NOTCH1 fusion genes in pediatric T-cell lymphoblastic lymphoma hallmark a common high-risk subgroup with blood TARC levels as possible diagnostic biomarker

Emma Kroeze¹, Michelle M Kleisman¹, Lennart A Kester¹, Marijn A Scheijde-Vermeulen¹, Edwin Sonneveld¹, Jessica GC Buijs-Gladdines¹, Melanie M Hagleitner¹, Friederike AG Meyer-Wentrup¹, Margreet A Veening¹, Auke Beishuizen¹, Jules PP Meijerink¹,†, Jan LC Loeffen¹*, Roland P Kuiper¹,²*

¹Princess Máxima Center for pediatric oncology, Utrecht, the Netherlands
²Department of Genetics, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
†Presently working at Acerta-Pharma (AstraZeneca), Oss, the Netherlands
*JLCL and RPK are considered co-last authors

Corresponding author: Prof. dr. Roland P Kuiper, Princess Maxima Center for Pediatric Oncology, Heidelbergaan 25, 3584 CS Utrecht, Netherlands, r.kuiper@prinsesmaximacentrum.nl

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Abstract

Background: Twenty percent of children with T-cell lymphoblastic lymphoma (T-LBL) will relapse and have an extremely poor outcome. Currently, we can identify a genetically low-risk subgroup in pediatric T-LBL, yet these high-risk patients who need intensified or alternative treatment options remain undetected. Therefore, there is an urgent need to proactively recognize these high-risk T-LBL patients through identification of specific molecular characteristics and generic biomarkers.

Patients and Methods: In 29/43 unselected pediatric T-LBL patients diagnosed in the Princess Maxima Center for Pediatric Oncology between 2018-2023, RNA sequencing was performed at diagnosis, and blood thymus and activation-regulated chemokine (TARC) levels were measured at diagnosis in 22/29 patients.

Results: We discovered a previously unknown high-risk biological subgroup of children with T-LBL, characterized by NOTCH1 gene fusions, which was found in 21% of our T-LBL cohort (6/29). All patients presented uniformly with a large mediastinal mass, pleural/pericardial effusions, and absence of blasts in the bone marrow, blood, and central nervous system. Moreover, all six patients exclusively expressed highly elevated blood TARC levels, defining a novel and previously not known clinically relevant blood biomarker for T-cell lymphoblastic lymphoma. Three out of these six patients relapsed during therapy, while a fourth developed a therapy related acute myeloid leukemia during maintenance therapy.

Conclusion: We identified a frequently occurring T-LBL entity with high risk of relapse which can be easily identified using a blood TARC screening at diagnosis. Further molecular characterization through NOTCH1 gene fusion analysis offers these patients the opportunity for treatment intensification or new treatment strategies.
Introduction

T-cell lymphoblastic lymphoma (T-LBL) is a common pediatric malignancy accounting for approximately 20% of the non-Hodgkin lymphomas during childhood. Survival rates of T-LBL are ~80%, but outcome after relapse is dismal, with salvage rates reaching only ~15%. Considering the extremely poor prognosis after relapse and absence of clinically relevant high-risk genetics, there is an urgent need for the identification of molecular risk factors and new prognostic biomarkers in T-LBL, as well as identification of new therapeutic strategies.

Pediatric T-LBL is typically characterized by infiltration of blasts in the mediastinum (thymus) and lymph nodes. Approximately half of the cases present with pleural effusion at diagnosis and, by definition, T-LBL patients have less than 25% blasts in the bone marrow (BM). Based on morphology and immunophenotype, T-LBL is indistinguishable from its leukemic counterpart, T-cell acute lymphoblastic leukemia (T-ALL). T-ALL presents as leukemic disease with ≥25% blasts in the BM and presence of blasts in the peripheral blood (PB), but usually with mild mediastinal enlargement. Even though the clinical presentation of T-LBL and T-ALL largely differs, there has been no evidence so far that there are major differences in molecular genetics of T-LBL and T-ALL. Therefore, T-LBL and T-ALL are regarded as different manifestations of the same disease. Pediatric T-ALL has been extensively studied and great advances in treatment protocols have been made, including minimal residual disease (MRD) measurements as a useable stratification strategy. In contrast, molecular genetics underlying T-LBL are still poorly understood and T-LBL patients are currently mainly treated according to ALL-based protocols. Thus far, MRD assessment has not proven to be usable in T-LBL and diagnostic biomarkers to identify high-risk patients are lacking.
Diagnostic biomarkers have been successfully introduced in other types of lymphomas. For example, blood thymus and activation-regulated chemokine (TARC, CCL17) has proven to be a useful diagnostic biomarker in children with classical Hodgkin lymphoma9,10. It has never been studied whether TARC can serve as a biomarker in non-Hodgkin lymphoma and specifically T-LBL as well. TARC is constitutively produced in the thymus, acting as a powerful T-cell chemoattractant. In classical Hodgkin lymphoma patients, TARC production can be induced by NOTCH1 and TARC is highly expressed by the Reed-Sternberg cells, thereby creating a specific supporting tumor microenvironment that recruits T-cells10. Considering the importance of NOTCH1 and strong preference of malignant T-cells in T-LBL for the thymus, we hypothesize that TARC is of importance in the pathophysiology of T-LBL and creating a thymic microenvironment that favors the T-LBL cells.

Recent studies show that both T-LBL and T-ALL patients with NOTCH1 and/or FBXW7 DNA mutations have a better outcome compared to NOTCH1 and FBXW7 wildtype patients11,12. The pathogenic molecular mechanisms of T-LBL patients without NOTCH1 and/or FBXW7 mutations remain largely unknown, and this group probably contains both high-risk and low-risk patients. Considering the extremely poor prognosis after relapse, it is essential to identify these high-risk patients. Additionally, there is an urgent need for the identification of new prognostic biomarkers in T-LBL. In this study we present a novel entity of pediatric T-LBL patients characterized by previously unknown NOTCH1 gene fusions and highly elevated blood TARC levels.

\textbf{Methods}

\textbf{Patients}
Pediatric T-LBL patients (n=43) were diagnosed in the Princess Máxima Center for Pediatric Oncology between 2018-2023. RNA sequencing data at diagnosis were available for 29/43 patients and at relapse for two additional patients. Clinical information and hematological values at diagnosis were retrieved from patient files. All patients were treated according to the EURO-LB02 protocol\(^3\) or its successor, the LBL2018 protocol (NCT04043494).

NOTCH1/FBXW7 mutational status was determined for most patients and retrieved from patient files. Pediatric T-ALL patients (n=39) diagnosed between 2019-2022 at the Princess Máxima Center for Pediatric Oncology were included as reference cohort. All sample IDs are completely anonymized. Written informed consent was obtained from all patients and/or their legal guardians. The study was performed in accordance with the Declaration of Helsinki.

The Medical Research Ethical Committee Utrecht declared that the Medical Research Involving Human Subjects Act (WMO) does not apply, and approved the study (19-140/C).

RNA sequencing analysis

RNA sequencing data was obtained from the in-house diagnostics department in the Princess Máxima Center. Pre-processing of the data was done with standardized and in-house pipelines and guidelines\(^13\). Fusion detection was performed using STAR fusion\(^14\). In addition, we analyzed the entire T-LBL and T-ALL cohort for exon-specific *NOTCH1* coverage as an indication for fusions, by using DepthOfCoverage of GATK v3.8.0. Differential expression analysis was performed with DESeq2 v1.36.0. Gene expression alterations were assessed with log2 transformed gene length normalized read counts (transcript per million mapped reads, TPM). Whole genome sequencing data were also obtained from the in-house diagnostics department and used for validation of genomic breakpoints.
TARC measurements and immunohistochemistry

TARC measurements at diagnosis were performed in serum or plasma of 22 out of the 29 patients for whom RNAseq was available. Measurements were performed by standard enzyme-linked immunosorbent assay (ELISA) using the DuoSet ELISA kit (cat. no. DY364; R&D Systems, Inc.). Immunohistochemistry staining for TARC was performed on the BOND-III fully automated staining system (Leica, IL, USA) using CCL17 rabbit polyclonal antibody (ProteinTech group, Chicago IL, USA).

Results

Patient characteristics

Pediatric T-LBL patients (n=43) were diagnosed in the Princess Máxima Center for Pediatric Oncology between 2018-2023. T-LBL diagnoses were based on histopathological classification according to the revised world health organization for hematological malignancies and/or flow cytometry according to the criteria of the European Group for Immunophenotyping of Leukemias. The median age at diagnosis for these 43 patients was ten years, and our cohort contained more males than females (59%), in line with previously described large T-LBL cohorts. Eighty-eight percent of the patients presented with a large mediastinal mass, which was in 53% of these cases accompanied by pleural effusion. Five out of 43 patients (12%) had a relapse. RNAseq was performed for 29/43 patients and their clinical characteristics are described in Supplementary Table 1.

Detection of NOTCH1 rearrangements
Transcriptome sequencing was performed at diagnosis from 2019 onwards when possible, and was available for 29 patients in our cohort. This technique allows for the identification and quantification of fusion transcripts and gene expression levels. We identified 12 fusions transcripts (41%), including six NOTCH1 gene fusions, with the microRNA gene miR142HG on chromosome 17q22 (TLBL042 and TLBL058), IKZF2 on chromosome 2q34 (TLBL050) and TRBJ on chromosome 7q34 (TLBL033, TLBL049, TLBL050) (Supplementary Table 2). The fusion transcripts with miR142HG and IKZF2 demonstrated correct splicing to exon 27 or 28 of NOTCH1 and genomic breakpoints were identified using available whole genome sequencing (WGS) data (Supplementary Table 2). TRBJ::NOTCH1 fusion genes were previously shown to express a truncated, membrane-bound form of NOTCH1 (Figure 1A).

None of the six samples with a NOTCH1 gene fusion exhibited mutations in NOTCH1/FBXW7, demonstrating the mutual exclusivity of NOTCH1 mutations and NOTCH1-rearrangements. Furthermore, apart from homozygous loss of the CDKN2A/2B locus in two cases (TLBL042 and TLBL050), no other driver events were found in these NOTCH1-rearranged T-LBLs. NOTCH1 gene fusions are almost never found in T-ALL, but considering the difficulties in detecting TR-rearranged fusions with conventional pipelines, we also reanalyzed exon-specific NOTCH1 expression in 39 T-ALL samples that were diagnosed in the Princess Máxima Center for Pediatric Oncology. In line with previous studies, none of the T-ALL samples carried gene fusions involving NOTCH1, thus suggesting that the frequent occurrence of these fusions represents an important molecular genetic discriminator between T-LBL and T-ALL.

All NOTCH1 gene fusions result in expression of intracellular NOTCH1
NOTCH1 is a transmembrane protein that is activated through ligand-receptor interaction, which induces a conformational change that results in dissociation of the heterodimerization (HD) subunits. This is followed by exposure of a cleavage site in the C-terminal part of the HD domain, resulting in the release of the intracellular domain of NOTCH1 (NICD). NICD subsequently translocates to the nucleus where it acts as a transcriptional regulator.

To determine whether a truncated C-terminal version of NOTCH1 was indeed expressed in the T-LBL samples with a NOTCH1-rearrangement, we performed Western blotting using protein lysates of four NOTCH1-rearranged cases and two NOTCH1 wildtype (NOTCH1-WT) cases. All NOTCH1-rearrangements lead to expression of NICD. The IKZF2::NOTCH1-positive T-LBL (TLBL050) showed expression of an NICD protein co-migrating with the ~130-kDa wildtype NICD, suggesting cleavage of the chimeric protein at the ß-secretase cleavage side (Val1744). In contrast, the TRBJ::NOTCH1-positive (TLBL033 and TLBL052) and miR-142HG::NOTCH1-positive (TLBL042) cases expressed a slightly larger NICD protein, which is in line with translation initiation at methionine residue 1727 (Met1727) encoded in exon 28 of NOTCH1, as previously reported, and lack of ß-secretase cleavage (Figure 1B).

To explore downstream characteristics of T-LBL cases with NOTCH1 gene fusions, we performed differential expression analysis between NOTCH1-rearranged and NOTCH1-WT T-LBLs. Two NOTCH1-rearranged cases (TLBL049 and TLBL058) had to be excluded from this analysis because of lower quality of the expression data. A total of 1,621 genes were found to be significantly differentially expressed, compared to only 65 genes in a comparison between NOTCH1-mutated and NOTCH1-WT T-LBLs (Supplementary Figure 1A,B and Supplementary Tables 3 and 4). Subsequently, the 100 most significantly differentially expressed genes between NOTCH1-rearranged and NOTCH1-WT T-LBLs, were selected for supervised clustering with NOTCH1-WT, NOTCH1-mutated, and all six NOTCH1-rearranged.
samples. This analysis revealed that NOTCH1-rearranged samples formed a separate cluster (Figure 1C). To confirm these findings, we performed clustering analysis with the 200 most variable genes in the dataset (Supplementary Table 5), which showed that NOTCH1-rearranged samples mostly clustered separately from the entire T-LBL cohort (Supplementary Figure 1C). These findings suggest that the downstream effects and mechanisms of action between NOTCH1-mutated and NOTCH1-rearranged T-LBLs is different.

Clinical presentation of patients with NOTCH1 gene fusions

All six patients with NOTCH1 gene fusions presented with a massively enlarged mediastinum, combined with pleural/pericardial effusion. Moreover, all of the NOTCH1 gene fusion-positive patients were bone marrow negative, peripheral blood negative and cerebral spinal fluid negative. These patients therefore had a uniform clinical presentation of disease, although not differentiating between this group and the rest of the T-LBL cohort. Flowcytometry performed at diagnosis revealed positivity for cytoplasmatic CD3 (cyCD3) in all cases, as well as positivity for other T-cell markers. Precursor-marker Terminal Deoxynucleotidyl Transferase (TdT) was expressed in 50% of the NOTCH1-rearranged cases, which was lower than expected (~90%) (Supplementary Table 6). Next, we analyzed blood TARC (CCL17) levels, which were highly elevated in all patients with a NOTCH1 gene fusion (range from 2345 to >10000 pg/ml), compared to 31-638 pg/ml in 16 patients who did not have a NOTCH1 gene fusion (p<0.0001) (Figure 2A). Follow-up TARC levels during first remission were available for 3/6 patients and revealed normalized values (range 57-152 pg/ml) (Figure 2B). Two of the patients with a clinical relapse (TLBL042 and TLBL050) also showed substantially elevated TARC levels at relapse (TLBL042:4613 pg/ml, TLBL050:...
TLBL050:8654 pg/ml), which could be an indication that TARC levels in blood might also increase upon progression of relapse. One patient, whose relapse was discovered with routine imaging, presented with relatively little tumor load and low LDH levels, and did not have increased TARC levels (TLBL033). TARC levels normalized again in second remission (range 69-1331 pg/ml) (Figure 2C). Our data therefore strongly indicate that TARC can serve as a high-risk biomarker at diagnosis. Immunohistochemistry revealed that the T-LBL cells were not positive for TARC, in line with the finding that CCL17 was not significantly upregulated in NOTCH1-rearranged cases. This observation suggests that TARC is produced by the tumor microenvironment in the thymus, rather than the tumor cells (Figure 2D).

NOTCH1 gene fusions as poor prognostic marker in T-LBL

Finally, we aimed to determine the prognostic relevance of NOTCH1 gene fusions in T-LBL. We found that four out of six NOTCH1 fusion-positive patients had an event. Three patients had a relapse during therapy (TLBL033, TLBL042, TLBL050), none of them were rescued. Additionally, one patient had a therapy-related acute myeloid leukemia (t-AML) during maintenance therapy of T-LBL (TLBL049). The t-AML carried the typical KMT2A::MLLT3 fusion. This patient was rescued with AML induction chemotherapy followed by allogeneic stem cell transplantation. The other two patients did not have an event, yet both patients are still under treatment.

The unselected 5-year T-LBL cohort (n=43) contained five patients who relapsed, of whom three had a NOTCH1 gene fusion. For the other two patients, only RNAseq data at relapse was available, revealing a DDX3X::MLLT10 fusion and a JAKMIP2::PDGFRB fusion at relapse, respectively, established high-risk ALL aberrations\(^{17,22}\). Thus, NOTCH1-rearranged T-LBL caused the majority of relapses in our cohort, suggesting that they cause an aggressive...
Discussion

To date, mainly clinically applicable low-risk genetics have been described for T-LBL. This implicates that molecular genetic high-risk patients who need intensified or alternative treatment strategies are undetected. Moreover, patients with unknown low-risk molecular genetic profiles could also be overtreated with current treatment strategies.

We discovered a biological high-risk subgroup of T-LBL, characterized by NOTCH1 gene fusions. This subgroup represents 21% (6/29 patients) of our T-LBL cohort. All patients had a similar although not unique presentation of disease predominantly consisting of a large mediastinal mass, pleural/pericardial effusion and highly elevated TARC levels in blood. Moreover, three out of six patients with a NOTCH1 gene fusion had a relapse and did not survive, indicating that NOTCH1 fusions lead to an aggressive T-LBL phenotype. Fifty percent of the NOTCH1-rearranged cases exhibited expression of TdT, which is lower than the expected 90%. It has been described before that the TdT-negative subset often represent diagnostically challenging cases with phenotypic features that are consistent with a late cortical subtype, coinciding with what we found in our cohort21.

The presence and frequency of NOTCH1 gene fusions can currently be regarded as a major molecular genetic difference between T-LBL an T-ALL, since fusions involving NOTCH1 are only extremely rarely described in T-ALL (<0.1%)18,23-28. The uniform absence of BM and PB involvement in T-LBL patients with a NOTCH1 gene fusion coincides with the fact that these rearrangements have almost never been detected in T-ALL. NOTCH1 gene fusions have been described in T-LBL before25, but given the small number of samples in these studies, as
well as difficulties in detecting TR-rearranged fusions with conventional pipelines, these fusions might have been missed explaining the lower contribution of NOTCH1 gene fusions in these studies.

NOTCH1 gene fusions appear to have a bigger impact on T-LBL cells compared to NOTCH1 mutations, with more and larger changes in the downstream gene expression, independent of the type of NOTCH1-fusion. Furthermore, whereas patients with NOTCH1 and/or FBXW7 mutations are considered low risk and have a better outcome compared to NOTCH1 and/or FBXW7 WT patients\cite{11,12}, we demonstrate that the outcome of these recurrent NOTCH1-rearranged T-LBLs is poor. It has recently been described that NOTCH1 intronic single nucleotide variants (SNVs) and NOTCH1 intragenic losses were also associated with an inferior event-free and overall survival\cite{28}, further substantiating that distinct genetic aberrations in NOTCH1 have a different impact on outcome. The T-LBL patients with high-risk NOTCH1 aberrations will probably need intensified or alternative treatment strategies. A second consequence of our findings may be that when NOTCH1 gene fusions are recognized as a separate high-risk group, the survival characteristics of the remaining group of T-LBL patients with unknown molecular genetics improves and may benefit from less intensified treatment.

The highly elevated blood TARC levels were exclusively observed in all T-LBL patients with a NOTCH1-rearrangement, even though almost all T-LBL patients had an enlarged mediastinum. Elevated TARC levels may therefore serve as an important biomarker to assist in the diagnosis of this high-risk group at diagnosis. Moreover, there might be a possibility that TARC levels could be used during follow-up as well, but these findings need to be validated in larger cohorts. It has been suggested that inhibiting TARC, produced by the Reed-Sternberg cells, may have therapeutic consequences in classical Hodgkin lymphoma as inhibiting TARC can decrease the recruitment of T-cells, thereby affecting the supporting
microenvironment29. Although our data suggests that TARC expression in \textit{NOTCH1}-
rearranged T-LBL originates from the T-LBL microenvironment instead of the tumor cells,
this increased blood biomarker likely point towards active crosstalk between the tumor cells
and the microenvironment30. It is therefore intriguing to further explore whether \textit{NOTCH1}-
rearranged T-LBLs are dependent on TARC expression and whether this would provide
opportunities for targeted treatment in a potentially high-risk subgroup of T-LBL. Measuring
blood TARC levels could also serve as an easily applicable technique to identify high-risk T-
LBL patients in low- and middle-income countries with restricted access to next generation
sequencing techniques.

In conclusion, we discovered that, in contrast to T-ALL, \textit{NOTCH1} gene fusions are common
in T-LBL and represent a high-risk subtype with an easily applicable biomarker. The
discovery of this clinically relevant high-risk T-LBL subgroup offers opportunities to develop
intensified and targeted treatment strategies for this subgroup and decrease overtreatment in
the remaining group of T-LBL patients.

\textbf{Author contributions}

RK, JLCL, AB designed the study. EK wrote the manuscript and analyzed the data. MMK
and LAK performed the bioinformatic analyses. JGCB performed the wet lab analyses. ES
provided laboratory supervision. MSV performed the histological analyses. MMH, FAGM,
MA V were involved in data curation. JPPM acquired the funding.

\textbf{Declaration of interests}

None of the authors declare a conflict of interest.
References

Figure 1: NOTCH1-rearrangements in T-LBL. A) Schematic representation of three different NOTCH1 fusions with different fusion partners. The in-frame IKZF2::NOTCH1 fusion generates a chimeric protein in which the N-terminal DNA binding domain of IKZF2 is fused to the C-terminal intracellular domains of NOTCH1. Fusions transcripts with miR142HG and TRBJ use an alternative translation start site in exon 28 (Met1727). B) Western blot analysis using Val1744 antibody (Cell Signaling Inc.) shows that miR142HG::NOTCH1 and the TRBJ::NOTCH1 fusions lead to a larger NICD protein, likely representing uncleaved NICD with translation initiation at Met1727. Simultaneous Beta-actin staining was performed for loading comparisons. C) The 100 most significantly up-
downregulated genes (from total 1,621 genes) in NOTCH1-rearranged compared to NOTCH1-WT samples, revealed that NOTCH1-rearranged samples formed a separate cluster. The two NOTCH1-rearranged cases excluded in the differential expression analysis because of quality issues (TLBL049, TLBL058) cluster with the other four NOTCH1-rearranged cases. The relapse sample of TLBL042 was used because of better quality. Range of 0-10 showing the log2 transcript per millions of normalized expression values. Significance was determined using false discovery rate (FDR)-adjusted p-values.
Figure 2: TARC in NOTCH1-rearranged patients. A) TARC levels in pg/ml per patient, showing highly elevated TARC in blood of NOTCH1-rearranged T-LBL patients but none of the other patients. 10000 pg/ml is the maximum measurable TARC level with used assay. Orange line in figure A, B and C represents maximum normal TARC level (1300 pg/ml) Patients that had a relapse are indicated with an asterisk. Patient TLBL049 developed a therapy-related AML (double asterisk). B) For three NOTCH1-rearranged patients, blood TARC levels could be determined for a time point of remission after diagnosis, revealing normalized TARC levels in all three cases. C) For three NOTCH1-rearranged patients blood TARC levels were determined at time point of relapse and remission after relapse (second remission), revealing increased levels in two relapses that again normalized in second remission. D) Staining for TARC using anti-CCL17 antibody for four NOTCH1-rearranged patients showing that T-LBL cells do not express TARC.