Right-to-Left Shunt-associated Brain Functional Changes in Migraine: Evidences from a Resting-state FMRI Study

Wenfei Cao1, Lei Jiao1, Huizhong Zhou1, Jiaqi Zhong1, Nizhuan Wang2* and Jiajun Yang1*

*Correspondence:
Nizhuan Wang
wangnizhuan1120@gmail.com
Jiajun Yang
sd_yangjj@sumhs.edu.cn

1Department of Neurology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Xuhui District, NO.600 Yishan Road, Shanghai 200233, China.
2School of Biomedical Engineering, ShanghaiTech University, Pudong District, NO.393 Middle Huaxia Road, Shanghai 201210, China.

Abstract

Background: Migraine, a neurological disorder under perpetual investigation, has an elusive etiology. An potential association with Right-to-Left Shunt (RLS) exists, yet the precise nature of this connection remains unclear. This study employs the resting-state functional magnetic resonance imaging (rs-fMRI) technique to examine brain functional differences between the migraine patients with and without RLS, aiming at exploring RLS associated alterations in functional segregation and integration.

Methods: This study included 32 migraine patients (14 patients with RLS and 18 without RLS), each undergoing rs-fMRI data acquisition. The amplitude of low-frequency fluctuation (ALFF) was employed to investigate functional segregation. Functional connectivity (FC) analysis was conducted to explore the functional integration across distinct brain regions. Graph theory-based network analysis was utilized to assess functional networks in migraine patients with RLS. Pearson correlation analysis further explored the relationship between RLS severity and various functional metrics.

Results: Compared with migraine patients without RLS, migraine patients with RLS exhibited a significant increase in the ALFF in the left middle occipital and superior occipital gyrus; As to FC, the reduced connectivity between the left rolandic operculum and the right middle cingulate gyrus was observed in migraine patients with RLS; Based on the brain networks analysis, migraine patients with RLS displayed higher values of the normalized clustering coefficient and greater betweenness centrality in specific regions, including the left precuneus, right insula, and right inferior temporal gyrus. Further, the study found positive correlations...
between ALFF values in the temporal lobes, thalamus, left middle occipital, and superior occipital gyrus and RLS severity. Conversely, negative correlations emerged between ALFF values in the right inferior frontal gyrus, middle frontal gyrus, and insula and RLS grading. Finally, the study identified a positive correlation between angular gyrus betweenness centrality and RLS severity.

Conclusion: RLS-associated brain functional alterations in migraine consisted of local brain regions, connectivity, and networks involved in pain conduction and regulation did exist in migraine with RLS.

Keywords Migraine, Right to left shunt, Functional magnetic resonance imaging, Amplitude of low-frequency fluctuation, Functional connectivity, Brain network

1. Introduction

In the context of International Classification of Headache Disorders, 3rd edition (ICHD-3) (Arnold M, 2018), migraine is characterized by specific attributes, including unilateral localization, moderate to severe intensity, recurrent episodes, pulsatile headache, and a duration lasting for 4–72 hours. Moreover, it may present associated symptoms such as nausea, vomiting, photophobia, phonophobia, and others. Migraine is a pervasive and debilitating condition that exerts adverse effects on various aspects of individuals’ lives, encompassing marital relationships, parenting responsibilities, emotional well-being, occupational performance, and overall daily health (Buse DC et al., 2019). This intricate disorder can be induced by a variety of factors, including physical exertion, sleep irregularities, dietary choices, meteorological variations, emotional fluctuations, among others (Chądzyński P et al., 2019; Moon HJ et al., 2017; Fernández-de-Las-Peñas C et al., 2017). Nonetheless, the comprehensive pathophysiological underpinnings of migraine remain partially elucidated. An increasing body of research suggests the involvement of various mechanisms, encompassing cortical spreading depression (CSD), vascular alterations, neurogenic inflammation, release of vasoactive substance, disturbances in energy metabolism and genetic factors (Domitrz I et al., 2022; Goadsby PJ et al., 2019; Stanyer EC et al., 2021). In light of this multifaceted backdrop, factors exhibiting correlations with migraine comprise sleep disorders (Holland PR et al., 2018; Kim KM et al., 2019), dysbiosis of gut microbiota (Wen Z et al., 2019; Arzani M et al., 2020), levels of sex hormone (Warnock JK et al., 2017), and genetics (Hautakangas H et al., 2022; Sutherland HG et al., 2019). Furthermore, in recent decades, the association between RLS and migraine has been the subject of debate (Zhao QX et al., 2017; Takagi H et al., 2016).

RLS denotes an anomalous shunting pathway connecting the venous and arterial circulations, with the most prevalent etiology being the patent foramen ovale (PFO), accounting for 95% (Liu K et al., 2020). In clinical assessment of individuals suspected of having RLS, the initial diagnostic step commonly involves the use of contrast-enhanced transcranial doppler (cTCD), recognized for its high sensitivity. A meta-analysis from 2014 reported the sensitivity and specificity of cTCD to be
approximately 97% and 93% respectively (Zhang YS et al., 2021). The association between RLS and migraine stems from the pioneering work of Del et al., who initially disclosed a heightened prevalence of RLS among patients with migraine with aura when compared to healthy individuals (Del Sette M et al., 1998). Subsequent observational studies have consistently supported this association (Lip PZ et al., 2014; Tian DC et al., 2019; Zhao Q et al., 2021; Tang Y et al., 2022). Due to variations in prevalence, a plausible association between RLS and migraine has been suggested. The hypothesis posits that RLS may facilitate the passage of vasoactive substances such as 5-HT, nitric oxide, and kinin directly into the cerebral circulation, potentially triggering migraine attacks (Dalla Volta G et al., 2005; Wilmshurst, P et al., 2006). Moreover, the presence of RLS is implicated in the formation of microemboli, initiating cortical spreading depression (CSD), which, in turn, may activate the trigeminal neurovascular system, leading to headaches (Ashina, M et al., 2019; Sevgi EB et al., 2012).

We speculate that there may be differences in certain brain structures and functions between migration with RLS and without RLS. Recently, more and more neuroimaging evidences demonstrated that distinctions may exist in certain brain structures between individuals experiencing migraines with and without RLS. Specifically, research has focused on white matter hyperintensities (WMH) in cases associating migraine with RLS (Cao W et al., 2022). Several studies have reported notable variations in the prevalence, location, and volume of WMH between migraines with and without RLS (Park HK et al., 2011; Yoon GJ et al., 2012; Iwasaki A et al., 2017). Resting-state functional magnetic resonance imaging (rs-fMRI) is a widely used modality for examining the cerebral functional dynamics of patients under resting conditions. This approach offers notable advantages such as repeatability, ease of operation, and high spatial resolution (Vakamudi K et al., 2012). The analysis of rs-fMRI data encompasses various methods (Zang YF et al., 2012; Wang N et al., 2013; Wang N et al., 2012; Tang XY et al., 2017; Wang Z et al., 2014), broadly categorized into functional segregation and functional integration approaches (Lv H et al., 2018). Functional segregation exemplified by metrics amplitude of low-frequency fluctuation (ALFF), primarily concentrates on assessing the local functional characteristics of specific brain regions (Zou QH et al., 2008; Yu Q et al., 2021). Conversely, functional integration, represented by methods like functional connectivity (FC) and graph theory analysis, delves into the assessment of interregional functional interactions and, essentially, the holistic organization of the brain as an integrated network (Wang N et al., 2017; Wang N et al., 2015; Tang X et al., 2015; Tang XY et al., 2017; Wang N et al., 2018; Yan H et al., 2022; Sporns O 2018; Bullmore E et al., 2009). Numerous rs-fMRI studies have been conducted to elucidate the physiological underpinnings of migraine (Messina R et al., 2022). In particular, aberrant descending pain modulatory pathway prior to the migraine attack, abnormal thalamo-cortical and frontoparietal pathways involved in pain transmission and modulation have been observed in migraine individuals Nie W et al., 2021; Lim M et al., 2021; Mungoven TJ et al., 2022).

3
In this study, we posit a potential correlation between RLS and functional alterations in integration and segregation in individuals with migraines. To examine this hypothesis, the study meticulously explores RLS-associated brain functional aberrations in migraine individuals with and without RLS. The overarching goal is to unravel the underlying connection between RLS and migraines, contributing to a comprehensive understanding of this intricate interplay.

2. Material and methods

2.1. Participants

The cohort of migraine patients was meticulously assembled from the pool of outpatients seeking medical attention within the Department of Neurology at the Shanghai Sixth People's Hospital, which is affiliated with the Shanghai Jiao Tong University School of Medicine. All participants provided their explicit informed consent by signing the requisite agreement, signifying their willingness to participate in this study. Moreover, it is important to emphasize that this study received the formal approval of the Ethics Committee at the Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine.

In adherence to the inclusion criteria for migraine patients, the following prerequisites were established: (1) Conformance to the diagnostic criteria for migraine as stipulated in ICHD-3; (2) Age range of 14 to 70 years; (3) Inclusion in the study was contingent upon subjects being within the interval between migraine attacks.

Conversely, a series of stringent exclusion criteria were meticulously applied, including: (1) The presence of other primary and secondary headache disorders; (2) Concurrent manifestation of mental illnesses; hypertension, vascular/heart disease, and any major systemic disorders; (3) A history of substance addiction involving alcohol or drugs; (4) The presence of contraindications that rendered individuals unsuitable for MRI or cTCD examinations.

All the participants provided written informed consent to participate in the current study. The study was registered with Clinical Trial (ChiCTR2300067636) and obtained ethical approval from the Ethics Committee of Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (Approval No. 2022-KY-194(K)).

2.2 Data Acquisition

2.2.1. Demography and Clinical Data

Demographic data, comprising age, gender, body mass index (BMI), and educational history were meticulously acquired. Furthermore, a structured diagnostic interview was conducted to elicit comprehensive information concerning the patients' symptoms, including the presence or absence of migraine triggers, aura phenomena, the frequency and duration of migraine episodes, remission and exacerbation factors,
and any concomitant symptoms experienced. Notably, a visual analog scale (VAS) was employed to quantitatively gauge the severity of pain reported by the patients.

2.2.2 Contrast-enhanced Transcranial Doppler

All participants underwent a TCD examination, administered by skilled physicians to ascertain the presence of RLS. During this examination, the patients reclined in a supine position, and a three-way catheter was inserted into the left elbow vein to establish a venous access. Two 20 mL syringes were connected to the catheter, one containing a solution comprising 8 mL of physiological saline, 1 mL of air, and 1 mL of autologous blood. The contents of the two syringes were then rapidly interchanged to generate an air microbubble suspension. Subsequently, this microbubble suspension was promptly injected into the elbow vein. Simultaneously, ultrasonic monitoring of microembolic signals in the middle cerebral artery (MCA) was conducted using a transcranial Doppler ultrasound probe via the temporal bone window, with recordings lasting for 20 seconds. This examination was performed both at rest and during the Valsalva maneuver. The RLS was graded based on the maximum number of microemboli observed. Specifically, if 1-10 microbubbles (one side) were detected, it was categorized as a small RLS; if 11-20 microbubbles (one side) were observed, it was classified as a medium RLS. Moreover, if more than 20 microbubbles (one side) or curtain patterns were noted, it was designated as a large RLS (Zhang YS et al., 2021).

2.2.3 FMRI Data Acquisition

Initially, each subject underwent a comprehensive brain MRI examination encompassing various sequences, such as T1-weighted images (T1WI), T2-weighted images (T2WI), fluid attenuated inversion recovery (FLAIR) images, and diffusion-weighted imaging (DWI) images, with the final diagnosis being conferred by a qualified medical specialist. Any data presenting secondary intracranial lesions were subsequently excluded from the analysis, while fMRI data acquisition proceeded for those without such lesions. All MRI and fMRI scans were executed employing a 3.0T GE MRI scanner (SIGNA, GE Healthcare). Furthermore, participants were instructed to remain in an awakened state with their head securely immobilized, maintaining physical relaxation, and refraining from intentional cognitive activity throughout an 8-minute resting-state fMRI session.

The resting-state fMRI parameters of all participants in this study adhered to the following standards: repetition time (TR) =3000 ms, echo time (TE) =30 ms, field of view (FOV) =240 mm×240 mm, matrix =128×128, slice thickness =4 mm, flip angle =90°, comprising 38 axial slices arranged in parallel, with 160 time points acquired.

2.3 Data Preprocessing

Preceding data analysis, a sequence of preprocessing procedures and stringent quality control measures were meticulously executed on rs-fMRI data. These tasks were diligently carried out using the Data Processing and Analysis of Brain Imaging (DPABI) toolbox (version 6.1, http://rfmri.org/dpabi) based on MATLAB (The Math
Works, Natick, MA, USA) software, to remove the effects of data acquisition, physiological noise, and individualized variations in the subject's brain, as well as to ensure the confidence and sensitivity of the group-level analysis (Yan C et al.; 2016). Figure 1 specifies the detailed steps of preprocessing and its role.

![Diagram of preprocessing steps](image)

Fig. 1. Procedures of preprocessing. DICOM: Digital Imaging and Communications in Medicine. NIfTI: Neuroimaging Informatics Technology Initiative. MNI: Montreal Neurological Institute. FWHM: Full Width Half Maximum.

2.4. ALFF Analysis

Preceding the application of filtering, the ALFF was computed using the DPABI software (Yan C et al., 2016; Yan C et al., 2010), relying on the preprocessed dataset. This entailed the transformation of the time series data of an individual voxel into a frequency spectrum by means of the Fourier transform. Subsequently, the summation of amplitudes within the frequency range of 0.01-0.1 Hz was executed to derive the ALFF (Lv H et al., 2018; Zuo XN et al., 2010; Biswal B et al., 1995). This procedure was systematically applied to all voxels throughout the entire brain, thereby producing the comprehensive ALFF map representing the entire cerebral structure of the subject.

2.5. Network Construction and Analysis

Brain network construction and subsequent analysis were executed using the DPABI NET (version 1.1) toolbox. The anatomical automatic labeling (AAL) template (available at: http://www.gin.cnrs.fr/en/tools/aal/), a widely recognized brain atlas, was adopted to partition the entire brain into a total of 116 distinct brain regions (Tzourio-Mazoyer N et al., 2002). It is worth noting that 26 of these regions are located within the cerebellum. Consequently, only the 90 regions of interest (ROIs) within the cerebral cortex were chosen as nodes for network construction. The average time series of each ROI were extracted, and the Pearson's correlation coefficient between the average time series of each two ROIs was calculated, thus obtaining a 90×90 two-dimensional matrix to establish the brain functional network. Additionally, a range of sparsity settings, varying from 0.01 to 0.5, were applied to construct a brain-weighted network. This range ensured that a connection matrix involving all 90 nodes was encompassed within this specified sparsity range.

Complex-network (graph) analysis was performed using Brain Connectivity Toolbox (https://www.nitrc.org/projects/bct/) (Rubinov M et al., 2010) while the BrainNet viewer (https://www.nitrc.org/projects/bnv/) was utilized to display results.
(Xia M et al., 2013). Brain network topology analysis includes "small world" properties as well as node properties. In line with the prior literature (Yan CG et al., 2013), we computed each small-world property's value across 50 different sparsity levels. Furthermore, we determined the area under the curve (AUC) for each small-world metric within the sparsity range of 0.01-0.34, allowing the more sensitive alteration detection in small-world network of brain. Subsequently, we derived the values for the following small-world properties at each sparsity level: characteristic shortest path length (L_p), clustering coefficient (C_p), normalized clustering coefficient (γ), normalized characteristic shortest path length (λ), small-worldness (σ), local efficiency (E_{loc}), global efficiency (E_{glob}), degree centrality, betweenness centrality, and nodal efficiency (Yang H et al., 2021).

2.6. Statistical Analysis

Demographic characteristics, including age, gender, and years of education, and clinical features such as migraine duration, frequency, and VAS score, underwent rigorous statistical analysis utilizing Statistical Product and Service Solutions (SPSS) software (https://www.ibm.com/spss). Categorical variables were assessed with chi-square tests, and numerical variables were statistically evaluated through independent samples t-tests and non-parametric tests. A significance level of $p < 0.05$ indicated statistical significance.

Two-sample t-tests were conducted for ALFF in both groups, utilizing age and gender as covariates. In order to minimize the false-positive rates, a stringent correction for multiple comparison was applied at the clump level (voxel $p < 0.001$, cluster p-value < 0.05, corrected using GFR) in this study. The present study reveals the surviving corrected clumps. ALFF values were extracted from the migraine with RLS group for subsequent Pearson's linear correlation analysis with RLS grading. The statistical threshold was established at $p < 0.05$, with a requirement of a cluster size exceeding 60.

Two-sample t-tests were carried out to assess functional connectivity differences between the two groups, with a significance threshold set at $p < 0.001$. Furthermore, small-world properties (with a significance threshold at $p<0.05$) and nodal properties (with a significance threshold at $p<0.01$) were subjected to two sample t-tests, while accounting for age and gender as covariates. The surviving nodes were then reported. In all Pearson's linear correlation analyses in the current study involving RLS grading, the significance level was set at $p < 0.05$.

3. Results

3.1 General Characteristics and Clinical Features

The clinical and demographic data of all patients are presented in Table 1. No significant differences were observed between the two groups concerning gender, age, years of education, duration of migraine (years), frequency (in times per month) and...
VAS scores. In total, 32 patients were enrolled in this study, comprising 14 migraine patients with RLS and 18 migraine patients without RLS. Within the RLS group, five patients with large RLS, three had moderate RLS, and six showed mild RLS.

Table 1 Characteristics and clinical profiles of migraine patients with and without RLS.

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Migraine</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>With RLS (n=14)</td>
<td>Without RLS (n=18)</td>
</tr>
<tr>
<td>Sex, n%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>3 (21.43%)</td>
<td>1 (5.56%)</td>
</tr>
<tr>
<td>Female</td>
<td>11 (78.57)</td>
<td>17 (94.44%)</td>
</tr>
<tr>
<td>Age (years)</td>
<td>36.71 ± 6.62</td>
<td>41.56 ± 12.41</td>
</tr>
<tr>
<td>Years of education</td>
<td>13.71 ± 2.37</td>
<td>13.11 ± 4.01</td>
</tr>
<tr>
<td>Migraine duration (years)</td>
<td>12.71 ± 9.45</td>
<td>16.5 ± 12.49</td>
</tr>
<tr>
<td>Frequency (times/month)</td>
<td>3.69 ± 3.24</td>
<td>1.92 ± 1.46</td>
</tr>
<tr>
<td>VAS</td>
<td>8.11 ± 0.92</td>
<td>7.83 ± 1.83</td>
</tr>
</tbody>
</table>

RLS: Right-to-Left Shunt; VAS: Visual Analogue Scale

3.2. Differences in ALFF

The results demonstrated notably elevated ALFF in Occipital_Sup_L/Occipital_Mid_L (AAL3) regions ALFF in migraine patients with RLS in comparison to migraine patients without RLS (voxel p < 0.001, cluster p-value < 0.05, GFR corrected). Please refer to Table 2 and Fig. 2.

Table 2 Brain regions with significant ALFF differences between migraine patients with and without RLS.

<table>
<thead>
<tr>
<th>Brain regions (AAL3)</th>
<th>Cluster size</th>
<th>Cluster volume</th>
<th>MNI coordinates</th>
<th>Peak T</th>
</tr>
</thead>
</table>

Fig. 2. Differences in ALFF between migraine patients with and without RLS. The color red denotes increased ALFF in migraine patients with RLS compared to those without RLS. The corresponding color bar denotes the t-value. R: right; L: left.
3.3. Correlation of ALFF with RLS Degree

As illustrated in Fig. 3 and detailed Table 3, specific functional brain regions exhibited notable correlations with RLS classification. The bilateral temporal lobes (AAL3: Hippocampus_R, ParaHippocampal_R, Hippocampus_L, Temporal_Inf_L, Temporal_Sup_L), bilateral thalamus (AAL3: Thal_VL_R, Thal_VPL_R, Thal_VA_R, Thal_VL_L, Thal_Mdml_L, Thal_IL_L) and left occipital lobe (AAL3: Occipital_Mid_L, Occipital_Inf_L) displayed a significant positive correlation between ALFF and RLS classification (p < 0.05, number of cluster > 60). In contrast, ALFF in regions of right inferior frontal gyrus (AAL3: Frontal_Inf_Oper_R, Frontal_Inf_Tri_R, Frontal_Inf_Orb_2_R), bilateral middle frontal gyrus (AAL3: Frontal_Mid_2_R, Frontal_Mid_2_L) and bilateral insula (AAL3: Insula_L, Insula_R) exhibited a significant negative correlation with RLS classification (p < 0.05, number of cluster > 60).

Table 3 Correlation coefficients representing the relationship between ALFF and RLS degree in migraine patients with RLS.

<table>
<thead>
<tr>
<th>Predominant brain areas</th>
<th>Cluster voxels</th>
<th>Peak R value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Left occipital lobe</td>
<td>70</td>
<td>0.84</td>
</tr>
<tr>
<td>Left thalamus</td>
<td>88</td>
<td>0.858</td>
</tr>
<tr>
<td>Right thalamus</td>
<td>66</td>
<td>0.91</td>
</tr>
<tr>
<td>Left temporal lobe</td>
<td>105</td>
<td>0.84</td>
</tr>
</tbody>
</table>

MNI: Montreal Neurological Institute; AAL: Anatomical Automatic Labeling.

Fig. 3. Correlation maps illustrating the relationship between ALFF and RLS degree in migraine patients with RLS. Warm colors, such as red, denote a positive correlation, while cool colors, like blue, signify a negative correlation. The color bar denotes the R-value. R: right; L: left.
The preceding findings highlight the significance of ALFF differences between the two groups, with the most prominent distinctions observed in Occipital_Sup_L and Occipital_Mid_L (AAL3). Furthermore, the ALFF values in Occipital_Mid_L and Occipital_Inf_L (ALL3) exhibited a positive correlation with RLS classification. This may imply a substantial impact of RLS on the occipital lobe. To further corroborate this observation, we extracted the ALFF values from these distinct brain regions (Occipital_Sup_L and Occipital_Mid_L) in migraine patients with RLS and assessed their correlation with RLS grading. The results, illustrated in Fig. 4, indicated a positive correlation between the ALFF values of the Occipital_Sup_L and Occipital_Mid_L regions and RLS grading, with an R-value of 0.542 (p < 0.05).

Fig. 4. Correlation illustration between ALFF values in Occipital_Sup_L, Occipital_Mid_L regions and RLS degree. Each black dot denotes a sample. *P<0.05. ALFF: Amplitude of Low-frequency Fluctuation; RLS: Right to Left Shunt.

3.4. Functional Connectivity

Illustrated in Fig. 5, the migraine group with RLS exhibited a noteworthy reduction in functional connectivity within Roland_Opper_L and Cingulum_Mid_R (AAL), when compared to the migraine group without RLS (p < 0.001).
3.5. Small-world Property

The analyses of small-world properties revealed that both sets of data displayed σ greater than 1 and exhibited C_p values (λ close to 1) similar to the randomized network, as shown in Fig. 6. Consequently, both groups exhibited small-world properties in their functional brain networks. Furthermore, the AUC of γ in migraine patients with RLS group was significantly higher than that of the group without RLS ($p < 0.05$), as demonstrated in Fig. 7. However, the remaining indices, including σ, AUC, λ, E_{glob}, E_{loc}, C_p and L_p, did not exhibit significant difference between the two groups.
Fig. 7. Differences in network topological properties between migraine patients with and without RLS.

A Violin plots depict the distribution of mean γ AUC values, highlighting the contrast between migraine with RLS and without RLS.

B The bar graph displays the significant AUC values of γ between the two groups.

C γ values are shown across a density range spanning from 10% to 34%. Each point, accompanied by an error bar, represents the mean and standard deviation at specific density levels.
respectively. * denotes significant differences.

3.6. Nodal Properties

In comparison to control subjects, the migraine group with RLS exhibited significantly elevated nodal Betweenness centrality in the Insula _R_, Precuneus _L_, and Temporal _Inf_ _R_ (ALL) (p < 0.01), as demonstrated in Fig. 8. However, no significant disparities were found in nodal degree and nodal efficiency between the two groups.

![Brain regions with statistically significant difference in Betweenness centrality between the migraine groups with RLS and without RLS. The red spheres represent the brain nodes with increased betweenness centrality in migraine with RLS compared to migraine without RLS. R: right; L: left.](image)

Using RLS grading as the variable, and accounting for age and head movement coefficients as covariates, we employed the DPABI NET toolbox to investigate potential correlations between the brain topological metrics and RLS grading within the migraine patients with RLS group (p < 0.05). The results demonstrated that RLS grading is positively correlated with the betweenness centrality of Angular_R (AAL) (p < 0.01) (Fig. 9). However, none of the seven topologic small-world parameters including σ AUC, Y AUC, λ AUC, L_p AUC, C_p AUC, E_glob AUC, and E_loc AUC exhibited a significant correlation with RLS grading. Furthermore, no noteworthy correlation was observed between nodal degree and RLS grading.
4. Discussion

This pioneering study systematically investigates functional differences in the brain, focusing on regional function, interregional connectivity, and complex network properties in individuals with migraines, both with and without RLS, utilizing rs-fMRI. Our primary objective is to assess RLS-related functional alterations at both localized and global levels in individuals with migraines and RLS. Our findings indicate a significant increase in ALFF, particularly in the left middle occipital gyrus and superior occipital gyrus, within the RLS-positive group, with a positive correlation observed with RLS severity. Additionally, we note a noteworthy reduction in functional connectivity between the left rolandic operculum and the right middle cingulate gyrus in the RLS-positive group.

Employing graph-theoretic analysis, we determined that while both groups of migraine patients exhibited small-world network properties across the entire brain, the RLS-positive group displayed significantly higher values of γ. This suggests that certain nodal properties may have been locally altered. Correspondingly, significant differences in nodal betweenness centrality were identified between the two groups. Notably, right insula, left precuneus, and right temporal regions exhibited notably higher nodal betweenness centrality in migraine patients with RLS compared to those without RLS. Additionally, the betweenness centrality of the right angular gyrus exhibited a positive correlation with RLS severity.

4.1. ALFF Difference between Two Groups

ALFF, reflecting the intrinsic neural activity of the brain, serves as a valuable tool for assessing the functional attributes of specific disease-associated brain regions (Zang YF et al., 2007; Liu L et al., 2020; Wang S et al., 2023; Zhe X et al., 2023). Elevated ALFF values signify heightened spontaneous neural activity in the brain area, while reduced ALFF values indicate decreased spontaneous activity. A recent
investigation reported an increased detection rate of RLS in individuals experiencing migraines with visual aura, underscoring a robust correlation between RLS and visual aura (Khessali H et al.,2015). Furthermore, Tu Y et al. previously identified substantial functional connectivity anomalies involving the occipital cortex, precuneus, and thalamus in migraine patients through dynamic analysis of brain functional connectivity (Tu Y et al.,2019). In alignment with our current study, we uncovered augmented spontaneous activity in the middle occipital and superior occipital gyrus among migraine patients with RLS in comparison to those without RLS, with a notable correlation observed concerning the severity of RLS. Hence, we posit that the accumulation of microemboli and vasoactive substances, engendered by RLS, within the occipital lobe may be contributing to the observed alterations in spontaneous brain activity. This phenomenon may also elucidate the heightened likelihood of visual aura manifestation in patients with RLS.

The pain transmission pathway comprises three neuronal levels: peripheral primary neurons initially detect injurious stimuli and relay them via afferent fibers to interneurons. Subsequently, this information is conveyed through the spinothalamic tract and spinoreticular tract to tertiary neurons residing in the thalamus, the central sensory hub. Ultimately, the thalamus transmits the noxious signals to various regions of the cerebral cortex, including the bilateral insulae, prefrontal cortex, anterior cingulate cortex, and somatosensory cortex (Liu J et al., 2012; Baron R et al., 2010). The trigeminal vascular theory, stemming from this foundational model, currently serves as the predominant framework for investigating migraine mechanisms (Lee GI et al.,2020). At its core, this theory hinges on a three-tiered neuronal mechanism, encompassing the trigeminal ganglia (primary neurons), brainstem neurons (intermediate neurons), and thalamus (tertiary neurons). Ultimately, the thalamus dispatches nociceptive information to various regions within the cerebral cortex, including the auditory cortex, olfactory cortex, insular cortex, primary motor cortex, secondary motor cortex, periaqueductal gray matter, posterior subcortical cortex, parietal cortex, primary somatosensory cortex, secondary somatosensory cortex, primary visual cortex, secondary visual cortex, and more. This intricate interplay generates the sensation of pain (Khan J et al., 2021). In our present investigation, we observed significant correlations between RLS grading and ALFF in the thalamus, as well as the occipital, prefrontal, and insular cortex regions. Importantly, several of these associations exhibited positive correlations. These findings signify that RLS may influences the pain transmission pathways, thereby reinforcing the association between RLS and migraine.

4.2. Functional Connectivity Difference between Two groups

The rostral anterior cingulate cortex assumes a pivotal role in pain modulation, serving as a linchpin in the downstream pain inhibitory system. Li and colleagues have previously reported a reduced resting-state functional connectivity between the rodent anterior cingulate cortex (rACC)/medial prefrontal cortex (mPFC) and periaqueductal grey (PAG) in migraine patients compared to healthy controls (Ashina M et al., 2019). In alignment with these findings, our results also indicate decreased
connectivity involving the central sulcus and the medial and paracingulate cingulate gyrus in RLS-positive group compared with RLS-negative group. In addition, the cingulate gyrus primarily governs the regulation of visceral functions, potentially elucidating the common presence of nausea and vomiting symptoms alongside migraine, attributed to the abnormal visceral regulation orchestrated by the cingulate gyrus (Li Z et al., 2016). Thus, we speculate that RLS may have a potential impact on the pain regulatory pathway in migraine patients.

4.3. Difference in Small-World Properties and Nodal Properties

Graph theory analysis is increasingly applied in migraine research, with several studies elucidating the small-world properties of functional brain networks in various migraine conditions, including migraine without aura and chronic migraine (Liu J et al., 2012; Li K et al., 2017; Dai L et al., 2021). Our investigation, too, revealed that both migraine groups, with and without RLS, exhibited small-world properties within their functional brain networks. However, substantial distinctions in topological properties remained evident between the two cohorts. Notably, the RLS-positive group displayed higher γ values, indicative of intensified small-world properties and enhanced efficiency in brain network message transmission. This heightened efficiency sustains an optimal equilibrium between functional segregation and integration. It is plausible that these differences in network topology are attributable to RLS, fostering a more streamlined information exchange within the brain network. Consequently, this refined network may perceptively and expeditiously transmit pain signals among pain-related brain regions.

Betweenness centrality, an index signifying local network attributes, gauges a node's influence on information transmission amid other nodes. While we have scrutinized the overall small-world characteristics of the brain network in migraine patients with RLS, it remains imperative to delve deeper into the potential alterations within specific local nodes responsible for information transfer in the functional brain network, possibly influenced by RLS. In contrast to the RLS-negative group, our study detected heightened betweenness centrality in the group afflicted by RLS. The insula's pivotal role in triggering the pain matrix network is well-documented (Labrakakis C 2023). Functioning as a hub within the cortex, the insula orchestrates complex sensations and emotions associated with migraine symptoms. This is accomplished through intricate interconnections linking the frontal, temporal, and parietal cortices, basal ganglia, thalamus, and limbic structures (Borsook D, et al., 2016). Moreover, the inferior temporal gyrus plays a fundamental role in the assembly of the ventral visual pathway, primarily responsible for shaping visual content (Li Q et al., 2018). Our study revealed that RLS-positive group exhibited significantly elevated betweenness centrality in this region compared to RLS-negative group. Thus, it is plausible that RLS's influence extends to the inferior temporal gyrus, rendering migraine patients with RLS more susceptible to visual aura. This aligns with prior research by Kijima Y et al., wherein they reported higher RLS grades in the migraine group with frequent visual aura compared to those with episodic visual aura.
or no visual aura (Kijima Y et al., 2015). Consequently, our study further supports the
association between RLS and migraine, viewed through the lens of brain function.

The angular gyrus, positioned within the parietal lobe, emerges as a pivotal
structure implicated in the intricate process of multisensory integration. It serves as a
central hub orchestrating the harmonious synthesis of information from diverse
sensory modalities across the cerebral landscape (Dong L et al., 2023; de Pasquale F
et al., 2012). Our comprehensive data analysis, notably, illuminated a conspicuous
and statistically significant correlation between the betweenness centrality of the
angular gyrus and the grading of RLS. This observation implies a possible association
between RLS and sensory integration in migraine.

4.4 Limitations and Future Work

This study warrants acknowledgment of certain potential limitations. To
commence, the relatively modest sample sizes within both study groups may
introduce constraints on the precision and generalizability of the findings. Secondly,
the lack of a control group without migraine but with and without a RLS prevents us
from detecting subtler changes related to RLS in migraine patients. Future research
endeavors should consider broader subject recruitment, encompassing a more
extensive cohort of participants, including healthy controls. We should further
incorporate healthy control with and without RLS, to explore whether there is an
effect of RLS on brain function, which may induce migraine attacks. This will help us
to verify whether RLS is a risk factor for migraine. Thirdly, because of the absence of
the information of heartbeat and respiration during rs-fMRI scans, the potential
confounding effect of heartbeat and respiration were not regressed. Heartbeat and
respiratory signals should be collected in future research to make the results more
rigorous. Fourthly, it is essential to recognize that this study adhered to a
cross-sectional design. Consequently, it cannot elucidate the causal dynamics
underpinning the observed aberrations in brain functional imaging. In other words, it
remains uncertain whether these anomalies precede the onset of migraine or are
sequelae triggered by recurrent migraine episodes.

5. Conclusion

In conclusion, this study elucidated RLS-associated brain functional changes,
including ALFF, FC and topological properties in individuals with migraine and RLS.
From the perspective of functional segregation and integration, the migraine with RLS
exhibited significantly different local spontaneous neural activity, integration across
distinct brain regions and functional networks features compared to migraine without
RLS. Furthermore, migraine with RLS showed a notable correlations between RLS
grading and ALFF in certain brain regions. Additionally, RLS severity is positively
correlated with the angular gyrus betweenness centrality. This study enhances our
understanding of RLS-related migraine and introduces a novel method for exploring
the potential brain functional alterations in migraine with RLS.
Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAC</td>
<td>Anterior cingulate cortex</td>
</tr>
<tr>
<td>AAL</td>
<td>Anatomical automatic labeling</td>
</tr>
<tr>
<td>ALFF</td>
<td>Amplitude of low-frequency fluctuation</td>
</tr>
<tr>
<td>AUC</td>
<td>Area under the curve</td>
</tr>
<tr>
<td>BMI</td>
<td>Body mass index</td>
</tr>
<tr>
<td>BOLD</td>
<td>Blood oxygen level dependent</td>
</tr>
<tr>
<td>CSD</td>
<td>Cortical spreading depression</td>
</tr>
<tr>
<td>CTCD</td>
<td>Contrast-enhanced transcranial doppler</td>
</tr>
<tr>
<td>C<sub>p</sub></td>
<td>Clustering coefficient</td>
</tr>
<tr>
<td>DICOM</td>
<td>Digital imaging and communications in medicine</td>
</tr>
<tr>
<td>DPABI</td>
<td>Data processing and analysis of brain imaging</td>
</tr>
<tr>
<td>DWI</td>
<td>Diffusion-weighted imaging</td>
</tr>
<tr>
<td>E<sub>glob</sub></td>
<td>Global efficiency</td>
</tr>
<tr>
<td>E<sub>loc</sub></td>
<td>Local efficiency</td>
</tr>
<tr>
<td>FC</td>
<td>Functional connectivity</td>
</tr>
<tr>
<td>FLAIR</td>
<td>Fluid attenuated inversion recovery</td>
</tr>
<tr>
<td>FOV</td>
<td>Field of view</td>
</tr>
<tr>
<td>FWMH</td>
<td>Full width half maximum</td>
</tr>
<tr>
<td>ICHD-3</td>
<td>International classification of headache disorders, 3rd edition</td>
</tr>
<tr>
<td>L<sub>p</sub></td>
<td>Characteristic shortest path length</td>
</tr>
<tr>
<td>MCA</td>
<td>Middle cerebral artery</td>
</tr>
<tr>
<td>MNI</td>
<td>Montreal neurological institute</td>
</tr>
<tr>
<td>MPFC</td>
<td>Medial prefrontal cortex</td>
</tr>
<tr>
<td>NIfTI</td>
<td>Neuroimaging informatics technology initiative</td>
</tr>
<tr>
<td>PAG</td>
<td>Periaqueductal grey</td>
</tr>
<tr>
<td>PFC</td>
<td>Prefrontal cortex</td>
</tr>
<tr>
<td>PFO</td>
<td>Patent foramen ovale</td>
</tr>
<tr>
<td>RACC</td>
<td>Rodent anterior cingulate cortex</td>
</tr>
<tr>
<td>RLS</td>
<td>Right-to-left shunt</td>
</tr>
<tr>
<td>ROIs</td>
<td>Regions of interest</td>
</tr>
<tr>
<td>Rs-fMRI</td>
<td>Resting-state functional magnetic resonance imaging</td>
</tr>
<tr>
<td>SPSS</td>
<td>Statistical product and service solutions</td>
</tr>
<tr>
<td>T1WI</td>
<td>T1-weighted images</td>
</tr>
<tr>
<td>T2W2</td>
<td>T2-weighted images</td>
</tr>
<tr>
<td>TE</td>
<td>Echo time</td>
</tr>
<tr>
<td>TR</td>
<td>Repetition time</td>
</tr>
<tr>
<td>VAS</td>
<td>Visual analog scale</td>
</tr>
<tr>
<td>WMH</td>
<td>White matter hyperintensity</td>
</tr>
<tr>
<td>γ</td>
<td>Normalized clustering coefficient</td>
</tr>
<tr>
<td>σ</td>
<td>Small-worldness</td>
</tr>
<tr>
<td>λ</td>
<td>Normalized characteristic shortest path length</td>
</tr>
</tbody>
</table>
Author contributions WC, NW and JY conceived this study; WC contributed to the draft, and analyzed the data. WC, LJ, JZ, and HZ contributed to the collection of clinical and fMRI data. JY and NW strictly revised the manuscript. All authors have read and agreed to the published version of the manuscript.

Funding This study was supported by the Shanghai Science and Technology Commission Western Medicine Guidance Project (Grant No 19411971400) and Pudong New Area Science and Technology Development Fund (Grant No PKJ2014-Y08) to JY, and Project of Huaguoshan Mountain Talent Plan-Doctors for Innovation and Entrepreneurship to NW.

Declaration of Competing Interest The authors declare that they have no competing interests.

Acknowledgements We would like to thank all the medical staff of the Department of Neurology at Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine.

Availability of data and materials The datasets analyzed during the current study are available from the corresponding author on reasonable request.

Ethical approval The study was carried out, according to the 1964 Declaration of Helsinki and its later amendments and according to local ethical guidelines.

Consent for publication All authors consent for the publication

Reference

Domitrz I, Cegielska J (2022) Magnesium as an Important Factor in the Pathogenesis and Treatment of Migraine-From Theory to Practice. Nutrients 14(5):1089

