Unveiling the Potential: ChatGPT's Impact on Vestibular Rehabilitation Education
- Trust, Learning, and Value

Yael Arbel P.T.¹, Yoav Gimmon P.T., Ph.D ², ³, Liora Shmueli, Ph.D.¹

¹ Department of Management, Bar-Ilan University, Ramat-Gan, 52900, Israel.
² Department of Physical Therapy, Faculty of Social Welfare & Health Studies, University of Haifa, Haifa, Israel
³ Department of Otolaryngology-Head and Neck Surgery, Sheba Medical Center, Tel-HaMetro, Israel

Corresponding Author: Liora Shmueli, Ph.D., Department of Management, Bar-Ilan University, Ramat-Gan, 52900, Israel. Email: liora.shmueli@biu.ac.il

Abstract

Objective: To evaluate the accuracy, completeness, and explanations provided by ChatGPT in response to multiple-choice questions related to vestibular rehabilitation.

Study Design: The study was conducted among 30 physical therapists professionals experienced with vestibular rehabilitation and 30 physical therapy students. They were asked to complete a Vestibular Knowledge Test consisting of 20 multiple-choice questions categorized into three groups: (1) Clinical Knowledge, (2) Basic Clinical Practice, and (3) Clinical Reasoning. Additionally, in May 2023, ChatGPT was tasked with answering the same 20 VKT questions and providing rationales for its answers.
Three expert board-certified otoneurologists evaluated independently the accuracy of each ChatGPT response on a 4-level scale.

Results: ChatGPT correctly answered 14 of the 20 multiple-choice questions (70%). It excelled in Clinical Knowledge (100%) but struggled in Clinical Reasoning (50%). According to three otoneurologic experts, ChatGPT's accuracy was "comprehensive" for 9 of the 20 questions (45%), while 5 (25%) were "completely incorrect". ChatGPT provided "comprehensive" responses in 50% of Clinical Knowledge and Basic Clinical Practice questions, but only 25% in Clinical Reasoning.

Conclusion: Caution is advised when using the current version of ChatGPT due to its limited accuracy in clinical reasoning. While it provides accurate responses concerning Clinical Knowledge, its reliance on web information may lead to inconsistencies. Healthcare professionals should carefully formulate questions and be aware of the potential influence of the online prevalence of information on ChatGPT's responses. Combining clinical expertise and guidelines with ChatGPT can maximize benefits while mitigating limitations.

Keywords: ChatGPT, Accuracy, Vestibular Rehabilitation, Education
Introduction

The integration of artificial intelligence (AI) technologies in healthcare has created a new era in patient care, marked by the exploration of the potential integration of AI chatbots, including ChatGPT (Generative Pre-trained Transformer), in medicine as a means to assist healthcare professionals. However, AI’s use in vestibular rehabilitation (VR), which requires precise knowledge and expertise, has not yet been thoroughly investigated. Understanding the capabilities of ChatGPT and its like and their potential applications in VR is vital for advancing evidence-based practices and delivering accurate knowledge to patients. This study, therefore, sought to assess the accuracy and grading of the information provided by ChatGPT concerning specialized physical therapists (PTs) in vestibular rehabilitation.

VR is a specialized form of treatment for patients suffering from dizziness. This exercise-based treatment program is designed to promote vestibular adaptation and substitution. Since its advent in the 1940s, VR has undergone significant advancements and is now the recommended therapy for dizziness, vestibular dysfunction, and benign paroxysmal positional vertigo (BPPV). The Barany Society, has amended its definitions for diagnosing vestibular disorders several times since 2009. In addition, updated guidelines provide evidence-based recommendations on how to improve diagnostic accuracy and treatment efficiency. For many clinicians, implementing these guidelines is challenging and requires an active effort of continuous ongoing learning to stay up-to-date. Research has shown that constant learning is essential to ensure consistent, evidence-based treatment and standards in VR.
Effective use of AI technologies can assist in making knowledge accessible to VR therapists. ChatGPT, an interactive chatbot powered by the GPT3.5 architecture developed by OpenAI, is a new advanced Large Language Model (LLM) that has demonstrated tremendous potential in accelerating learning and knowledge acquisition in diverse medical fields. Trained on a vast dataset from the Internet, ChatGPT excels at generating human-like responses in conversations and prompts across multiple languages and subject domains, making it a valuable tool for various applications.

Recent studies have evaluated the accuracy level of the answers provided by various versions of ChatGPT to knowledge-based questions in the field of medicine, both with respect to multiple-choice questions and to open-ended questions. When answering multiple-choice questions related to well-defined, established medical questionnaires, ChatGPT’s accuracy rate was found to vary across different domains, ranging from 42% in the field of ophthalmology, as measured by the OKAP (Ophthalmic Knowledge Assessment Program) test, to 76% in cardiology, specifically in the American Heart Association (AHA) and Advanced Cardiovascular Life Support (ACLS) exams.

The studies that assessed the accuracy and reproducibility of ChatGPT responses to open-ended questions involved grading the responses by several clinical domain experts using a scale that included four categories: (1) comprehensive, (2) correct but inadequate, (3) some correct and some incorrect, and (4) completely incorrect. For instance, a study on Bariatric Surgery found that the model provided "comprehensive" responses to 131 out of 151 questions, resulting in an accuracy rate of...
86.8%. In a similar study regarding cirrhosis and hepatocellular carcinoma, an accuracy rate of 76.9% was determined.\(^\text{15}\)

An alternative approach implemented by Gilson to determine the degree of accuracy on the AMBOSS Student Medical exam entailed evaluating the text output of each ChatGPT response across 3 qualitative metrics: logical justification of the answer selected, presence of information internal to the question, and presence of information external to the question.\(^\text{16}\)

In this study, we compared the performance of ChatGPT on these multiple-choice questions with that of PTs who received training in VR and that of PT students. Additionally, we assessed the accuracy and completeness of ChatGPT’s answers and explanations to a multiple-choice questionnaire we developed about VR.
Materials and Methods

Data source

VKT multiple choice Questionnaire

In May 2023, a Vestibular Knowledge Test (VKT) consisting of 20 multiple-choice questions (one correct answer and three incorrect options (distractors)) was developed (See supplemental Appendix 1). It was categorized into three groups: Clinical Knowledge, Basic Clinical Practice, and Clinical Reasoning. The test was validated through an anonymous online survey using Qualtrics. The survey link was distributed via WhatsApp, targeting two distinct groups of participants: 1) PTs who had previously received training in VR, and 2) PT students from all years of the degree. In the survey, before each question, the prompt “Please select the correct answer.” appeared.

Out of the 60 respondents (30 PTs and 30 PT students) who completed the survey, 53% (n = 32) identified as female. The ages of the participants ranged from 21 to 51 years (M = 31.65, SD = 7.92). With respect to the 30 PTs, the median duration of work as a PTs was 11.08 years (range <2–23 years), and the median time since their last vestibular training was 2.44 years (range <0–12 years).

To assess the internal consistency of the questionnaire, reliability statistics were calculated using Cronbach’s alpha. For the PT students, the Cronbach’s alpha value was α = .37, indicating relatively low internal consistency. In contrast, for the PT group, the Cronbach's alpha value was α = .68, suggesting a higher level of internal consistency.
ChatGPT Response Generation

In order to generate responses, each VKT question was prompted to the ChatGPT (May 16th version) AI language model based on the GPT-3.5 architecture. The model is trained on data last updated in September 2021. The questions were entered separately using the same chat.

Grading

Two grading methods were implemented: (1) Multiple-choice questionnaire grading: A score of 1 was assigned to each multiple-choice question answered correctly, and a grade of 0 to an incorrect answer, resulting in a maximum total score of 20 points. We chose this technique to simulate human test-taking. In order to assess the knowledge base of ChatGPT, we compared its performance on multiple-choice questions with that of PTs who had received training in VR and PT students.

(2) Question-response grading: A score was assigned to each explanation provided by ChatGPT, based on an independent assessment of its accuracy and compatibility with the answer provided. The review and grading of each response were independently performed by three board-certified otoneurologists who are experts in the vestibular field. The reviews were conducted based on evidence-based knowledge to determine the accuracy of the ChatGPT responses. The accuracy of each ChatGPT response was rated using the following scale. 1. “Comprehensive”: The answer is correct, and the explanation provided is accurate and comprehensive. 2. “Correct but inadequate”: Both the answer and the explanation are correct but not satisfactory in terms of completeness. 3. “Mixed with correct and incorrect/outdated data”: The answer is
incorrect, and the explanation is partially accurate. 4. “Completely incorrect”: Both the answer and the explanation are incorrect. The accuracy of each answer was determined based on the median of the experts' answers.

The accuracy of the ChatGPT responses is displayed in Figure 2 according to three VKT knowledge categories.

Statistical analyses

The grading was determined by comparing ChatGPT's answer to the correct answer key. The model's grading was determined from a single run. The means and standard deviation obtained on the 20 multiple-choice single-answer questions by the PTs experienced in VR and PT students with no prior knowledge of vestibular rehabilitation were compared to the values of the ChatGPT model using One Sample T-Test (test of means) to determine if there is a significant difference between the proportions of response points earned were calculated as a total grade for each domain and reported as percentages.

The accuracy of the ChatGPT answers was rated by three experts and the score was determined according to the median of the three given scores. A correlation test was performed between each two experts using Spearman analysis.
Results

Overall Performance

A VKT consisting of 20 multiple-choice single-answer questions was completed by 30 PTs experienced in VR, 30 PT students and ChatGPT-3.5 (See supplemental Appendix 1). ChatGPT answered 70% of the questions correctly (14 out of 20), while the PTs achieved a score of 76.3%, and the PT students a score of 40.5% (Figure 1). A statistical analysis using t-tests revealed significant differences between the groups. The PTs’ performance was significantly better than that of ChatGPT (t = 2.46, p < .05), with a large effect size (Cohen's d = 2.89). The PT students performed significantly worse than ChatGPT (t = -13.24, p < .001), with a large effect size (Cohen's d = 2.44).

Figure 1: Performance of ChatGPT, the PTs and the PT Students on the VKT, stratified by question type and topic.
Performance by Question Type

In terms of performance, ChatGPT excelled in Clinical Knowledge questions, answering all 4 correctly (100%). However, in the category of Clinical Reasoning, it managed to answer only 1 out of 4 correctly (25%), and in the Basic Clinical Practice category, it provided the correct answer to only 8 of the 12 questions (66.66%).

Accuracy of the ChatGPT-generated explanations

The accuracy of ChatGPT's response was assessed and categorized as either comprehensive, correct but inadequate, mixed (correct and incorrect/outdated data), and completely wrong. Based on the experts' evaluation of the ChatGPT answers, 9 of the 20 answers were "comprehensive" (45%), 5 were "correct but inadequate" (25%), 1 was deemed "mixed with correct and incorrect responses" (5%), and the remaining 5 were considered "completely incorrect" (25%). When analyzed according to knowledge category, it was found that ChatGPT provides "comprehensive" responses to 2 of the 4 (50%) question related to Clinical Knowledge, to 6 of the 12 (50%) questions concerning "Basic Clinical Practice, and to only 1 of the 4 (25%) questions in the Clinical Reasoning category (Figure 2). Figure 3 illustrates further examples of ChatGPT prompts by category.
Figure 2: Accuracy of the responses generated by ChatGPT-3.5 to questions related to VR, categorized by knowledge category

![Bar chart showing accuracy of responses categorized by knowledge category]

Figure 3: Examples of ChatGPT prompts for multiple-choice questions, and expert-graded ChatGPT responses

<table>
<thead>
<tr>
<th>Question</th>
<th>Correct Answer</th>
<th>ChatGPT answers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Which of the following examinations is used to diagnose the vestibular system?</td>
<td>Head Impulse test</td>
<td>CORRECT: Head Impulse test. The Head Impulse test is used to assess the function of the vestibulo-ocular reflex (VOR), which is a crucial component of the vestibular system.</td>
</tr>
<tr>
<td>When examining a dizzy patient, which of the following tests is different in terms of the meaning of the result that is obtained?</td>
<td>VOR cancellation</td>
<td>CORRECT: abnormal and indicates impairment of the VOR. This means that the eyes are unable to accurately maintain fixation on the target during head movements. It suggests a dysfunction within the vestibular system.</td>
</tr>
<tr>
<td>While performing ocular motor tests, you observe a vertical deviation during the Cover Uncover test, a changing direction nystagmus when the gaze is held on both sides, and during the Head Impulse test - no noted vestibular impairment. Given these findings, what should you do?</td>
<td>Refer the patient urgently to the emergency room</td>
<td>INCORRECT: Refer the patient to their General Practitioner doctor for further diagnosis. The presence of a vertical deviation during the Cover Uncover test suggests a potential oculomotor misalignment or extracocular muscle dysfunction.</td>
</tr>
<tr>
<td>In acute vestibular syndrome of the right ear, according to Alexander’s law, what should we expect to see in the first few hours and days?</td>
<td>Nystagmus increases when the gaze is diverted to the right side and nystagmus decreases when the gaze is diverted to the left</td>
<td>In acute vestibular syndrome of the right ear, according to Alexander’s law, we would expect to see the INCORRECT: Nystagmus increases when the gaze is directed forward, and nystagmus decreases when the gaze is diverted to the sides.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Category</th>
<th>Accuracy Grading of responses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clinical knowledge</td>
<td>(100% correct)</td>
</tr>
<tr>
<td>Basic clinical practice</td>
<td>(66.66% correct)</td>
</tr>
<tr>
<td>Clinical Reasoning</td>
<td>(50% correct)</td>
</tr>
<tr>
<td>Basic clinical practice</td>
<td>(66.66% correct)</td>
</tr>
<tr>
<td>Mixed with correct and incorrect</td>
<td>(5%)</td>
</tr>
<tr>
<td>Correct but inadequate</td>
<td>(25%)</td>
</tr>
<tr>
<td>Comprehensive</td>
<td>(45%)</td>
</tr>
<tr>
<td>completely incorrect</td>
<td>(25%)</td>
</tr>
</tbody>
</table>
Discussion

In this study, we present a novel analysis of ChatGPT’s performance in the domain of vestibular rehabilitation. We found that when answering multiple-choice questions, PTs perform significantly better than ChatGPT, whereas PT students fare much worse than ChatGPT. ChatGPT is accurate in answering Clinical Knowledge questions and in providing accurate explanations for the answers, but their accuracy starkly declines when it comes to Clinical Reasoning. Therefore, the way in which the questions for the chatGPT are formulated is crucial.

Our finding that ChatGPT achieved an accuracy of 70% on multiple-choice questions specifically focused on VR aligns with previous studies where ChatGPT’s performance was near or passed the threshold of 60% accuracy on the United States Medical Licensing Exam (USMLE), an accuracy of 76.3% (29/38) on two 38-question AHA ACLS exams, and successfully cleared the Medical Physiology Examination of Phase I MBBS with distinction (>75% of marks). Likewise, in another such study involving quiz-style questions from the platform of the German Society of Oto-Rhino-Laryngology that subspecialties 2576 questions into 15 distinct otolaryngology, in the vestibular system category ChatGPT responded correctly to 63% of the questions (n=95 correct vs. n=57 false).

The frequency of errors in ChatGPT's explanations in our study is particularly notable in the Best Clinical Practice topics. Indeed, errors often occur when addressing questions that involve clinical reasoning and descriptions, which require a deep understanding of medical contexts rather than solely relying on clinical knowledge. For example, when providing a description of a patient who exhibits a down-beating
nystagmus with a rightward rotation during Dix-Hallpike tests on both sides, the
ChatGPT response concluded that the "most appropriate treatment choice would be: A
positioning treatment for the right posterior canal by performing a Gufoni maneuver."
While ChatGPT did accurately diagnose the right ear, it was wrong when it came to the
identification of the canal and the appropriate treatment.

An interesting finding was revealed from ChatGPT's responses to post-treatment
restrictions regarding prohibitions and restrictions. In this context, ChatGPT's answers
were found to be incorrect and based on outdated approaches and previously published
articles available on the Internet. For example, when asked what recommendations
should be given after a patient is successfully treated with BPPV concerning what
should he or she should avoid doing at home, The Chat incorrectly responded: "Avoid
lying on the side that was treated". ChatGPT's responses were influenced by the
abundance of information available online rather than by recent and reliable sources.
ChatGPT, however, did provide accurate and current answers when the question was
rephrased: In response to, “After you successfully treat a patient diagnosed with BPPV,
what will be your post-treatment recommendations?” ChatGPT's response was,
"Return to normal activity; you must not refrain from movement or restrict the sleeping
position but should avoid climbing ladders or stools." Thus, careful consideration should
be given to the impact of the wording of the question and presentation scenarios, as it
could affect the quality of the ChatGPT response. Additionally, it is crucial to formulate
questions carefully and be aware that ChatGPT's responses may be influenced by the
prevalence of information on the web rather than being based on updated, current and
reliable sources. Of note, we ensured that no prompting or training was provided to the AI, by entering each question separately using the same chat.

It is evident that the utilization of AI for enhancing clinical decision-making will continue to expand. This growing trend highlights the necessity for effective collaboration between medical professionals and technology developers. With the rapid growth of medical knowledge, the integration of technologies like AI becomes crucial in enabling healthcare professionals to effectively apply this knowledge in their practice.

Health care education emerges as a captivating domain to explore, given the vast amount of information and diverse concepts that healthcare students are expected to comprehend. For example, in a recent editorial by Moons and Van Bulck (2023), they highlight the potential of ChatGPT in cardiovascular nursing practice and research. They further emphasize its ability to summarize large texts, facilitate the work of researchers, and assist in data collection, making ChatGPT a potentially valuable tool in health care practice.

Our study, together with previous research, leads us to formulate the following recommendations regarding the specific cases where ChatGPT can be utilized to expedite the learning process in clinical knowledge. Instead of investing time on reading and memorizing scientific literature updates and guidelines, ChatGPT can provide a viable alternative. Indeed, a recent systematic review examined the potential applications of Language Model models (LLMs) in healthcare education. The review highlighted several benefits of ChatGPT in healthcare education, such as enhanced personalized learning experiences and an emphasis on critical thinking and problem-based learning.
To determine to what extent ChatGPT could provide accurate responses and reliable information, further research is needed to validate the efficacy of ChatGPT in providing accurate answers in the medical domain, specifically in the context of VR. Furthermore, studies should be conducted to determine if ChatGPT’s performance can be enhanced through techniques such as question repetition and integration of reliable medical literature to ChatGPT. As emphasized by ChatGPT itself, the evaluation of its output by professionals remains crucial in ensuring the accuracy and completeness of the information provided. In our opinion, clinicians who wish to “consult” with ChatGPT should simplify their questions and avoid clinical reasoning questions.

Limitations

With respect to the study’s limitations, there is no common questionnaire that tests knowledge and clinical reasoning in the field of vestibular rehabilitation. We compiled a questionnaire and validated it. In this VKT questionnaire, there are only 20 multiple-choice questions, which may have limited participants' ability to express nuanced perspectives, potentially impeding the assessment of higher-order thinking skills. Additionally, the survey focuses on three VR categories, which may overlook other relevant knowledge categories. Furthermore, the survey was conducted among Hebrew speakers and we translated into English, but as professional terminology, which is primarily in English, was used in the Hebrew questionnaire, it may be that English speakers might have performed better. Due to this discrepancy in linguistic proficiency, ChatGPT may be biased and potentially discriminatory against participants.
Conclusions

The ChatGPT platform is an effective tool that can be used to obtain information and answer questions related to a variety of fields, including VR. In spite of this, it is important to recognize that ChatGPT has a number of limitations such as the potential provision of false and inaccurate answers to questions in specific VR categories, especially in clinical reasoning questions. The model is trained on an updated version of ChatGPT from 2021 and is influenced by the abundance of information available online rather than by recent and reliable sources. Medical professionals should therefore use this tool carefully and be aware of its limitations.

Acknowledgments: We would like to express our gratitude to Prof. Avi Shupak, Dr. Yahav Oron, Dr. Amit Wolfovitz, as well as the physical therapists and physiotherapy students who participated in the study.

Funding: The authors received no financial support for the research, authorship, and/or publication of this article.

Declaration of conflicting interests: The Authors declares that there is no conflict of interest.

Ethics approval and consent to participate

The study was approved by the Ethics Committee for Non-clinical Studies at Bar Ilan-University in Israel. The ethics form was signed by the committee head and the date of approval was 21 May 2023.
CRediT authorship contribution statement

Yael Arbel, P.T: conceptualization, methodology, formal analysis resources, and writing the original draft.

Yoav Gimmon, P.T., Ph.D: methodology, formal analysis resources, writing - review & editing, supervision.

Liora Shmueli, Ph.D.: conceptualization, methodology, formal analysis resources, writing the original draft, writing - review & editing, supervision and project administration.

All authors approved the final draft.

Additional Contributions

Additional Information

This data was collected using the AI ChatGPT developed by OpenAI. The data was analyzed using SPSS version 28

Data Sharing Statement All the data generated or analyzed during this study is included in this published article [and its supplementary information files].

Consent for publication

Not applicable
<table>
<thead>
<tr>
<th>Abbreviations</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ChatGPT</td>
<td>Generative Pre-trained Transformer</td>
</tr>
<tr>
<td>VKT</td>
<td>Vestibular Knowledge Test</td>
</tr>
<tr>
<td>AI</td>
<td>artificial intelligence</td>
</tr>
<tr>
<td>VR</td>
<td>vestibular rehabilitation</td>
</tr>
<tr>
<td>PTs</td>
<td>Physical therapists</td>
</tr>
<tr>
<td>BPPV</td>
<td>benign paroxysmal positional vertigo</td>
</tr>
<tr>
<td>LLM</td>
<td>Large Language Model</td>
</tr>
<tr>
<td>AHA</td>
<td>American Heart Association</td>
</tr>
<tr>
<td>ACLS</td>
<td>Advanced Cardiovascular Life Support</td>
</tr>
</tbody>
</table>
References

15. Yeo YH, Samaan JS, Ng WH, et al. Assessing the performance of ChatGPT in answering questions regarding cirrhosis and hepatocellular carcinoma. Published online February 8, 2023:2023.02.06.23285449. doi:10.1101/2023.02.06.23285449

17. Qualtrics Survey Software. Published online 2023. https://www.qualtrics.com

