Title: Implementation of enhanced 99DOTS for TB treatment supervision in Uganda: An interrupted time series analysis

Authors: Rebecca Crowder1,2,*, Suzan Nakasendwa3*, Alex Kityamuwesi3, Muhammad Musoke3, Joyce Nannozi2, Joseph Waswa3, Agnes Nakate Sanyu3, Maureen Lamunu3, Amon Twinamasiko3, Lynn Kunihira Tinka3, Denis Oyukii3, Diana Babirye3, Christopher Berger1,2, Ryan Thompson4, Stavia Turyahabwe5, David Dowdy3,4, Achilles Katamba3,6, Adithya Cattamanchi1,2,3,7,\^, Noah Kiwanuka3,8\^

*co-first authors
^co-senior authors

1. Division of Pulmonary and Critical Care Medicine, San Francisco General Hospital, University of California San Francisco, San Francisco, USA
2. Center for Tuberculosis, University of California San Francisco, San Francisco, USA
3. Uganda Tuberculosis Implementation Research Consortium, Kampala, Uganda
4. Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, USA
5. National Tuberculosis and Leprosy Program, Uganda Ministry of Health, Kampala, Uganda
6. Clinical Epidemiology & Biostatistics Unit, Department of Medicine, Makerere University College of Health Sciences, Kampala, Uganda
7. Division of Pulmonary Diseases and Critical Care Medicine, University of California Irvine, Irvine, USA
8. Department of Epidemiology and Biostatistics, School of Public Health, Makerere University College of Health Sciences, Kampala, Uganda

Corresponding author:
Noah Kiwanuka, nkiwanuka@gmail.com

ABSTRACT

Rationale: Digital adherence technologies are being scaled-up for tuberculosis treatment despite limited evidence of their effectiveness and concerns about accessibility.

Objectives: To determine whether an enhanced 99DOTS-based treatment supervision improves uptake of 99DOTS and tuberculosis treatment outcomes.

Methods: We included all adults initiated on treatment for drug-susceptible pulmonary tuberculosis between August 2019 and June 2021 at 18 99DOTS-experienced health (n=6,382) facilities and 12 99DOTS-naïve health facilities (n=4,253) in Uganda. Using an interrupted time series design, we compared the proportions with treatment success (primary outcome) and enrolled on 99DOTS in the 9 months before and the 12 months after implementing an ‘enhanced 99DOTS’ intervention that included components to increase uptake (providing low-cost phones to people with TB when needed) and enhance treatment monitoring and support (task shifting to community health workers and automated task lists). Data on treatment initiation and outcomes were derived from routine TB treatment registers.

Measurements and Main Results: At 99DOTS-experienced facilities, the proportion enrolled on 99DOTS increased from 49.2% to 86.4%. The proportion completing treatment remained similar across periods (78.3% vs. 78.6%). There was no immediate level change in treatment success following the intervention but there was a significant change in monthly slope (proportion ratio 1.01, 95% CI 1.00-1.02), reflecting an improved treatment success trend following the intervention. Results were similar at 99DOTS-naïve facilities, except there was no significant change in treatment success slope.

Conclusions: Enhanced 99DOTS had high uptake and did not negatively affect treatment outcomes. Equity in access should be prioritized during implementation.
INTRODUCTION

Suboptimal tuberculosis (TB) treatment outcomes remain a major challenge in high TB burden countries. Digital adherence technologies (DATs) have been proposed as one potential intervention to support people with TB to successfully complete treatment. 99DOTS is a low-cost DAT, whereby people with TB self-report medication dosing by calling toll-free phone numbers hidden underneath pills in blister packs (1, 2). 99DOTS has been deployed in some Asian and African countries, including India (1, 3), Uganda (2) and Kenya (4).

DATs are being scaled-up despite limited evidence of their effectiveness and concerns about accessibility to the technologies. In the only randomized trial of 99DOTS to date, we showed that only 52% of people with TB were enrolled on 99DOTS, and 99DOTS-based treatment supervision did not improve treatment outcomes (2). Other implementation studies have found similarly low enrollment of people with TB on 99DOTS and have reported similar treatment outcomes between routine- and 99DOTS-based treatment supervision (1-3).

Barriers to the use of 99DOTS are now better documented. With respect to reach, consistent access to a phone has been reported as a key barrier among people with TB in high burden countries (5). It is unclear whether people without phone access would benefit from 99DOTS if this barrier were removed. In addition, the potential impact of 99DOTS is limited if health workers are unable to use daily dosing data to enhance treatment monitoring and support (6). Factors impacting health worker engagement with 99DOTS include technology literacy (5), usability of the 99DOTS application, and demanding workloads (6).

To address these factors, we developed an implementation strategy for 99DOTS-based treatment supervision (‘enhanced 99DOTS’) that included components to increase uptake (providing low-cost phones to people with TB when needed) and enhance treatment monitoring and support (task shifting to community health workers and automated task lists). In this study, we aimed to assess whether the enhanced 99DOTS strategy improved uptake of 99DOTS and TB treatment outcomes among adults with pulmonary TB (PTB).

METHODS

Study design and population
We conducted separate interrupted time series (ITS) analyses to evaluate the effect of the enhanced 99DOTS-strategy at 1) 18 health facilities that participated in our initial 99DOTS implementation trial (i.e., 99DOTS-experienced facilities) and 2) 12 health facilities that did not participate in the implementation trial (i.e., 99DOTS-naïve facilities). The 18 99DOTS-experienced facilities included 5 regional hospitals, 10 district hospitals and 3 health centers that provide TB diagnosis and treatment services. These facilities were selected for participation in the implementation trial based on reported numbers of people initiating and completing TB treatment prior to the trial (7). The 12 99DOTS-naïve facilities included 8 Level III and 4 Level IV Health Centers in the Greater Kampala Metropolitan Area (Greater Kampala). These facilities were selected because they 1) treated >10 people with PTB/month in 2017 (sufficient to assess outcomes), 2) had a PTB treatment success rate in 2017 <80% (able to show impact), and 3) were classified as a lower-level health facility (i.e., Health Center III or IV). Of the 139 TB treatment units in Greater Kampala, these 12 met the eligibility criteria and were all selected in consultation with the Uganda National TB and Leprosy Programme (NTLP).

At the 30 health facilities, we included all adults initiating treatment for drug susceptible PTB between August 1, 2019, and June 30, 2021. We excluded people with TB who were transferred out to another facility during treatment, as they would not have had the opportunity to fully benefit from the intervention.

This study was approved by institutional review boards at Makerere University School of Public Health and the University of California San Francisco, and by the Uganda National Council for Science and Technology. A waiver of informed consent was granted to access the demographic and clinical information recorded in TB treatment registers.
Intervention periods
During the 9-month pre-intervention period (August 2019-April 2020) 99DOTS continued to be available for TB treatment support and supervision at the 18 99DOTS-experienced facilities. TB treatment support and supervision was provided via community-based DOT at the 12 99DOTS-naïve facilities. The implementation of community-based DOT varied by health facility.

During the buffer period (May-June 2020), study staff conducted training on the enhanced 99DOTS strategy via 2- to 3-day site visits at all 30 health facilities.

During the subsequent 12-month post-intervention period (July 2020-June 2021), the enhanced 99DOTS strategy was available for TB treatment support and supervision at all 30 health facilities (Supplemental Figure 1). The enhanced 99DOTS strategy included all components of the original 99DOTS intervention (automated dosing reminders via SMS and dosing confirmation via toll free calls as described for the DOT to DAT trial) (7, 9). In addition, based on lessons from the trial, we 1) provided low-cost phones ($8 USD) to people with TB who lacked a phone or did not have regular access to a phone; 2) task shifted adherence monitoring and follow-up from clinicians to community health workers; and 3) provided automated task lists to facilitate community health worker follow-up of dosing history.

Procedures
Data on TB treatment initiation and outcomes, as well as demographic and clinical characteristics, were collected from routine TB treatment registers at each health facility. Facility staff were trained to take and upload photos of the register to a secure, password protected server. Research staff then extracted data from these photos into a secure database using Research Electronic Data Capture (REDCap) software (10). Enrollment onto 99DOTS was confirmed by merging this database with a list of enrolled participants extracted from the 99DOTS server. Enrollment on 99DOTS was defined as enrollment within the first month (28 days) of TB treatment.

Outcomes
The primary outcome was the proportion of people with TB treated successfully, defined as being assigned a treatment outcome of cured or completed in the Unit TB Treatment register. Secondary outcomes included the proportion of people with TB enrolled on 99DOTS for TB treatment support and supervision, the proportion persisting on treatment through the intensive phase (defined as completing 56 doses of treatment) and the proportion retained in care through the end of treatment (i.e., not lost to follow-up).

Statistical analysis
99DOTS-experienced (n=18) and 99DOTS-naïve health facilities (n=12) were analyzed separately. For each analysis, interrupted time series analysis was used to model the change in mean proportions of TB treatment outcomes and reach of 99DOTS before and after the implementation of the enhanced 99DOTS-based intervention. We assessed for immediate (level) changes in outcomes, as well as changes in trend (slope).

The primary and secondary outcomes were analyzed according to intention-to-treat (ITT) and per protocol (PP) principles. The ITT analysis included all eligible participants, whereas the PP analysis excluded those who did not receive the intended method of TB treatment supervision: participants not enrolled on 99DOTS were excluded from both the pre- and post-intervention periods at 99DOTS-experienced facilities and from the post-intervention period at 99DOTS-naïve facilities.

Trajectory plots of observed and predicted outcomes were inspected to assess the overall post intervention linearity. Single group ITS models were fit using the mean proportion with each outcome of interest by health facility-month (see Supplemental Methods in Appendix for equation) using the Stata command itsa (11). Autocorrelation was assessed using the Cumby-Huizinga test and adjusted for as needed in the final models. We concluded that serial autocorrelation was present when the p-value for three consecutive lags (up to 21 lags tested) was significant (p<0.05). If there was borderline evidence of autocorrelation, a sensitivity analysis was performed, and the later lag was only used if standard errors of all parameters of interest were smaller. Proportion ratios (PR)
were output from the ITS model to characterize pre- and post-intervention change in level (immediate change in outcome at time of enhanced 99DOTS implementation) and change in slope (average change in outcome per month). Stata version 17 was used for all analyses.

RESULTS

Study Population
From August 1, 2019, to June 31, 2021, 6,382 adults were initiated on treatment for drug-susceptible PTB at 99DOTS-experienced health facilities (n=18) (Figure 1). The ITT analysis included 4,976 people with TB after excluding those who initiated treatment during the buffer period, transferred out to another facility during treatment, stopped TB treatment due to a non-TB diagnosis or stopped treatment due to adverse drug reactions. The PP population included 3,412 people with TB after also excluding those who did not receive the assigned intervention (original 99DOTS during the pre-intervention period or enhanced 99DOTS during the post-intervention period).

At 99DOTS-naïve facilities (n=12), 4,253 adults were initiated on treatment for drug-susceptible PTB. The ITT population included 3,526 eligible people with TB (Figure 1), and the PP population included 3,197 people with TB (those who did not receive community-based DOT during the pre-intervention period and enhanced 99DOTS during the post-intervention period were additionally excluded).
Target population: Adult patients (≥18 years old) started on drug-susceptible (DS) pulmonary tuberculosis (PTB) treatment during the period 1 Aug 2019 - 31 Jun 2021

- N=6,382 people with TB
 - 2,831 pre-intervention
 - 431 buffer period
 - 3,120 post-intervention

- N=4,253 people with TB
 - 1,679 pre-intervention
 - 340 buffer period
 - 2,234 post-intervention

Intention to treat analysis population: Adult patients started on DS PTB treatment during the period 1 Aug 2019 - 31 Jun 2021, who did not transfer to another health facility during treatment

- N=4,976 people with TB
 - 2,383 pre-intervention
 - 2,593 post-intervention

- N=3,526 people with TB
 - 1,475 pre-intervention
 - 2,051 post-intervention

Per protocol analysis population: Adult patients started on DS PTB treatment during the period 1 Aug 2019 - 31 Jun 2021, who did not transfer to another health facility during treatment

- N=3,412 people with TB
 - 1,172 pre-intervention
 - 2,240 post-intervention

- N=3,197 people with TB
 - 1,408 pre-intervention
 - 1,789 post-intervention

1,406 (22.0%) excluded
- 431 (6.8%) started on treatment during the buffer period
- 944 (14.8%) transferred out to another health facility during treatment
- 25 (0.4%) TB treatment stopped, non-TB diagnosis
- 6 (0.1%) TB treatment stopped, adverse drug reaction

1,564 (31.4%) excluded
- 1,211 (24.3%) started on treatment during the pre-intervention period but did not receive original 99DOTS
- 353 (7.1%) started on treatment during the post-intervention period and not enrolled on enhanced 99DOTS

727 (17.1%) excluded
- 340 (8.0%) started on treatment during the buffer period
- 373 (8.8%) transferred out to another health facility during treatment
- 11 (0.3%) TB treatment stopped, non-TB diagnosis
- 3 (0.1%) TB treatment stopped, adverse drug reaction

329 (9.3%) excluded
- 67 (1.9%) started on treatment during the pre-intervention period but did not receive standard of care
- 262 (7.4%) started on treatment during the post-intervention period and not enrolled on enhanced 99DOTS

Figure 1. Target and analysis population
At 99DOTS-experienced health facilities, there were no differences between the pre- and post-intervention period ITT populations in median age or the proportions female, living with HIV, receiving ART (if HIV-positive), or with previous TB (Table 1). However, the proportion with bacteriologically confirmed TB was higher in the post-intervention period (60.1% vs. 54.3% pre-intervention period, p<0.001).

At 99DOTS-naïve health facilities, there were no differences between the pre- and post-intervention period ITT populations in the proportions female, living with HIV, receiving ART (if HIV-positive), or with bacteriologically-confirmed TB. However, median age was higher (35 vs. 33, p<0.001) and the proportion with previous TB lower (6.5% vs. 8.5%, p=0.02) in the post-intervention period (Table 1).

There were no missing outcome data, but three people with TB treated at 99DOTS-experienced facilities were missing HIV status as they did not undergo HIV testing.

Table 1. Participant baseline characteristics by study population, period and facility type.

99DOTS-experienced sites (18 health facilities)						
	Pre-intervention Period (n = 2,383)	Post-intervention Period (n = 2,593)	P-value*	Pre-intervention Period (n = 1,172)	Post-intervention Period (n = 2,240)	P-value*
Age in years, median (IQR)	38 (29-49)	39 (29-50)	0.15	35.5 (28-45)	38 (28-50)	<0.001
Female, n (%)	855 (35.9)	993 (38.3)	0.08	430 (36.7)	865 (38.6)	0.27
HIV positive, n (%)	1,015 (42.6)	1,052 (40.6)	0.09	476 (40.6)	900 (40.2)	0.58
On ART, n (%)	1,014 (99.9)	1,049 (99.7)	0.22	476 (100.0)	899 (99.9)	0.74
Previous TB, n (%)	214 (9.0)	224 (8.6)	0.67	100 (8.5)	192 (8.6)	0.97
Bacteriologically confirmed TB, n (%)	1,295 (54.3)	1,557 (60.1)	<0.001	700 (59.7)	1,364 (60.9)	0.51
Treated at a health center, n (%)	334 (14.0)	412 (15.9)	0.07	181 (15.4)	390 (17.4)	0.14

99DOTS-naïve sites (12 health facilities)						
	Pre-intervention Period (n = 1,475)	Post-intervention Period (n = 2,051)	P-value*	Pre-intervention Period (n = 1,408)	Post-intervention Period (n = 1,789)	P-value*
Age in years, median (IQR)	33 (26-42)	35 (28-43)	<0.001	33 (26-42)	35 (28-43)	<0.001
Female, n (%)	504 (34.2)	711 (34.7)	0.73	478 (34.0)	619 (34.6)	0.007
HIV positive, n (%)	662 (44.9)	897 (43.7)	0.52	635 (45.1)	795 (44.4)	0.71
On ART, n (%)	662 (44.9)	897 (43.7)	0.52	635 (45.1)	795 (44.4)	0.71
Previous TB, n (%)	126 (8.5)	133 (6.5)	0.02	116 (8.2)	101 (5.7)	0.004
Bacteriologically confirmed TB, n (%)	867 (58.8)	1,265 (61.7)	0.09	828 (58.8)	1,117 (62.4)	0.04

* Continuous variables were compared using a Wilcoxon rank sum test, and categorical variables were compared using a chi-square test.
Enrollment on 99DOTS

At 99DOTS-experienced facilities, 1,172 (49.2%) people with TB were enrolled on 99DOTS during the 9-month pre-intervention period, and this increased to 2,240 (86.4%) enrolled on 99DOTS during the 12-month post-intervention period (Supplemental Table 1). The proportion enrolled on 99DOTS was decreasing during the pre-intervention period (PR 0.98, 95% CI 0.97-1.00) (Figure 3), immediately increased following implementation of the enhanced 99DOTS strategy (PR 1.47, 95% CI 1.34-1.61), and continued an upward trend over the post-intervention period (PR 1.03, 95% CI 1.01-1.04) (Table 2).

At 99DOTS-naïve facilities, 99DOTS was not offered during the pre-intervention period. Enrollment on 99DOTS was immediately high (87.2%) following implementation of the enhanced 99DOTS strategy and had an upward trend during the post-intervention period (PR 1.01, 95% CI 1.00-1.02) (Figure 3, Table 2).

Treatment success (primary outcome)

Intention-to-treat analysis.
At 99DOTS-experienced health facilities, 1,866 (78.3%) people with TB successfully completed treatment during the pre-intervention period, and 2,038 (78.6%) successfully completed treatment during the post-intervention period (Supplemental Table 1). There was no level change immediately after implementation of enhanced 99DOTS (PR 1.02, 95% CI 0.96-1.08). The proportion treated successfully decreased slightly per month during the pre-intervention period (PR 0.995, 95% CI 0.989-1.002) and increased per month over the post-intervention period (PR 1.00, 95% CI 0.99-1.00), resulting in a small but statistically significant increase in slope, reflecting a monthly increase in treatment success in the post intervention period relative to the pre-intervention period (PR 1.01, 95% CI 1.00-1.02) (Figure 2, Table 2).

At 99DOTS-naïve facilities, treatment outcomes largely remained stable over the pre- and post-intervention periods. 1,285 (87.1%) people with TB successfully completed treatment during the pre-intervention period, and 1,841 (89.8%) successfully completed treatment during the post-intervention period. The ITS analysis showed no significant change in level or slope of treatment success (Figure 2, Table 2).

Per-protocol analysis.
At 99DOTS-experienced health facilities, 1,043 (89.0%) people with TB successfully completed treatment during the pre-intervention period and 1,852 (82.7%) successfully completed treatment during the post-intervention period. The proportion treated successfully fell immediately following the intervention (PR 0.93, 95% CI 0.87-0.99) (Figure 2, Table 2). There was no significant difference between pre- and post-intervention trends (Figure 2).

Similarly, at 99DOTS-naïve health facilities, treatment success remained stable during the pre- and post-intervention periods; 1,219 (86.6%) people with TB successfully completed treatment during the pre-intervention period and 1,629 (91.1%) successfully completed treatment during the post-intervention period. There was no significant change in level or slope of treatment success (Table 2, Supplemental Table 2).
Other secondary outcomes

Results for secondary treatment outcomes are reported in the appendix (Supplementary Table 2, Supplemental Figure 2).

Completion of intensive phase
At 99DOTS-experienced facilities, the proportion completing the intensive phase of treatment increased from 2,018 (84.7%) during the pre-intervention period to 2,218 (85.5%). At 99DOTS-naïve facilities, the proportion completing the intensive phase likewise increased (1,353 [91.7%] vs. 1,917 [93.5%]); however, neither population demonstrated a significant change in level or slope following the intervention, Supplemental Figure 2, Supplemental Table 2).

Loss to follow-up
At both 99DOTS-experienced and 99DOTS-naïve facilities, the proportion lost to follow-up during the pre-intervention period was higher than the proportion lost to follow-up during the post-intervention period (175 [7.3%] vs. 155 [6.0%], and 108 (7.3%) vs. 91 (4.4%)) respectively). There was no significant change in level or slope at 99DOTS experienced health facilities, but there was a significant level increase at 99DOTS-naïve facilities following implementation of enhanced 99DOTS (Supplemental Figure 2, Supplemental Table 2).

Figure 2. Interrupted time series analysis of TB treatment success

ITT: intention to treat; PP: per protocol
Figure 3. Interrupted time series analysis of enrollment on 99DOTS
Table 2. Interrupted time series regression results from an unadjusted model.

<table>
<thead>
<tr>
<th></th>
<th>Experienced Sites (18 health facilities)</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>Change in level (PR, 95%CI)</td>
<td>Change in slope per month (PR, 95%CI)</td>
<td>Pre-intervention slope per month (PR, 95%CI)</td>
</tr>
<tr>
<td>Reach: Enrolled onto 99DOTS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ITT</td>
<td>18</td>
<td>1.47 (1.34, 1.61)*</td>
<td>1.03 (1.01, 1.04)*</td>
<td>0.98 (0.97, 1.00)*</td>
</tr>
<tr>
<td>Treated successfully</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ITT</td>
<td>18</td>
<td>1.02 (0.96, 1.08)</td>
<td>1.01 (1.00, 1.02)*</td>
<td>0.995 (0.989, 1.002)</td>
</tr>
<tr>
<td>PP</td>
<td>18</td>
<td>0.93 (0.87, 0.99)*</td>
<td>1.00 (1.00, 1.01)</td>
<td>0.997 (0.991, 1.003)</td>
</tr>
<tr>
<td>Naïve Sites (12 health facilities)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>Change in level (PR, 95%CI)</td>
<td>Change in slope per month (PR, 95%CI)</td>
<td>Pre-intervention slope per month (PR, 95%CI)</td>
</tr>
<tr>
<td>Reach: Enrolled onto 99DOTS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ITT</td>
<td>12</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Treated successfully</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ITT</td>
<td>12</td>
<td>0.99 (0.94, 1.05)</td>
<td>0.99 (0.98, 1.00)</td>
<td>1.01 (1.00, 1.02)</td>
</tr>
<tr>
<td>PP</td>
<td>12</td>
<td>1.04 (0.95, 1.14)</td>
<td>0.99 (0.98, 1.00)</td>
<td>1.01 (0.99, 1.02)</td>
</tr>
</tbody>
</table>

PR: Proportion Ratio; ITT: intention to treat; PP: per protocol
Statistically significant results noted with * (p<0.05)
DISCUSSION

DATs are increasingly being considered as a more person-centered alternative to directly observed therapy for TB treatment supervision and support. In this quasi-experimental study of an enhanced 99DOTS strategy, we found that >85% of adults with TB were enrolled on 99DOTS and achieved similar treatment outcomes compared to routine care at both 99DOTS-experienced and 99DOTS-naïve health facilities. These findings suggest that 99DOTS can eliminate the need for directly observed therapy for most people with TB without compromising treatment outcomes.

Low enrollment has been a challenge in previous studies of 99DOTS and other cellphone-based DATs, raising concerns about equity and access to this mode of care. Access to mobile phones is expected to be lower among people with TB than in the general population (18% vs. 7.8% in Peru from 2007-2013) (12). Mobile phone access among populations affected by TB in Uganda has been reported to be high (89% among PLHIV with latent TB in a cohort in western Uganda (12) and 58% ownership with an additional 42% indirect access among household contacts of people with TB in urban Kampala (13). Nevertheless, an intervention that relies on cellphone access systematically excludes some of the most vulnerable. Provision of low-cost phones in this study significantly improved the reach of 99DOTS. This demonstrates the feasibility of a critical component for equity of any digital intervention requiring a cellphone.

Most studies evaluating the impact of DATs on treatment outcomes have shown similar or negative effects. A systematic review in 2022 of 16 RCTs evaluating DATs, including 10 that assessed impact on treatment completion, found that 4/10 reported a positive impact on treatment completion, 1/10 reported a significantly negative impact, and 5/10 reported no significant impact on treatment completion (14). The version of 99DOTS implemented in this study was enhanced using human-centered design methods, which offer benefits over SMS or phone reminders alone (15, 16). Despite these improvements and further refinement from the previous version of 99DOTS implemented in Uganda (9), our study found that treatment success rates were similar before and after the implementation of enhanced 99DOTS and remained below the WHO target of 90%. Cumulative evidence suggests DATs alone do not improve treatment outcomes. While DATs can make TB treatment more convenient and less costly in some cases, they do not address structural factors associated with non-adherence such as poverty, gender discrimination, social influences, or the catastrophic costs incurred during TB treatment (17).

A strength of this study was its pragmatic approach and generalizable population. We included all adults initiating treatment for drug-susceptible pulmonary TB across 30 health facilities in Uganda, representing about 10% of the population with TB in Uganda, over almost two years. By offering phones to all people with TB who lacked access, we removed the barrier of phone access and the associated confounding hindering previous studies. Our study also has some limitations. ITS analyses can be impacted by time-varying confounders that do not remain consistent across the pre- and post-intervention periods. In this case, the study observation period included the beginning of the COVID-19 pandemic. In Uganda, shelter in place policies, including a ban on public transportation, went into effect at the end of March 2020. 99DOTS training was permitted to take place with appropriate precautions during visits to the health facilities in May and June 2020. Following the shelter-in-place order, TB case notifications in Uganda declined immediately (18), which was consistent with our data and may indicate a different population observed during
the post-intervention period. If the population initiated on treatment after the shelter-in-place policies went into effect were sicker due to selection bias, we would expect them to have a lower odds of treatment success, thus biasing these results toward the null. Treatment outcomes, measured by proportion, remained stable after the policy change, allowing comparison before and after the 99DOTS intervention.

In conclusion, 99DOTS can enable treatment support and monitoring for people with TB without compromising treatment outcomes. However, further intervention to address the root causes of poor adherence will be needed to achieve END TB targets. 99DOTS and other DATs may still play a role in building a more person-centered TB care system, offering more flexibility over traditional directly observed therapy. Equity should be prioritized in implementation, including provision of low-cost phones when required.
References