivariable regression analysis, which allowed more detailed interpretation of the findings than
simple descriptive statistics. Our study also has limitations. We did not include SRs of
prevalence published before the launch of the PRISMA statement in 2009 [5], which does not
allow us to assess if there was improvement after the checklist was published. We also did not
extend our search after 2020, as the COVID-19 pandemic interrupted work on this study. The
end date of the search means that our findings correspond to the items and scope of the
PRISMA 2009 statement [5]. An update to the assessment using the PRISMA 2020 checklist
will be needed to see whether there has been a change in completeness of reporting [9].
Additionally, we did not use PRISMA extensions, such as the PRISMA checklist for abstracts
[21] or the extension for reporting literature searches in SRs [22], which might change the
results of the items assessed with PRISMA 2009. Finally, we limited our inclusion to reviews
conducted in adult populations, but we believe that reviews conducted in children would yield
similar findings.

4.2 Interpretation and comparison with other studies
Incomplete reporting of systematic reviews of prevalence should be seen in the context of
published guidance for the conduct and reporting of SRs, most of which has been developed for
randomised or non-randomised intervention studies. Whilst reported use of a guideline for
reporting or conduct of SRs was associated with more complete reporting, the content of some
items may indicate a lack of specific methodological guidance for prevalence studies. In
particular, 30% of authors did not report the use of a tool for assessment of the risk of bias in
individual studies and, amongst those that did, more than 30 different tools were used. In a
systematic search, we identified 10 tools for assessing the risk of bias in prevalence studies
[23], but only 284 (24%) of reviews in our study used one of these tools. Most of the tools listed
were not designed for use with prevalence studies, such as the STROBE checklist for reporting
of cross-sectional studies, which does not allow explicit assessment of risk of bias [24].
Completeness of reporting of SRs was associated with a larger number of authors, publication
in open access journals and publication in journals with a higher impact factor. These
characteristics could be related to the level of experience and recognition of the methodological
requirements of reporting of a systematic review team or with the expectations and
requirements of journals.

We found two smaller studies, which assessed the characteristics of SRs of prevalence but did
not use the PRISMA checklist to quantify completeness of reporting. Borges Migliavaca et al. [3]
evaluated 235 SRs of prevalence published in 2017 and 2018 and found substantial differences
in terms of conduct, reporting, risk of bias assessment and data synthesis. Whilst we decided
not to assess the reporting of publication bias because of doubts about its relevance to
prevalence studies, Borges Migliavaca et al. extracted this information. They found that 48/235
SRs examined publication bias either graphically or using a statistical test [3]. The authors also
found that some reviews, used the GRADE approach, despite the absence of GRADE guidance
on assessing the quality of the body of evidence in a SR of prevalence. Hoffmann et al. [4]
reported on 215 SRs of prevalence and incidence, identified from a random sample of
publications up to 2018. The authors did not report on their findings for SRs of prevalence and
incidence separately, but concluded that heterogeneity in characteristics, reporting, and methodology of these SRs might be due to the absence of specific guidance.

Reporting for some items in SRs of prevalence was consistent with meta-research for other study designs. Page et al. [10] summarised meta-epidemiological studies of adherence to the PRISMA 2009 statement published up to mid-2017. They also found that items such as protocol registration and assessment of the risk of bias of individual studies were likely to be incomplete. Veroniki et al. [12] assessed the reporting in 1144 SRs with network meta-analysis and also found that the items least likely to be adequately reported were publication of a protocol (25%), and of a full search strategy (48%). Wasiak et al. [11] assessed 50 SRs in burn care management and concluded that methodology was the section most in need of improvement. They also found an improvement in the PRISMA score when the systematic review incorporated a meta-analysis.

5 Conclusions and recommendations

This meta-epidemiological study shows that the number of systematic reviews of prevalence has been increasing over the last decade. The PRISMA statement has helped improve the reporting of SRs of interventions. For SRs of prevalence, the completeness of reporting has also improved but there is room for improvement. There are items that authors who conduct any type of SR can improve without further guidance, such as the publication of a protocol. To improve the consistency and utility of SRs of prevalence more specific guidance about reporting of certain methodological features is required. Development of a specific tool to assess the risk of bias in prevalence studies and an extension to the PRISMA statement could improve the conduct and reporting SRs of prevalence studies.

Declarations of interest

None
Declarations of interest of generative AI in scientific writing

The authors declare that no AI was used in the scientific writing of the manuscript.

Author contributions

Study design: DBG, JES, NL, GS.
Data collection: DBG, WR.
Methodology DBG, JES, NL, GS
Writing original draft: DB

Approval

All authors approved the final version of the manuscript.

Funding

This work received support from the Swiss government excellence scholarship (grant number 2019.0774), the SSPH+ Global PhD Fellowship Programme in Public Health Sciences of the Swiss School of Public Health.

Georgia Salanti acknowledges the Swiss National Science Foundation for funding of her work through the NRP 78 initiative (Project 198418)

Availability of data and materials

Raw data collected for this study are published on Open Science Framework (https://osf.io/m5n6s/)
6 REFERENCES

[1] Harder T. Some notes on critical appraisal of prevalence studies: Comment on: "The
development of a critical appraisal tool for use in systematic reviews addressing questions of

Population and Some Implications for the Delivery of Health Care Services. Canadian Journal

2020;20:96.

methodological heterogeneity in systematic reviews addressing prevalence and cumulative

statement for reporting systematic reviews and meta-analyses of studies that evaluate

Reporting Items for a Systematic Review and Meta-analysis of Diagnostic Test Accuracy

items for systematic review and meta-analysis protocols (PRISMA-P) 2015: elaboration and
explanation. BMJ. 2015;349:g7647.

Extension Statement for Reporting of Systematic Reviews Incorporating Network Meta-analyses

PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ.
2021;372:n71.

