Post-vaccine HAI antibody kinetics are driven by pre-vaccination HAI titre and vaccine history

David Hodgson1*, Stephany Sánchez-Ovando2,3, Louise Carolan3, Yi Liu2,3, A. Jessica Hadiprodjo2,3, Annette Fox2,3, Sheena G. Sullivan2,3, Adam J. Kucharski1

1Center of Mathematical Modelling of Infectious Diseases, London School of Hygiene and Tropical Medicine, London, UK
2Department of Infectious Diseases, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
3WHO Collaborating Centre for Reference and Research on Influenza, Royal Melbourne Hospital, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia

*Corresponding Author
Email: david.hodgson@lshtm.ac.uk

Keywords
Antibody kinetics, mathematical modelling, vaccination, seasonal influenza

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
ABSTRACT

Epidemiological studies suggest that heterogeneity in influenza vaccine antibody response is associated with host factors, including pre-vaccination immune status, age, gender, and vaccination history. However, the pattern of reported associations varies between studies. To better understand the underlying influences on antibody responses, we combined host factors and vaccine-induced in-host antibody kinetics from a cohort study conducted across multiple seasons with a unified analysis framework. We developed a flexible Bayesian model to estimate associations and interactions between host factors, including pre-vaccine HAI titre, age, sex, vaccine history and study setting, and vaccine-induced HAI titre antibody boosting and waning. We applied the model to derive population-level and individual effects of post-vaccine antibody kinetics for vaccinating and circulating strains for A(H1N1) and A(H3N2) influenza subtypes. We found that post-vaccine HAI titre dynamics were significantly influenced by pre-vaccination HAI titre and vaccination history. In addition, we find the common heuristic of a four-fold rise in titre is valid for detecting seroconversion in an infrequently vaccinated cohort (<2 vaccines in last 5 years) within six months of vaccination if their pre-vaccination HAI titres are equal to or below 1:20. The same heuristic only works for a frequently vaccinated population (2 or more vaccines in last 5 years) for up to 3 months post-vaccination providing their pre-vaccination HAI titres are equal to or below 1:20. In future, seroepidemiological studies should ensure the impact of pre-vaccine HAI and prior vaccination status on vaccine-induced fold-rises is properly quantified, as these significantly influence an individual’s post-vaccination antibody kinetics.
AUTHOR SUMMARY

Seasonal influenza vaccination protects populations from disease. The degree of protection is associated with antibody levels, which vary considerably between individuals. Previous studies find associations between antibody boosting and host factors such as age, previous exposure to the virus, gender, and pre-vaccination antibody levels, but the relative importance of each of these factors varies among studies. To understand which host factors are consistently associated with antibody boosting, we created a model that simulates individual-level post-vaccination antibody levels and fitted it to aggregated data from multiple cohort studies. We found that individuals with lower pre-vaccine antibody levels had bigger boosts in their antibodies after getting the vaccine, and this boost lasted longer. Also, individuals who had recently received the flu vaccine had attenuated boosting in antibodies compared to those who had not. Age and gender did not significantly affect antibody boosting in the aggregated data, suggesting that pre-vaccine antibody levels may confound associations found in previous studies. Our model gives insights into the role of pre-existing immune status and response to vaccination by providing evidence on who responds best to vaccination and quantifying seroconversion at different pre-vaccination antibody levels.
INTRODUCTION

Globally, influenza-associated acute respiratory disease is a significant burden, annually causing 5–6 million hospitalised respiratory cases and 290,000–650,000 deaths.[1,2] Vaccination remains the primary method to control seasonal influenza disease and transmission. The WHO recommends trivalent influenza vaccines containing candidate vaccine viruses representing recent A(H1N1)pdm09, A(H3N2), and B/Victoria viruses. Recommendations for quadrivalent vaccines have previously also included a B/Yamagata virus. These recommendations are made each year roughly 6 months prior to national influenza vaccination campaigns. Vaccination campaigns typically target individuals at the highest risk of disease complications and those who are the main drivers of transmission within the population.[3] Although vaccination is a valuable preventative tool, the propensity for influenza viruses to undergo rapid antigenic drift means that vaccine-induced antibodies may recognise circulating viruses poorly, resulting in low vaccine effectiveness.[4,5] Host factors also impact vaccine effectiveness, including genetic and epigenetic factors and underlying immune profile at vaccination.[6–13] Quantifying how these host factors interact to influence vaccine effectiveness is important for understanding which groups will benefit most from vaccination and help further understand the biological mechanisms that cause heterogeneity in protection from disease.

Cohort or case-control studies can measure the effectiveness of influenza vaccination by relying on case-incidence rates. However, these studies can miss non-healthcare-seeking infections and thus often only measure effectiveness against moderate to severe disease outcomes.[14] Seroepidemiological studies can detect missed infections by comparing changes in antibody titres, measured in haemagglutination inhibition assay (HAI), pre- and post-season. Traditionally, a four-fold rise in antibody titre between two time-points in a serological study has been used to indicate latent infection in the absence of vaccination.[15,16] However, pre-vaccination HAI titre has consistently been associated with the magnitude of titres boosting post-vaccination or infection.[6,8–11,17] Therefore, the four-fold rise heuristic could become unreliable under certain circumstances. For example, in an unvaccinated population, where HAI titres are lower, the four-fold rise criterion may be a more reliable method to identify missed infections than in a vaccine-experienced population, which will have higher pre-season titres. In addition, previous seroepidemiological studies have found statistical associations between seroconversion (a four-fold rise in HAI titre) and host factors, including age, infection history, and vaccine history within vaccinated populations.[18,19]

In this study, we develop a flexible Bayesian regression model to estimate the associations and interactions between host factors—pre-vaccination HAI titre, age, sex, vaccine history, and study setting—and individual-level post-vaccination antibody kinetics. We fit the model to a dataset from a multi-season ongoing cohort study to help understand antibody boosting towards the influenza A subtypes vaccine candidates as well as A(H3N2) circulating viruses. By considering antibody kinetics to vaccinating strains, we use the inferential uncertainty to quantify the importance of each host factor in driving antibody kinetics and assess if the heterogeneity observed among vaccine responses correlates with influenza A subtypes when adjusting for the relevant host factors. We use the individual-level model fits to assess how established heuristics for protection (titre greater than 1:40) and seroconversion (four-fold rise) change dynamically post-vaccination. We also consider the influence of A(H3N2) vaccination on the boosting of HAI titres to on-coming circulating cell A(H3N2) strains in a season to better understand the associations between vaccine responses and protection against infection throughout the season.
RESULTS

Determining covariates that significantly influence antibody-boosting

For A(H1N1) vaccinating strains, our estimates suggest that from the covariates considered, only pre-vaccination HAI titre and vaccine history significantly influence subsequent HAI boosting (Figure 1, SI Figure 2 for posterior distributions of regression coefficients SI Figure 3 for marginal posterior distributions for all covariates) (Figure 1A). At pre-vaccination HAI titres of <1:10, 1:10, and 1:20, titres were predicted to rise 19.0-fold, 12.2-fold and 6.9-fold with Posterior Predictive Intervals (PPI) of 15.0–26.9, 10.1–16.0, and 5.8–8.8, respectively (Figure 1A). We also found that the expected titres did not rise above the four-fold threshold when pre-vaccination titres were 1:80 or higher. For vaccine history, those with no previous vaccines were associated with an 8.2 (95% PPI 6.8–10.5) fold boost, compared to a 4.2 (95% PPI 3.6–5.4) fold boost for those with two or more vaccines in the last five years (Figure 1B). There is weak evidence of an effect with the interaction term, suggesting that boosting remains high for infrequently vaccinated individuals independently of pre-vaccination HAI titre (Figure 1B). We also find that the waning rate of HAI titre is significantly associated with pre-vaccination HAI titre, with lower HAI titres experiencing faster waning rates.

Pre-vaccination HAI titre and vaccine history also strongly influence HAI boosting for A(H3N2) vaccinating strains (see SI Figure 4 for posterior distributions of regression coefficients and SI Figure 5 for marginal posterior distributions for all covariates). Lower HAI pre-vaccination titres are associated with higher boosting, with a pre-vaccination HAI titre of <1:10, 1:10, and 1:20 causing an estimated 6.1 (PPI 5.2–7.5), 4.4 (PPI 4.0–5.2), and 4.1 (PPI 3.7–4.7) peak fold-increase in HAI titre respectively (Figure 1A). Titres equal to or exceeding 1:40 fail to boost above the four-fold threshold. For vaccine history, we find a significant association with the interaction term with pre-vaccination HAI titre but we do not find a significant association with the intercept term, suggesting that the magnitude of the difference in boosting between levels of vaccine history diminishes as pre-vaccination titre increases (Figure 1C). At titres of <1:10 those with 0 previous vaccines in the last five years have an 8.5 (95% PPI 7.0–11.1) fold boost, compared to a 5.6 (95% PPI 4.7–6.8) fold boost for those with five vaccines in the last five years (Figure 1B). We also find that the waning rate of HAI titre is significantly associated with pre-vaccination HAI titre, with lower HAI titres seeing faster waning rates.

For A(H3N2) circulating strains, we also find pre-vaccination HAI titre and vaccine history strongly influence HAI boosting (Figure 1A, see SI Figure 6 for posterior distributions of regression coefficients and SI Figure 7 for marginal posterior distributions for all covariates). Boosting is attenuated compared to vaccine strains, with all pre-vaccination titre levels of circulating strains resulting in a peak boost below a four-fold rise. We also find the waning of HAI titre is not significantly influenced by the pre-vaccination HAI titre (Figure 1A). For all strain types in Figure 1B-D, we plot the outcome variability of the underlying data (squares) to highlight the large variability in outcome compared to the inferential uncertainty. We find large differences in peak HAI boosting between seasons across all three vaccine types. For A(H1N1) vaccinating strains, 2021 has significantly higher HAI boosting than other years (8.1-fold vs. 3.2 and 3.1). For A(H3N2) vaccinating strains, we find 2022 has significantly higher boosting than 2020–2021 (4.1 vs. 2.6 and 2.7) with a similar observed trend for A(H3N2) circulating strains, albeit with attenuated boosting compared to A(H3N2) vaccinating strains (SI Figures 2, 4, 6).
Relating aggregated antibody kinetics to seroconversion and protection

Using our estimates of antibody boosting and waning, we generated predictions for antibody trajectories aggregated across different levels pre-vaccination titre and vaccine history calculated for up to 220 days post-vaccination for each strain type Figures 2A–C. To understand how these kinetics influence population-level seroconversion and protection, we estimate the posterior predictive interval of the duration of i) seroconversion (a 4-fold rise from their pre-vaccination HAI titre) and ii) protection (HAI titre equal to or exceeding 1:40, which is associated with a 50% reduction in risk of infection[24]). For A(H1N1) vaccinating strains, we find the duration of seroconversion for those with pre-vaccination titres of <1:10, 1:10, and 1:20 is 277 (95% PPI 231–319), 250 (95% PPI 206–289), and 231 (95% PPI 183–276) days for individuals with less than two vaccines in the last five years (infrequently vaccinated) and 224 (95% PPI 185–264), 185 (95% PPI 147–223), and 136 (95% PPI 95–174) days for individuals with two or more vaccines in the last five years respectively (Figure 3). Similarly, for A(H3N2) vaccinating strains, the duration of seroconversion is greater in the infrequently vaccinated group (260 (95% PPI 182–354), 108 (95% PPI 65–153) and 73 (95% PPI 35–115) days for <1:10, 1:10, and 1:20) compared to the frequently vaccinated group (158 (95% PPI 100–227), 42 (95% PPI 9–77), and 17 (95% PPI 0–47) days for <1:10, 1:10, and 1:20) (Figure 3). We see similar trends for the duration of protection against disease, with those with lower pre-vaccination HAI titres and infrequently vaccinated seeing longer duration of protection when compared to frequently vaccinated individuals with higher pre-vaccination titres. Indeed, when considering the marginal effect of vaccination history, we see that for A(H1N1) and A(H3N2) vaccinating strains, populations who are infrequently vaccinated could see a mean of between 50 to 140 days longer duration of seroconversion and protection against influenza disease when compared to those who are frequently vaccinated. For A(H3N2) circulating strains, those with low pre-vaccination titres of <1:10 or 1:10 see little to no protection from vaccination as boosting is so attenuated that the kinetics do not reach an HAI titre of 1:40 and instead, those with pre-vaccination HAI titres between 1:20 and 1:40 benefit most from vaccination assuming a protective threshold of 1:40.

The practical significance of the inferred statistical model

The latent antibody trajectories aggregated across covariate levels of pre-vaccination titre and infection history from the models suggest significant differences in the duration of protection and seroconversion. However, the large observed individual-level outcome variability means it’s difficult to ascertain if these aggregated differences in antibody kinetics translate to a meaningful difference in protection from disease when we consider individual-level variation across a whole cohort. To assess this, we use the individual-level fits from the regression model and determine how long each individual’s post-vaccination HAI titre remains high enough to be four-fold higher than the pre-vaccination HAI titre, i.e. seroconverts and/or is protected from infection (Figure 4). For A(H1N1) vaccinating strains, we find a significant difference (according to a Kolmogorov-Smirnov test) between the empirical distributions for the duration of protection and seroconversion between frequently and infrequently vaccinated populations across most pre-vaccination titre levels. For A(H3N2) vaccinating strains, we find for pre-vaccination HAI titres less than or equal to 1:40 there is also a significant difference in the distribution for the duration of protection and seroconversion between frequently and infrequently vaccinated populations. This suggests for vaccinating strains, that vaccination history has a practical significance on the duration of protection from infection and seroconversion. However, for A(H3N2) circulating strains, there is no significant difference between the distributions between frequently and infrequently vaccinated for most pre-vaccination HAI titres, suggesting that vaccine history has no practical significance on protection and seroconversion.
Comparing the posterior predictive distributions of individual-level dynamics between strain types between individuals, we see that boosting and waning estimates between A(H3N2) and A(H1N1) vaccinating strains are not strongly correlated, but boosting to H1N1 is significantly higher. Boosting and waning between the A(H3N2) vaccinating and A(H3N2) circulating strains are slightly correlated, though A(H3N2) circulating strain boosts are generally attenuated (SI Figure 8).
DISCUSSION

We found that pre-vaccination HAI titre and vaccine history significantly influenced post-vaccine HAI-titre antibody boosting. This result holds for antibodies against both A(H1N1) and A(H3N2) vaccine strains, as well as against A(H3N2) circulating strains. We used model-predicted antibody trajectories to estimate the expected duration of protection (HAI titre ≥1:40) and seroconversion (≥4-fold rise) and found that those with lower pre-vaccination HAI titres experience longer durations than those with higher pre-vaccination titres. In addition, our statistical models suggest that infrequently vaccinated populations can experience a mean of 50-150 days longer duration of seroconversion and protection against influenza compared to frequently vaccinated populations. These observations result in meaningful differences in the duration of protection from disease when we consider individual-level variation across a whole cohort for vaccinating strains. However, for circulating A(H3N2) strains, the observed significance of vaccination history on the duration of protection and seroconversion in the statistical model does not translate to a practical significance when considering outcome variability.

Our observation that pre-vaccination titres significantly influence HAI boosting is consistent with previous seroepidemiological studies.[6,8–11,17,25] These studies suggest individuals with lower pre-vaccination titres see higher fold rises (e.g. 16 fold for <1:10[17]) compared to those with higher pre-vaccination titres, with four-fold rises becoming uncommon after pre-vaccination titres of 1:40/1:80, and no titre boost seen (ceiling effect) at very high HAI titres of 1:320 or 1:640. [8,17,25] This trend is consistent across influenza subtypes and between HAI titres and micro-neutralisation assays. Previous models which fit individual-level antibody trajectories as a latent parameter have also considered the influence of pre-exposure HAI titres on HAI boosting. Ranjeva et al.[26] found that post-infection antibody trajectory models were improved by assuming that (i) boosting decreases with increasing pre-infection titre and (ii) that there is limited seroconversion when pre-infection titres exceed 1:80. Similarly, a model by Hay et al.[27], which builds antibody trajectories given different sequences of influenza exposure types in ferrets, also found that including pre-vaccination HAI titre-dependent boosting leads to better model fits than without. The framework in this study augments the titre-dependent boosting mechanisms outlined in these previous models in two ways. First, instead of a linear relationship, we consider a flexible non-parametric relationship between log pre-vaccination titre and log fold-rise, allowing for more complex dynamics relating the two to be described. Our fitted relationship suggests an almost linear decrease in log fold-rise and log pre-vaccination HAI titre increases until a pre-vaccination titre of 1:640, after which there is no fold-rise. The second way we extend previous models, considering the influence of pre-vaccination titre, is by incorporating a hierarchical Bayesian regression structure, allowing for the quantification of age, sex, and vaccination history on vaccine-induced antibody kinetics. Therefore, after calculating the marginal distributions, we reduce potential confounding and allow for more accurate descriptions of covariate-specific antibody trajectories.

The influence of vaccine history on post-vaccine antibody kinetics has also been observed in previous seroepidemiological studies. [19,28–30] These studies found that individuals recently vaccinated with influenza experience attenuated boosting compared to those without recent vaccination. However, these studies often report higher pre-vaccination HAI titre rates, suggesting that the attenuated boost might be confounded by attenuation in boosting due to pre-vaccination titre.[30] We, therefore, focus comparisons to our study with studies which explicitly consider the influence of pre-vaccination HAI titre and the impact of vaccine history and antibody kinetics.[6,31] Beyer et al.[31] used 1,119 paired serum samples from 681 individuals to estimate post-vaccination HAI titre in a multiple linear regression model. Across all dependent variables (pre-vaccination titre,
vaccine, age, and gender), they found that increasing pre-vaccination titre and vaccine history had a significant negative effect on post-vaccination HAI titre boosting. In contrast, age and gender did not significantly influence titre boosting across influenza subtypes. Wu et al.[6] used samples from 1,300 individuals and fit a multiple linear regression model to predict seroconversion. They found that increasing pre-vaccination HAI titre and vaccine history were the two most important predictive covariates for seroconversion rates, with age, body mass index (BMI), sex, race, and comorbidities having little importance.[6] These observations align with the results of our models; however, we extended these frequentist linear models by implementing a Bayesian framework with partial pool effects across covariates and allowing for interaction terms between pre-vaccination titre and other covariates. We found that vaccine history significantly influences boosting, but only as an interaction term with pre-vaccination titre for A(H3N2) vaccinating strains. Therefore, the degree of influence vaccination history has on titre-boosting changes depends on pre-vaccination HAI titre. This observation could explain the variable impact that vaccine history has on titre boosting, particularly in studies which do not account for pre-vaccination HAI titre.[19,28,29]

A limitation of this model is that the post-vaccination antibody kinetics trajectories are a simple representation of key dynamics (a variable boost with variable linear wane) compared to previous modelling efforts, which use piecewise linear or exponential functions.[26,27,32] We chose this kinetics structure for several reasons. First, it reduces the number of parameters needed in the hierarchical model structure simplifying the fitting process. The latent parameters, peak titre boosting and wane rate per day are also easily interpretable and don’t require complex post-processing to find informative metrics. Second, it would be challenging to infer these complex individual-level trajectories robustly, given the dataset, as bleed dates are constrained to values around 14- and 180-days post-vaccination. Cohort studies with multiple bleeds for the first few weeks following vaccination would help better inform complex initial antibody kinetics. The longer-term dynamics of antibody kinetics suggest a plateauing effect to a set point.[32] As we infer a linear structure in our post-vaccination kinetics, we only infer trajectories up to 365 days post-vaccination to help prevent incorrectly estimating the duration of protection and seroconversion at long time scales. Future models could extend this framework by using more complex antibody kinetics structures, such as in-host B-cell kinetics and multiple antibody production sites (e.g. plasmablasts and plasma cells). This can be done implicitly by assuming antibody kinetics follow power function decay functions[33] or by explicitly modelling antibody secretion using systems of Ordinary Differential Equations (ODEs) which relate antigen-secreting cells and antibody titres.[34]

The statistical model without an individual-level variation model fails to explain the outcome variability in the underlying data, meaning predicting individual patterns of HAI boosting using pre-vaccination titre and vaccine history remains challenging. There are augmentations to the model which could help explain some existing outcome variability: most notable is the effect of prior influenza of infection on antibody kinetics.[23] This was not included in this model because there was a lack of information on infection history before 2020. (It is worth noting that there was little influenza virus circulation in Australia between 2020–2021 due to the COVID-19 restrictions, so infection rates in our cohort during that period are likely nil.) The lack of infection history combined with unusual influenza dynamics over this period may help explain some of the outcome variability the model failed to capture. However, there are processes which drive outcome variability that this model cannot consider. This includes variability from other in-host immune processes, such as innate immunity, cellular immunity, genetic polymorphism and epigenetic factors.[35,36]

This study finds that the A(H3N2) circulating strains antigenically drifted from the A(H3N2) vaccinating strains have notably muted HAI boosting when stratified by pre-vaccination titre and vaccine history. The degree of this attenuation in boosting is such that the influence of vaccine
history no longer results in significant differences in outcome variability for many pre-vaccination HAI titres. The observed differences in practical significance in seroconversion between the vaccination strains and circulating strains could explain the seasonal variability of the influence of vaccine history on observed vaccine effectiveness.[37,38] Future model development will incorporate the influence of the antigenic distance between successive vaccinating and circulating strains into the antibody kinetics framework. This could be done by using existing metrics of antigenic advance or considering the influence of vaccination on boosting HAI titres across various strain landscapes.[39] This would allow the exploration of the antigenic distance hypothesis, which suggests that the efficacy of vaccines is muted in a vaccinated individual if a circulating strain is antigenically distant from the previous two antigenically similar vaccine strains.[40]

This study provides robust statistical inference on the host-specific driving forces behind influenza HAI titre kinetics within a single Bayesian framework. This flexible Bayesian model provides the quantifiable non-parametric relationship between pre-vaccination HAI titre and prior vaccination history and established heuristics such as seroconversion and protection. After accounting for pre-vaccination titre, we show that vaccine history significantly influences the duration of seroconversion and protection against influenza, both with the statistical framework and within the outcome variability with individual variation. We hope future seroepidemiological studies and antibody kinetics frameworks consider the importance of including these two essential covariates to help better understand the processes behind observed serological data.
METHODS AND MATERIALS

Overview of the cohort study

We consider serological data from an ongoing longitudinal cohort study conducted in Australia.[20] This study commenced recruitment in 2020 and followed an open cohort of healthcare workers (HCW) recruited from hospitals in 6 cities (Brisbane, Newcastle, Sydney, Melbourne, Adelaide, and Perth). HCW could be staff, students or volunteers and were not required to have direct patient contact because vaccination in these hospitals was free to all personnel regardless of risk. Upon enrolment, participants were asked to provide demographic information (sex, age), and vaccination history. Recruited HCW were given a quadrivalent influenza vaccine with a strain composition consistent with the WHO-recommended vaccine strains for that season (See Table S1 for vaccine strains). Sera were collected within two weeks before vaccination and two times after, a mean of 19 (range 8–63) and 166 (95% CI 66–231) days post-vaccination. There were 4,958 sera samples collected from 2020-2022 used for this analysis, representing a period during which influenza did not circulate in Australia (2020-2021) [21] and resumed circulation (2022).[22] These 4958 serum samples came from 1,646 HCW, of which the majority of samples (3460/4958) were from frequently vaccinated HCWs (vaccinated in 5/5 seasons before enrolment) and 237/4958 samples were from infrequently vaccinated individuals (not vaccinated in 5/5 seasons before enrolment). An overview of the characteristics of this cohort is given in Table 1.

Antibody HAI titre

Sera were tested in HAI against relevant egg-grown influenza vaccine reassortant (IVR) strains and equivalent cell-grown viruses as follows: A(H1N1) A/Brisbane/02/2018 IVR-190, A/Victoria/2570/2019 IVR-215; A(H3N2) A/South Australia/34/2019, A/Hong Kong/2671/2019 IVR-208, A/Darwin/9/2021, A/Darwin/726/2019, A/Darwin/6/2021. Sera were treated with receptor-destroying enzyme (RDE, Denka Seiken) and adsorbed with a mixture of guinea pig and turkey red blood cells (rbc) to remove non-specific inhibitors. Sera were serially diluted two-fold, ranging from 1:10 to 1:10240. Viruses were diluted to 4 HA units. Assays were performed as previously described (Auladell et al., 2021[23]) using guinea pig red blood cells for A(H3N2) virus titrations and turkey red blood cells for A(H1N1) virus titrations. HI titres were imaged and read using an automated hemagglutination analyser (CypherOne, InDevR) with manual reads for Turkey rbc.

Description of response and covariates

The covariates for the model were chosen so that they were comparable across all cohorts. These covariates included pre-vaccination HAI titre (10 groups: <1:10, 1:10, 1:20, 1:40, 1:80, 1:160, 1:320, 1:640, 1:1280, >1:2560), age groups (5 groups: <30, 30–39, 40–49, 50–59, 60+ years), gender (3 groups: male, female, other), study site (6 groups: Adelaide, Brisbane, Melbourne, Newcastle, Perth, Sydney), study year (2020, 2021, and 2022) and the number of influenza vaccines in the last five years (vaccine history) (6 groups: 0, 1, 2, 3, 4, 5). We calculated the individual-level fold-rise in antibody titre relative to the pre-vaccination HAI titre for the response variable, at time t. The fold-rise in antibody titres was converted to a log. scale throughout the analysis.

Overview of Bayesian model structure
We developed a Bayesian model that estimates each participant's antibody response—as measured by HAI titre—at time t post-vaccination. The post-vaccine antibody kinetics model assumes an instantaneous boost immediately after vaccination, followed by a linear wane. Two latent parameters describe this model: the peak antibody boosting (log scale) and the daily rate of antibody decline (log scale). The peak antibody boost was calculated using linear regression with covariates sex, age group, study site, vaccine history, and pre-vaccination HAI titre. Due to the complexity of the immunological mechanisms that relate to pre-vaccination HAI titre and boosting, fitting using a non-parametric form such as a Gaussian Process prior allows for a flexible non-linear association. Further, as the extreme values of the HAI titre values have a low number of samples, a Gaussian process prior will inform these titre values with low power from similar values, giving a more robust estimate than may come from a random-effects model (see SI methods). The other covariates were categorical and have a partial pooling effect. We also included the possibility of a product term between pre-vaccination HAI titre and the other covariates to understand the interactions between titre and age/sex/vaccination history. The daily rate of antibody decline also followed a linear regression but we only considered the impact of pre-vaccination titre values which we assumed also follows a Gaussian process prior. The individual-level effects are added to both the boosting and waning parameters and allow the model to identify unusual individual-level boosting effects that the structure of the population-level model may fail to capture. The model equations, schematics and further details are in SI Methods. We fit the Bayesian regression model to three subsets of HAI data from the HCW dataset described above.

To determine which covariates are significantly associated with HAI boosting, we calculated the marginal posterior distribution of peak HAI boosting for covariates: pre-vaccine titre, age group, vaccine history, gender, and site. For a given covariate, if there is a significant difference in the marginal posterior distribution between levels (i.e. 95% credible interval (Cri) do no overlap), then we assumed that the covariate has a significant association with HAI boosting and we stratified by this covariate in further analyses. We also calculated the marginal posterior distribution for the covariates with interaction terms with pre-vaccination titre (age group, vaccine history, gender, site), to determine the influence of the interaction terms. We considered an interaction term covariate to be significant if >95% of the marginal posterior distribution is above or below 0 for at least one level of pre-vaccination titre. As we are interested in estimating the mean effects over multiple seasons, we do not stratify by study year, even if the marginal posterior distribution across study year levels is significant. For waning, where we only considered the influence of pre-vaccination HAI titre, we similarly defined the association as significant if the 95% Cri of the marginal posterior distribution between the levels of pre-vaccination HAI titre do not overlap.

Overview of three influenza viral strains

Using the three years of cohort data, we applied the model to two influenza vaccine viruses and one predominant circulating virus each year to help understand if there are consistent statistical associations between host factors and vaccine-induced HAI boosting for influenza virus strains across different study sites and seasons. First, to understand the vaccine-induced antibody kinetics response to vaccination strains, we fit the model to HAI titre to A(H3N2) egg-grown vaccine viruses A/South Australia/34/2019, A/Hong Kong/2671/2019, and A/Darwin/09/2021 for 2020, 2021 and 2022 respectively (A(H3N2) vaccinating strains). Similarly, for A(H1N1), we fit the model with HAI titres to egg-grown strains; A/Brisbane/02/2018, A/Victoria/2570/2019, A/Victoria/2570/2019 for 2020, 2021 and 2022 respectively (A(H1N1) vaccinating strains). To help understand how vaccine-induced antibody kinetics respond to antigenically-evolved viruses, we also fit the model to HAI titre for viruses that circulated after vaccination. For this, cell-grown A(H3N2) viruses representing the seasons’ predominant circulating genetic group for 2020, 2021 and 2022 were used, namely A/South
Australia/34/2019 (3C.2a.1b.2), A/Darwin/726/2019 (3C.2a.1b.1b), A/Darwin/6/2021 (3c2a1b.2a.2) respectively (A(H3N2) circulating strains).

Implementation

All data cleaning, posterior inference, and plotting were performed in R (v.4.0.1) through VScode. The fitting of the Bayesian regression model was sampled through Hamiltonian Monte Carlo via cmdstanr (v. 0.5.3). A GitHub repository with all the code needed to reproduce this work is given at https://github.com/dchodge/ab_boosting_published. Data for the study is available upon request from the corresponding author.

Model Validation

To assess the fit of the Bayesian model, we compare the model-fitted HAI titre boost on the day of bleed with the HAI titre data used to fit the model. We found for all three groups of viruses (A(H1N1) vaccine, A(H3N2) vaccine, and A(H3N2) circulating), that the HAI titre boosts values were well correlated by the model fitted values with 99.3%, 99.1% and 99.2% of model estimates within a one-fold-change unit of the data for strain types respectively (SI Figure 1). If the fold-rise in the data exceeded 16, the model consistently underestimated the HAI titre boosting. However, titre fold-rises of this magnitude were uncommon, with 6.5%, 2.6%, and 1.9% of samples seeing a 32-fold rise in titre or higher for the three influenza strain types.

Ethics Approval

The Royal Melbourne Hospital Human Research Ethics Committee of Royal Melbourne Hospital gave ethical approval for study protocol and protocol addendums for follow-up of COVID-19 vaccinations and SARS-CoV-2 infections (HREC/54245/MH-2019). LSHTM Observational Research Ethics Committee of London School of Hygiene and Tropical Medicine gave ethical approval for the use of this data for analysis (ref 22631).
Figure 1. Bayesian marginal posterior distribution for covariates as a measure of inferential uncertainty. (A) The marginal posterior distributions of boosting and waning stratified by pre-vaccination HAI titre for the three vaccine types. The point markers are the mean value of the posterior, and the smaller marker represents a posterior sample. (B) The marginal posterior distribution of boosting stratified by pre-vaccination HAI titre and the number of previous vaccines for H1N1 vaccinating strains. (C) The marginal posterior distribution of boosting stratified by pre-vaccination HAI titre and the number of previous vaccines for H1N1 vaccinating strains. For both (B) and (C), the point marker indicates the posterior mean and the uncertainty represents a 50% and 95% posterior predictive interval (thick and line respectively).
Figure 2. **Expectation of post-vaccination kinetics from marginal posterior distributions of latent parameters.** (A) The mean post-vaccine A(H1N1) HAI boosting (fold-rise) to vaccinating strains stratified by pre-vaccination HAI titre and vaccine history (infrequently vaccinated and frequently vaccinated). (B) The mean post-vaccine A(H3N2) HAI boosting (fold-rise) to vaccinating strains.
stratified by pre-vaccination HAI titre and vaccine history (infrequently vaccinated and frequently vaccinated). (C) The mean post-vaccine A(H3N2) HAI boosting (fold-rise) to circulating strains stratified by pre-vaccination HAI titre and vaccine history.
Figure 3. **Post-vaccination duration of seroconversion and protection from inferred statistical model.** (A) The posterior predictive distribution for the duration post-vaccination above i) 4-fold rise (top) and ii) HAI titre of 1:40 for different vaccine histories. (B) The posterior predictive distribution for the difference in duration post-vaccination above i) 4-fold rise (top) and ii) HAI titre of 1:40 between the two vaccine histories.
PPD is posterior predictive interval.
Figure 4. Post-vaccination duration of seroconversion and protection when considering outcome variability. (A) Individual-level estimates for the duration post-vaccination above the 4-fold rise for different levels of pre-vaccination titre and vaccine history. (B) Individual-level estimates for the duration post-vaccination above an HAI titre of 1:40 for different levels of pre-vaccination titre and vaccine history. (C) Effect size from Kolmogorov-Smirnoff test to assess the significant of the difference between the two vaccine history levels for the duration post-vaccination above a heuristic.
<table>
<thead>
<tr>
<th>H1N1 vaccinating strains</th>
<th>H3N2 vaccinating strains</th>
<th>H3N2 circulating strains</th>
</tr>
</thead>
<tbody>
<tr>
<td>(N=1036)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pre-vaccine HAI titre</td>
<td>118 (11.4%)</td>
<td>215 (11.4%)</td>
</tr>
<tr>
<td></td>
<td>65 (6.3%)</td>
<td>303 (16.1%)</td>
</tr>
<tr>
<td></td>
<td>163 (15.7%)</td>
<td>350 (18.5%)</td>
</tr>
<tr>
<td></td>
<td>189 (18.2%)</td>
<td>445 (23.6%)</td>
</tr>
<tr>
<td></td>
<td>240 (23.2%)</td>
<td>318 (16.9%)</td>
</tr>
<tr>
<td></td>
<td>158 (15.3%)</td>
<td>201 (10.7%)</td>
</tr>
<tr>
<td></td>
<td>87 (8.4%)</td>
<td>44 (2.3%)</td>
</tr>
<tr>
<td></td>
<td>14 (1.4%)</td>
<td>9 (0.5%)</td>
</tr>
<tr>
<td></td>
<td>2 (0.2%)</td>
<td>2 (0.1%)</td>
</tr>
<tr>
<td></td>
<td>0 (0%)</td>
<td>0 (0%)</td>
</tr>
<tr>
<td>Sex</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>854 (82.4%)</td>
<td>1597 (84.6%)</td>
</tr>
<tr>
<td>Male</td>
<td>182 (17.6%)</td>
<td>286 (15.2%)</td>
</tr>
<tr>
<td>Other</td>
<td>0 (0%)</td>
<td>4 (0.2%)</td>
</tr>
<tr>
<td>Age group (yrs)</td>
<td></td>
<td></td>
</tr>
<tr>
<td><30</td>
<td>196 (18.9%)</td>
<td>342 (18.1%)</td>
</tr>
<tr>
<td>30-39</td>
<td>303 (29.2%)</td>
<td>541 (28.7%)</td>
</tr>
<tr>
<td>40-49</td>
<td>298 (28.8%)</td>
<td>537 (28.5%)</td>
</tr>
<tr>
<td>50-59</td>
<td>220 (21.2%)</td>
<td>440 (23.3%)</td>
</tr>
<tr>
<td>60+</td>
<td>19 (1.8%)</td>
<td>27 (1.4%)</td>
</tr>
<tr>
<td>Study site</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adelaide</td>
<td>75 (7.2%)</td>
<td>130 (6.9%)</td>
</tr>
<tr>
<td>Brisbane</td>
<td>138 (13.3%)</td>
<td>304 (16.1%)</td>
</tr>
<tr>
<td>Melbourne</td>
<td>97 (9.4%)</td>
<td>244 (12.9%)</td>
</tr>
</tbody>
</table>
Table 1. Baseline characteristics of the study populations stratified by covariates for each of the three vaccine types where \(N \) is the number of samples.
REFERENCES

COI
David: None
Annette Fox: reports receiving study funding from Sanofi and payments to her research group from Evidera Inc for consulting work.
Stephany: None
Louise: None
Yi: None
Jessica: None
Sheena Sullivan: Reports consulting for CSL Seqirus, Moderna, Pfizer, and Evo Health.
Adam Kucharski: None

Author contributions:

DH: Conceived and designed the study. Performed the formal analysis and development of the methodology and software. Prepared and created the visualisation and wrote, reviewed and edited the manuscript.

SSO: Involved in the preparation and analysis of biological as well as data collection, analysis, and curation.

LC: Involved in the preparation and analysis of biological as well as data collection, analysis, and curation

YL: Involved in the preparation and analysis of biological as well as data collection, analysis, and curation.

JH: Involved in the preparation and analysis of biological as well as data collection, analysis, and curation.

AF: Conceived the study and was involved in the preparation and analysis of biological as well as data collection, analysis, and curation. Reviewed and edited the manuscript.

SS: Conceptualisation and supervision. Reviewed and edited the manuscript.

AK: Conceptualisation and supervision. Reviewed and edited the manuscript.

FUNDING
This work was supported by the US National Institutes of Health (grant # R01AI41534, SGS, SF, AJK) and by the US Centers for Disease Control and Prevention (contract #HHSD2002013M53890B and #NMR-9619/CDC13FED1310208/NMR9864/CDC16FED1612328, AJK). AJK was also supported by a Sir Henry Dale Fellowship jointly funded by the Wellcome Trust and the Royal Society (grant Number 206250/Z/17/Z).