GWAS of ~30,000 samples with bone mineral density at multiple skeletal sites and its clinical relevance on fracture prediction, genetic correlations and prioritization of drug targets

Yu Qian1,2,3#, Jiangwei Xia4#, Pingyu Wang5#, Chao Xie6, Hong-Li Lin7, Gloria Hoi-Yee Li8, Cheng-Da Yuan9, Mo-Chang Qiu10, Yi-Hu Fang10, Chun-Fu Yu11, Xiang-Chun Cai11, Saber Khederzadeh1,2,3, Pian-Pian Zhao1,2,3, Meng-Yuan Yang1,2,3, Jia-Dong Zhong1,2,3, Xin Li1,2,3, Peng-Lin Guan1,2,3, Jia-Xuan Gu1,2,3, Si-Rui Gai1,2,3, Xiang-Jiao Yi1,2,3, Jian-Guo Tao1,2,3, Xiang Chen1,2,3, Mao-Mao Miao1,2,3, Wen Jin1,2,3, Lin Xu5, Shu-Yang Xie5, Geng Tian5, Hua Yue12, Guangfei Li13, Wenjin Xiao13, David Karasik14, Youjia Xu13, Liu Yang15, Fei Huang5, Ching-Lung Cheung16, Zhenlin Zhang12, Hou-Feng Zheng1,2,3#

1The affiliated Hangzhou first people’s hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang, China
2Diseases & Population (DaP) Geninfo Lab, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
3Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
4Department of Neurology, Xuanwu Hospital, National Center for Neurological

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Disorders, Capital Medical University, Beijing, China

WBBC Shandong Center, Binzhou Medical University, Yantai, Shandong, China

Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China

School of Public Health, The University of Hong Kong, Pok Fu Lam, Hong Kong SAR, China.

Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hong Kong, China.

Department of Dermatology, Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou, Zhejiang, China

WBBC Jiangxi Center, Jiangxi Medical College, Shangrao, Jiangxi, China

Department of Orthopedic Surgery, Shangrao Municipal Hospital, Shangrao, Jiangxi, China

Department of Osteoporosis and Bone Disease, Shanghai JiaoTong University Affiliated Six People's Hospital, Shanghai, China.

Department of Orthopaedics, Second Affiliated Hospital of Soochow University, Osteoporosis Research Institute of Soochow University, Suzhou, Jiangsu, China.

Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel

Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.

These authors contributed equally

*Correspondence: zhenghoufeng@westlake.edu.cn (H.-F.Z.)
Summary

Here, we conducted genome-wide association studies (GWAS) of dual-energy X-ray absorptiometry (DXA)-derived bone mineral density (BMD) traits at 11 skeletal sites, within over 30,000 European individuals from the UK Biobank. A total of 92 unique and independent loci were identified for 11 DXA-derived BMD traits and fracture, including 5 novel loci (i.e., ABCA1, CHSY1, CYP24A1, SWAP70 and PAX1) and 2 sex-specific loci (i.e., CYP19A1 and CYP3A7). We demonstrated that polygenic risk scores (PRSs) were independently associated with fracture risk. Although incorporating multiple PRSs (metaPRS) with the clinical risk factors (i.e., the FRAX model) exhibited the highest predictive performance, the improvement was marginal in fracture prediction. The metaPRS were capable of stratifying individuals into different trajectories of fracture risk, but clinical risk factors played a more significant role in the stratification. Additionally, we uncovered genetic correlation and shared polygenicity between head BMD and intracranial aneurysm. And the joint associated genes such as PLCE1 might play important roles in the shared genetic basis. Finally, by integrating gene expression, and GWAS datasets, we prioritized genes (e.g. ESR1, SREBF1, CCR1 and NCOR1) encoding druggable human proteins along with their respective inhibitors/antagonists. In conclusion, this comprehensive investigation revealed new genetic basis for BMD and its clinical relevance on fracture prediction. More importantly, it was suggested that head BMD was genetically correlated with intracranial aneurysm. The prioritization of genetically supported targets implied the potential repurposing drugs (e.g. the n-3 PUFA supplement targeting SREBF1) for the prevention of osteoporosis.

Keywords: bone mineral density, drug targets, fracture, genome-wide association study, intracranial aneurysm, omics, polygenic risk scores.
Highlights

- Ninety-two unique and independent genetic signals were associated with eleven DXA-derived BMD traits and fracture, including five previously unreported BMD loci.
- Although PRSs were independently associated with fracture risk, the predictive performance improved marginally compared to the clinical risk factors.
- Head BMD was genetically correlated with intracranial aneurysm and the joint-associated genes such as *PLCE1* might play important roles in the shared genetic basis.
- The prioritization of genetically-supported targets implied the potential repurposing drugs (for example the n-3 PUFA supplements targeting SREBF1) for the prevention of osteoporosis.
Introduction

Osteoporosis, a systemic skeletal disease characterized by decreased bone mass and micro-structural damage\(^1,2\), has a global prevalence of 18.3% [95% confidence interval (95% CI): 16.2%-20.7%]\(^3\). Bone mass could be assessed by 2-dimensional projectional scan with dual energy X-ray absorptiometry (DXA), or other medical imaging tools, such as quantitative computed tomography (QCT) and quantitative ultrasound (QUS)\(^4\). Over the past more than 10 years, not a few genome-wide association studies (GWASs) and meta-analyses were carried out to explore the genetic factor for bone mineral density (BMD), osteoporosis, and fracture\(^1,2\). Early GWAS design only involved thousands of samples and only several genetic loci were identified\(^5,6\). The meta-analysis could enlarge the sample size and statistical power, and lead to the identification of more loci\(^7,8\). However, the genetic summary data, instead of individual-level genotype data, from each cohort were meta-analyzed in the aforementioned studies. Recently, large-scale biobanks such as UK biobank could enable access to the individual-level genotype data in hundreds of thousands of samples, and hundreds of genetic loci were identified for QUS-derived BMD in these efforts\(^9,10\).

No doubt that GWASs have been successfully conducted in the past decade, however, the ultimate goal of genetic study is to translate the discoveries into clinical practice. Previously, we have tried to summarize the clinical use of GWAS findings in the bone field, such as disease prediction\(^1\). Lu et al developed the genetically predicted speed of sound (SOS, a parameter measured by QUS) for individuals in UK Biobank by common genetic variants through polygenic risk score (PRS)\(^11\). They demonstrated that this score provided modestly better fracture risk prediction than some of the clinical risk factors such as smoking and use of corticosteroids\(^11\). In addition, they suggested that adding rare variants did not demonstrate substantially improved predictive performance in a recent study\(^12\). The
above studies took the SOS measurement in the training and testing dataset, however, SOS measurement was not correlated very well with BMD. Another clinical relevance of GWAS findings is to infer the correlation between diseases. Earlier efforts have uncovered numerous SNPs exhibiting pleiotropic associations with BMD and other traits/diseases, such as birth weight, type 2 diabetes and major depressive disorder. Finally, incorporating genetic data in drug development is warranted to improve this process, because drugs with genetic support are more likely to succeed clinical trials.

Therefore, with the availability of DXA-derived BMD phenotypes and individual-level genotype data in UK Biobank, it is an opportunity to conduct a genome-wide association study at large scale individual-level genotype data and to investigate the genetic basis of BMD at 11 sites (arm, femur total, femur neck, head, leg, pelvis, lumbar spine, rib and spine) and fracture (Supplementary Figure 1). We then build a ‘multi-BMD PRS’ predictive model to improve genetic risk stratification for fracture. In addition, we estimated the shared genetic architecture of BMD with other common chronic diseases, including neurodegenerative, cardiovascular and autoimmune diseases. Finally, we tried to explore the potential effective and safe therapeutic targets for osteoporosis.

Results

Genetic architecture of BMD at multiple skeletal sites

The overview of the study design was presented on Supplementary Figure 1. We performed the GWAS of BMD at 11 anatomic sites (i.e., arm, total femur, femoral neck, head, legs, lumbar spine, pelvis, ribs, spine, trunk and total body) (N≈30,000) and any-type fracture (N=35,192 for cases; N=317,599 for controls) from the UK Biobank (Figure 1A). All intercept values from the LD score method were close to one, revealing no obvious population stratification for all GWASs (Supplementary
We observed that approximately 25.7%~41.8% of the variance in BMD and 4.8% of the variance in fracture risk could be explained by common variants across the genome (Table 1). We then conducted conditional analyses within phenotype and identified 240 unique conditional independent BMD signals (Table 1, Figure 1B, Supplementary Table 2 and Supplementary Figure 2-13). After merging the physically overlapped signals across BMD phenotypes (i.e., the distance between two conditional independent SNVs < 500kb) into one locus, a total of 91 unique and independent BMD loci were defined (Table 1, Figure 1B and Supplementary Table 2). We identified 8 loci for fracture, 7 of which overlapped with the above BMD signals, and one of which (independent SNP: rs13281992) was previously reported to be genome-wide significant associated with heel BMD

Five loci identified for DXA-derived BMD traits

Although previous GWASs have reported hundreds of loci, we still identified 5 loci that were not reported previously (Table 2, Figure 1B). Among these 5 loci, the most pleiotropic locus resided between ABCA1 and SLC44A1 genes on chromosome 9 (Table 2, Figure 1B, Figure 1C and Supplementary Table 3). SNPs (rs1039406 and rs746100) around this locus were genome-wide significantly associated with five BMD sites, including the lumbar spine, femur neck, femur total, pelvis, and trunk (Table 2). The eQTL data from whole blood tissue revealed that SNP rs746100 was also associated with the gene expression of ABCA1 ($P=2.68\times10^{-5}$) in artery tibial tissue, based on the GTEx consortium (Figure 1C and Supplementary Table 4), and the genetically predicted higher ABCA1 gene expression in whole blood tissue was associated with higher BMD (Supplementary Figure 14). The second promising locus resided between SWAP70 and WEE1 genes on chromosome 11 with leading SNP rs10840273, showing a genome-wide significant association for leg BMD ($P=4.52\times10^{-9}$) (Table 2, Figure 1B, Figure 1D, and
Supplementary Table 3). Whole blood eQTL data from eQTLGen identified that rs10840273 was associated with the SWAP70 gene expression ($P=2.42 \times 10^{-39}$) (Figure 1D and Supplementary Table 4). Mesenchymal stem cell Hi-C data also detected a direct interaction of the associated region with the SWAP70 gene (FDR-corrected $P_{\text{interaction}}=2.74 \times 10^{-109}$) (Supplementary Table 5). Furthermore, this lead SNP showed a genome-wide significant association with circulating SWAP70 ($P\text{-value}=6.94 \times 10^{-81}$) (Figure 1D). The MR results revealed that genetically predicted higher SWAP70 gene expression and higher circulating SWAP70 protein in whole blood were significantly associated with increased leg BMD (Supplementary Figure 14).

Another locus surrounding rs12916774 on chromosome 15 was associated with femur neck and femur total BMD (Table 2, Figure 1B and Supplementary Figure 15). Both eQTL data and Mesenchymal stem cell Hi-C data consistently supported the CHSY1 as a plausible candidate gene ($P=2.15 \times 10^{-53}$ for CHSY1 eQTL in whole blood tissue from eQTLGen; FDR-corrected $P_{\text{interaction}}=1.72 \times 10^{-49}$ for Hi-C data) (Supplementary Table 4 and Supplementary Table 5). The fourth locus (lead SNP: rs6013897) was an intergenic region of CYP24A1 and BCAS1 (Table 2, Figure 1B, Supplementary Table 3 and Supplementary Figure 16). The Mesenchymal stem cell Hi-C data detected a direct interaction of the associated region with the CYP24A1 gene (FDR-corrected $P_{\text{interaction}}=8.04 \times 10^{-78}$) (Supplementary Table 5). We further prioritized PAX1 as a potential candidate gene for rs927059, which is a lead SNP for femur neck BMD ($P\text{-value}=1.87 \times 10^{-8}$) (Figure 1B, Supplementary Table 3 and Supplementary Figure 18). The positional and eQTL annotation results consistently supported the PAX1 as a candidate gene for rs927059 ($P\text{-value}=4.40 \times 10^{-6}$ for PAX1 eQTL in muscle skeletal tissue from GTEx) (Supplementary Table 3 and Supplementary Table 4). In summary, using multi-omics datasets, we prioritized 5 potential candidate genes (i.e.,
ABCA1, CHSY1, CYP24A1, SWAP70, and PAX1) to 5 novel loci (Table 2, Figure 1B, and Supplementary Table 3-5). The annotation results for other known loci have also been shown in Supplementary Table 3-6.

Sex-specific loci of DXA-BMD phenotypes
To investigate the sex-specific BMD signals, we performed a test of heterogeneity in allelic effects. We identified two conditional independent SNVs (rs2414098 and rs45446698) that showed significant differences (FDR-corrected $P_{\text{heterogeneity}}<0.05$) in effect size between genders, with female-specific locus rs45446698 on chromosome 7 near a region upstream of CYP3A7 and male-specific locus rs2414098 on chromosome 15 near protein-coding gene CYP19A1 (Figure 1E and Supplementary Table 7). The gene-based analyses also identified CYP19A1 as a male-specific gene ($P_{\text{male}} = 1.02\times10^{-4}$, $P_{\text{female}} = 0.006$ for Leg BMD; $P_{\text{male}} = 5.38\times10^{-9}$, $P_{\text{female}} = 0.029$ for Arms BMD; $P_{\text{male}} = 1.56\times10^{-9}$, $P_{\text{female}} = 0.388$ for LSBMD). Both annotated candidate genes of two sex-specific SNVs encode a member of the cytochrome P450 superfamily of enzymes, and are involved in steroid hormone biosynthesis (FDR-corrected P-value=7.12×10^{-5}) and metabolic pathways (FDR-corrected P-value=0.003) (Supplementary Table 8).

Polygenic risk score demonstrated marginal improvement in fracture prediction
Based on effect size derived from GWASs 11 DXA-BMD traits, heel BMD and fracture in training datasets, we selected SNPs that could achieve the best predictive PRSs for fracture in the validation dataset (Figure 2A), resulting in 29 (for rib BMD)-79292 (for head BMD) selected SNPs for different trait (Supplementary Table 9). After obtaining SNPs and the effect size for each trait, we calculated the corresponding PRS for each participant in the test dataset (Figure 2A). The metaPRS was generated by integrating these 13 individual PRSs using stepwise Cox
regression in the validation cohort dataset (Figure 2A), with estimates for each
single PRS contained in the best-performing model (Supplementary Table 10). The
association of metaPRS with fracture incidence was largely independent of the
traditional risk factors (Supplementary Table 11). As illustrated in Figure 2B,
most individual PRSs showed significant associations with fracture risk in the test
cohort dataset ($P < 0.05$) after adjusting for age, sex, obesity, smoking, alcohol,
glucocorticoid medicine use, BMD, and population stratification. However, these
PRSs exhibited similar effect estimates for fracture risk, with the metaPRS
displaying the most prominent association [HR: 1.134, 95% confidence interval (CI)
1.098-1.172, $P = 4.15 \times 10^{-14}$] (Figure 2B). Furthermore, we observed a more
marked gradient of fracture risk across quintiles of metaPRS (HR=1.364, 95%
CI=1.243-1.498) than fracture PRS (HR=1.177, 95% CI=1.077-1.287) in the top
quartile vs. the bottom quartile (Supplementary Table 12).

By including only clinical factors such as age, sex, BMI, smoking, alcohol use, and
glucocorticoid use (the FRAX model), we observed limited predictive performance
of this model (C-statistic=0.608, sd=0.005) (Figure 2C and Supplementary Table
13). We found that adding BMD to the FRAX model increased the C-statistic from
0.608 to 0.637 (difference, 4.77%, $P=3.77 \times 10^{-21}$) (Figure 2C and Supplementary
Table 13). However, the addition of various PRS to the FRAX-BMD model did not
substantially improve the C-statistic (Figure 2C and Supplementary Table 13).
Incorporating metaPRS into the FRAX-BMD model resulted in the highest C-
statistic (C-statistics = 0.641), with a C-statistic change of 0.63% ($P=0.003$),
compared with the FRAX-BMD model (Figure 2C and Supplementary Table 13).
By utilizing the optimal cutoff point from the FRAX-BMD metaPRS model as the
threshold, the combination of metaPRS and FRAX-BMD model yielded a moderate
improvement in net reclassification improvement (NRI=1.66%, 95% CI 0.7%-2.62%;
the continuous NRI: 9.15%, 95% CI 6.39%-11.91%) (Supplementary Table 14).
We further assessed how the interplay of the metaPRS and clinical risk factors to impact the fracture risk. Firstly, we found that the cumulative incidence for fracture events was 4.63% for individuals with low polygenic risk (bottom quintiles of the metaPRS) and 7.58% among those with high polygenic risk (top quintiles of the metaPRS), suggesting that metaPRS could stratify individuals into different trajectories of fracture risk (Supplementary Figure 19). Similar results were observed in both sexes, with women having higher HR (Supplementary Table 12) and higher cumulative risk (Supplementary Figure 20 and Supplementary Figure 21). Although we observed significant gradients in the 10-year probability of fracture occurrence across metaPRS categories within each clinical risk strata (Figure 2D), the clinical risk factors played more important role in the stratification. For example, among participants with low clinical risk, the 10-year probability of fracture occurrence for those with high genetic risk (2.40% sd=0.59%) was yet lower than the participants with median clinical risk but low genetic risk (3.26%, sd=0.69%) (Figure 2D). And the 10-year probability of fracture of the participants at high clinical risk with low genetic risk (5.81%, sd=1.27%) had already exceeded the 10-year probability in fracture cases only (5.35%, sd=2.63%) (Figure 2D). The lifetime risk of incident fracture was higher in each stratum than the 10-year probability (Figure 2D). Participants at high clinical risk with median/high genetic risk demonstrated lifetime probabilities of 10.18% and 12.08%, surpassing the intervention treatment threshold of 10% for a major fracture at age 55 years when treatment should be recommended (Figure 2D).

The shared genetic architecture of head BMD and intracranial aneurysm

We further estimated the shared genetic architecture of DXA-BMD at 11 sites with other 13 common chronic diseases, including neurodegenerative diseases,
cardiovascular diseases and autoimmune diseases (Supplementary Table 15). First of all, we tested the pair-wise correlation between the BMD traits. It is suggested that there were the weakest correlations for head BMD with other BMD traits in both phenotypic and genetic correlation analyses, although all pairs exhibited statistically significant phenotypic correlation (Figure 3A). In the 143 BMD-disease pairs (11 BMD traits × 13 diseases), we only observed a statistically significant inverse genetic correlation of head BMD with intracranial aneurysm (IA) (rg=-0.188, se=0.055, FDR-corrected \(P=0.0096 \)), while the genetic correlation with other 12 common chronic diseases were not significant (FDR-corrected \(P>0.05 \)) (Figure 3B and Supplementary Table 15). Furthermore, no significant genetic correlation was observed for the remaining 10 DXA-BMD traits with IA (FDR-corrected \(P>0.05 \)) (Figure 3B and Supplementary Table 15). Compared to the specificity of observed genetic correlation, there was a similar MiXeR estimated polygenic overlap between head BMD and IA. 29.36% (N=114, SD=15) of the 390 head-BMD influencing variants were also predicted to influence IA (Figure 3C and Supplementary Table 16). By employing the conjFDR method, we identified four genomic loci jointly associated with head BMD and IA (Figure 3D, Figure 3E, and Supplementary Table 17). Intriguingly, 3 of the 4 lead SNPs (rs72560793, rs10958404, rs11187838) had the opposite effect direction, consistent with the moderate inverse genetic correlation between head BMD and IA (Figure 3E, and Supplementary Table 17). Notably, two of the four loci demonstrated strong evidence of colocalization (H4>0.5), suggesting the presence of shared causal variants between head BMD and IA (H4: 0.809 for rs10832558 within \(SOX6 \); H4: 0.581 for rs11187838 within \(PLCE1 \)) (Supplementary Table 18). Genes mapped to these shared loci were enriched for biological processes and cellular components related to the skeletal systems (e.g., positive regulation of chondrocyte differentiation) and vascular smooth muscle (i.e., regulation of Ras protein signal transduction) (Supplementary Table 19).
Prioritization of drug targets

Subsequently, by integrating the druggable genome, gene expression, and GWAS datasets, we aimed to identify the genetically supported potential therapeutic targets for osteoporosis, emulating exposure to corresponding medications. Utilizing drug target information from the ChEMBL database (release 29), we included a total of 3,329 druggable genes for subsequent analyses. Next, we employed eQTL data from muscle (including 791 druggable genes), artery tibial (917 druggable genes), and whole-blood tissue (845 druggable genes from GTEx; 2104 druggable genes from eQTLGen) to test the association with BMD through mendelian randomization approach. We observed statistically significant associations between genetically predicted expression of 15 genes and DXA-BMD (FDR-corrected $P < 0.05$) (Supplementary Table 20). Among these, genetically predicted expressions of 4 genes ($CCRI$, $ESRI$, $NCORI$ and $SREBF1$) were associated with at least two DXA-BMD traits with consistent direction, providing robust MR evidence for the genes (Figure 4A, 4B and Supplementary Table 20). For these four genes, genetically predicted $ESRI$ gene expression showed negative associations with 9 DXA-BMD traits (Figure 4A and 4B). There were positive associations of genetically predicted $NCORI$ gene expression with head BMD and total BMD, while negative associations were found for $SREBF1$ and $CCRI$ gene expressions (Figure 4A and 4B). To assess whether the genetic association between these gene expressions and phenotypes shared the same causal variant, we conducted colocalization analyses of the genes with DXA-BMD traits. We discovered that eQTLs in whole blood tissue for 3 genes (i.e., $SREBF1$, $NCORI$ and $CCRI$) colocalized with DXA-BMD loci ($H4>0.5$), reinforcing the evidence for these genes as drug targets for DXA-BMD (Figure 4C and Supplementary Table 21). Considering the observed negative association between $SEEBFI$ and $CCRI$ gene expression and BMD (Supplementary Table 20), there were relevant inhibitors/antagonists that have
been approved or under investigation that present possible repurposing opportunities for osteoporosis treatment. Specifically, SEBF1 could be targeted using Doconexent (inhibitor) and Omega-3 fatty acids (inhibitor), while CCR1 could be targeted using CCX354-C (antagonist) (Figure 4D).

Discussion

In this study, we first conducted the large-scale GWASs of DXA-BMD at 11 skeletal sites, and identified 91 unique and independent loci associated with at least one phenotype, including 5 previously unreported BMD loci (i.e., ABCA1, CHSY1, CYP24A1, SWAP70 and PAX1). The annotated candidate genes of two sex-specific loci (i.e., CYP19A1 and CYP3A7) were mainly involved in the steroid hormone biosynthetic process. Additionally, the incorporation of multiple PRSs (metaPRS) with the clinical risk factors (i.e., the FRAX model) exhibited the highest predictive performance, however, the improvement was marginal in fracture prediction. Although the metaPRS could stratify individuals into different trajectories of fracture risk, the clinical risk factors played a more important role in the stratification. We further estimated the shared genetic architecture of DXA-BMD at 11 sites with other common chronic diseases, including neurodegenerative diseases, cardiovascular diseases and autoimmune diseases, and we only uncovered genetic correlation and shared polygenicity between head BMD and intracranial aneurysm. Finally, by integrating the gene expression and GWAS datasets, we prioritized drug targets (e.g. ESR1, SREBF1, CCR1 and NCOR1) within the druggable genomic genes along with their respective inhibitors/antagonists.

Although previous GWAS have identified hundreds of association signals, we considered to report 5 loci in this study when the associated SNPs improved at least two orders of magnitude of significance compared to the most significant SNPs within the region (position-of-reported-SNP±250 kb) in any of the previous BMD...
GWASs. For example, in our study, the locus (rs746100) near ABCA1 was associated with five BMD traits, including lumbar spine, femur neck, total femur, pelvis and trunk with the smallest \(P\)-value at \(1.64 \times 10^{-9}\). By looking back the meta-analysis of GWAS in a relatively large sample size (\(N=\sim 30,000\)), the SNP rs1831554 within this locus had a marginal significance for femur neck (\(P=9.94 \times 10^{-5}\)) and lumbar spine (\(P=1.41 \times 10^{-4}\)) BMD \(^8\). The pair-wise LD of the two lead SNPs was 0.0005. In our study, we used the individual-level genotype data within \(~30,000\) samples, the sample size was as large as the the GWAS meta-analysis of summary statistic data \(^8\), but the association significance improved greatly. It is suggested that the association analysis performed in individual-level genotype data could enable a more comprehensive power to control over various factors, such as population structure, covariates and phenotype definitions \(^{20}\). Another example was the locus near CHSY1 gene, this locus showed marginal significance (\(P\)-value=\(2.30 \times 10^{-5}\) for rs3784491) in the largest-scale GWAS to date for QUS-derived heel BMD \(^10\), the sample size was more than ten times compared to our study, however, the SNP rs12916774, with very low LD with rs3784491 (LD=0.005), was found to be genome-wide significantly associated with femur neck BMD in our study (\(P=2.14 \times 10^{-9}\)). It should be noted that QUS-derived BMD primarily reflected the bone mass at the heel calcaneus and exhibited limited correlation (0.5~0.65) with DXA-derived BMD at the spine and hip \(^{21}\). Additionally, we confirmed the ZIC1/ZIC4 locus for head BMD (\(P=2.19 \times 10^{-8}\)) which was reported in a very recently GWAS meta-analysis \(^{22}\).

One of the potential application of genetic data is disease prediction \(^1\). Lu et al calculated the genetically predicted speed of sound (SOS, measured by quantitative ultrasound at heel) for individuals in the UK Biobank and assessed the predictive performance of this score \(^{11}\). In this study, we used three independent datasets and generated PRSs for the DXA-derived BMD at multiple skeleton sites. Our results
indicated that PRSs had robust association with incident fracture, even after adjusting for the related clinical risk factors such as age, sex, obesity, smoking, alcohol, glucocorticoids use and BMD, suggesting the independent contribution to the susceptibility of fracture. We further built metaPRS by combining multiple PRSs for DXA-BMD, heel BMD and fracture to evaluate the potential of PRSs on fracture prediction. As expected, the metaPRS showed larger effect size on fracture risk than fracture PRS. This improvement could be attributed to that the genetic component of this metaPRS captured the majority of the genetic basis of fracture. At baseline, we included the FRAX factors in the prediction model, and only limited predictive performance was observed just as before. We observed an increased C-statistic when incorporating BMD into the FRAX model. However, the addition of various PRS to the FRAX-BMD model did not substantially improve the C-statistic, suggesting that the predictive performance of PRS did not perform as well as BMD measurement itself. Additionally, the probability of fracture occurrence for those with low clinical risk and high genetic risk was yet lower than the participants with median clinical risk but low genetic risk, suggesting that the clinical risk factors played more important role in the stratification. Lu et al suggested that the predictive performance of genetically determined SOS surpassed single clinical risk factor such as smoking, corticosteroids use and falls etc, but they did not test the combination of these risk factors. Consistently, the predictive performance of PRS would not outperform BMD.

Clinically, intracranial aneurysm (IA) is characterized by a bulge or distention of an artery in the brain due to weakness and inelasticity of the vessel wall. The disruption of the extracellular matrix (ECM) has been proposed as a contributing factor in the pathophysiology of IA. The ECM is a also salient feature of bone tissue. Bone ECM, containing minerals deposited on highly crosslinked collagen fibrils, dynamically interacts with osteoblasts and osteoclasts to regulate the process.
of bone regeneration27. Given the shared histological basis of bone and vessel, the genetic correlation analysis in this study suggested that higher head BMD would associated with lower risk of IA. This genetic association was supported by an epidemiological study that the IA risk was increased in patients with BMD in middle and lower tertiles compared with patients with BMD in higher tertile28. Further, with conditional false discovery rate approach29, we identified four shared signals, emphasizing the pleiotropic effect underlying BMD and IA. Two of them demonstrated evidence of colocalization (rs10832558 near \textit{SOX6} and rs11187838 near \textit{PLCE1}). The SNP rs10832558 was at the same effect direction for head BMD and IA, which was not consistent with the inverse genetic correlation. Here, we highlighted the variant rs11187838 shared by BMD and IA with opposite effect direction, which had not been detected by both previous single-trait analysis. This SNP was mapped to \textit{PLCE1} gene, encoding the enzyme phospholipase C epsilon-1. This enzyme could stimulate the Ras and mitogen-activated protein kinase (MAPK) signaling pathway through the regulation of heterotrimeric G protein Galpha30. Ras signaling stimulated the proliferation of immature osteoprogenitor cells to increase the number of osteoblastic descendants in a cell-autonomous fashion31. Additionally, the activation of Ras/MAPK signals could stimulate the migration and proliferation of vascular smooth muscle cells through fibronectin32. These synthetic vascular smooth muscle cells could secrete large amounts of ECM components, including collagen, elastin, and matrix metalloproteinase, causing vascular ECM remodeling33. All these results suggested that \textit{PLCE1} might play important roles in the shared polygenicity between BMD and IA. Finally, we did not observe genetic correlations between BMD and other diseases in our study. As the global genetic correlation represented the average of genome-wide shared association, the nonsignificant global correlation might be due to opposing directions at different genomic regions34. All rights reserved. No reuse allowed without permission.
Several pharmacological agents were available to osteoporosis patients, either by reducing bone resorption such as bisphosphonate and denosumab or by stimulating bone formation such as teriparatide and abaloparatide. The fruitful GWAS discoveries in the bone field have proven useful to identify compounds suitable for drug repurposing. One possible approach is to use genetic variants associated with the expression level of a gene encoding druggable human protein to proxy the lifelong exposure to a medication targeting corresponding gene production. This mendelian randomization (MR) approach could mimic a randomized controlled trial to cost-effectively predict the treatment response of a drug. In this study, by using GWAS data and eQTL data, we prioritized several drug targets for osteoporosis such as ESR1 and SREBF1 etc. The estrogen hormone therapy, targeting ESR1 protein, was an old fashion treatment for osteoporosis, and was rarely used nowadays because of the adverse side effects such as cardiovascular conditions and cancer. The SREBF1 we would highlight here was the target of Doconexent (a high-docosahexaenoic acid supplement) and Omega-3 fatty acids. Daily marine omega-3 supplementation had been widely recommended in the prevention of adverse coronary events. However, the effect of this kind of fatty acids on bone health is controversial. For example, a meta-analysis of 23 randomized controlled trials did not show any significant effect of n-3 PUFA supplementation on BMD at any body's part. Nevertheless, when subgroup analyses were performed, it was observed that the impact of n-3 PUFA supplementation on BMD varied across different regions. Specifically, individuals from Eastern countries exhibited higher BMD at the lumbar spine and femoral neck following n-3 PUFA supplementation, in comparison to individuals from Western countries. However, another systematic review and meta-analysis of randomized controlled trials suggested that n-3 PUFAs might have a beneficial effect on bone health, especially for postmenopausal women. In our study, we revealed a negative association between SREBF1 gene expression and BMD. Previous studies
suggested that the supplement of omega-3 polyunsaturated fatty acid negatively regulated SREBF1. And decreased expression of the SREBF1 gene could inhibit osteoclast formation and bone resorption activity by decreasing NF-κB signaling.

Therefore, we hypothesized that the n-3 PUFA supplementation might be effective for the prevention of osteoporosis. For CCR1 antagonist, BMS-817399 failed in Phase 2, double-blind, placebo-controlled clinical trial, while another CCR1 antagonist (CCX354-C) has shown a good safety and tolerability profile and evidence of clinical activity in rheumatoid arthritis in Phase II trials (NCT01242917). Previous animal study have shown that the activation of CCR1 leads to the formation of osteolytic lesions through the regulation of CCL3.

In conclusion, we conducted large-scale GWASs of DXA-derived BMD traits and identified novel signals that will likely provide new insights into the biological mechanism of osteoporosis. We demonstrated that although PRSs were independently associated with fracture risk, the predictive performance improved marginally compared to the clinical risk factors. Additionally, we uncovered a genetic correlation between head BMD and IA, and the joint associated genes such as PLCE1 might play important roles in the shared genetic basis. Finally, the prioritization of genetically-supported targets implied the potential repurposing drugs (for example the n-3 PUFA supplements targeting SREBF1) for the prevention of osteoporosis.
STAR Methods

Resource availability

Lead contact

Further information and requests for resources should be directed to and will be fulfilled by the lead contact Hou-Feng Zheng (zhenghoufeng@westlake.edu.cn).

Materials availability

This study did not generate unique reagents.

Experimental model and subject details

We included participants from the UK Biobank with DXA-BMD data, fracture data, relevant covariates and genotype data available. To reduce potential population stratification bias, we restricted the analyses to studies with participants of European descent. A total of ~30,000 participants were included in the DXA-BMD GWAS analysis, as well as 352,791 participants (N=35,192 for cases; N=317,599 for controls) for fracture GWAS. Detailed information can be found in the Method details under the “Source of the phenotypes and quality control of the genotype” section. Ethics approval for the UK Biobank research was obtained from the North West Multicentre Research Ethical Committee, and all participants provided informed consent (original ethics committee approval number: 21/NW/0157).

Method details

Source of the phenotypes and quality control of the genotype

As we used before 14,50,51, the individual-level data from the UK biobank (Application 41376) was used for discovery analyses. The UK Biobank is a cohort of roughly ~500,000 participants aged 40-69 years, of which, 487,409 participants were genotyped with the UK Biobank Axiom or UK UKBiLEVE Array, and then
imputed by the 1000 Genomes Project (Phase 3) reference panel. In this study, we extracted BMD traits measured by dual-energy X-ray (DXA) from 11 anatomical sites (i.e., arm, total femur, femoral neck, head, legs, lumbar spine, pelvis, ribs, spine, trunk, and total body) and fracture as phenotypes (Figure 1A and Supplementary Table 22). The fracture cases were defined as participants with the diagnosis of any site of fracture (except fractures with known primary diseases and those with diseases that might affect bone health) (Supplementary Table 22). To minimize the population stratification bias, we further excluded participants who were not of European ancestry (Supplementary Table 22), and those who had a kinship with any participants. For quality control of genotype data, the variants were excluded if the minor allele frequency (MAF) < 0.01, imputation info score < 0.3, missing genotype rates > 0.05, and *P*-value for Hardy–Weinberg equilibrium test < 1 × 10⁻⁶. After the quality control, a total of 5,996,792 imputed variants and around ~30,000 participations (Figure 1A and Table 1) remained for BMD GWAS analysis, as well as 352,791 participants (N=35,192 for cases; N=317,599 for controls) for fracture GWAS (Figure 1A and Table 1).

Genetic association analysis of BMD and fracture

To identify the genetic variants associated with BMD at a genome-wide significant level (*P* ≤ 5 × 10⁻⁸), we conducted the GWAS analyses on BMD traits at 11 skeletal sites. For BMD at each site, the values (g/cm²) were stratified by sex, and then adjusted for age, age², weight, menopause status (only for females), and first 5 principal components using linear regression. The standardized residuals (mean=0 and sd=1) in males and females (i.e., standardized BMD) were used in the GWAS analyses. The associations between genetic variants with phenotypes (i.e., standardized-BMD at 11 skeletal sites) were analyzed using the PLINK software (http://www.cog-genomics.org/plink2/). We then combined the summary statistics of the two sexes by an inverse variance weighted fixed effects meta-analysis, using
the METAL software. To explore sex-specific genetic associations, we performed an extensive analysis utilizing the heterogeneity test for variant-trait associations across males and females. To control for false discoveries, we applied the FDR correction to the heterogeneity test results of all variant-trait associations. Variants with an FDR-corrected \(P \)-value of the heterogeneity test < 0.05 were considered as having sex-specific effects. We also analyzed the association between genetic variants and fracture risk, adjusting for sex, age, weight, and the first 5 principal components using the PLINK software.

Identification of statistical independence and novel loci

The conditional independent signals for each BMD trait (between-sex meta-analysis) were defined using the conditional and joint (COJO; gcta --cojo-slct) analysis. 10,000 randomly selected unrelated white British individuals from the UK Biobank were used as linkage disequilibrium (LD) references. The conditional independent SNV for each signal was defined as the SNV with both \(P \)-value for original GWAS and \(P \)-value for COJO joint analyses less than \(5 \times 10^{-8} \). Among these independent signals, the association was classified into the “novel” signal if all SNPs within one signal (conditional independent SNV ± 250 kb) have not been reported to be significantly associated with BMD \((P < 1 \times 10^{-6}) \) in previous BMD GWASs. Across 11 BMD traits, the identified conditional independent significant SNVs were merged into one locus if they were closely located to each other (<500 kb), leaving the SNP with the smallest \(P \)-value as the lead SNP. The pleiotropic genomic locus was defined as a genomic locus containing multiple conditional independent signals for different BMD traits.

Variant annotation

We then used the ANNOVAR software, and Functional Mapping and Annotation of Genome-wide Association Studies (FUMA, https://fuma.ctglab.nl/), as well as...
Online Mendelian Inheritance in Man database (OMIM, http://omim.org/) \(^{58}\), to obtain functional annotation for conditional independent significant SNVs. Specifically, these SNVs were first physically annotated using ANNOVAR software. Based on the FUMA website, we further obtained the eQTL and chromatin interaction annotation results. We selected eQTL datasets from eQTLGen Consortium and five tissue types (i.e., artery tibial, whole blood, and muscle-skeletal) based on the Genotype-Tissue Expression project (GTEx v8), and long-range interactions (Hi-C) dataset from GSE87112 (Mesenchymal stem cell). Additionally, we performed the gene map search in OMIM dataset using ‘(OSTEOPOROSIS OR “bone fragility” OR “fragile bones” OR “bone mineral density”)’ to obtain gene list for BMD phenotype. For each physical annotated genes, we collected corresponding evidence codes from the above datasets (p for physical annotation; e for eQTL annotation; h for HiC annotation; o for OMIM results).

Integrating polygenic risk score with clinical risk score for risk stratification of fracture

Training, validation, and test datasets

We evaluated the potential clinical utility of polygenic risk scores (PRRs) for fracture incidence combined with traditional clinical risk factors. Here, two training datasets were set in the analyses for DXA-derived BMD (training dataset 1) and heel BMD/fracture (training dataset 2), respectively (Figure 2A). The training dataset 1 was derived from the aforementioned DXA-derived BMD GWAS. Additionally, all fracture cases (N=35,192) and controls (N=317,599) from the UK biobank were randomly divided into three distinct datasets: training dataset 2 (N=171,459 for controls, N=19,363 for cases), validation (N=73,070 for controls, N=7914 for cases), and test (N=73,070 for controls, N=7915 for cases). These divisions were conducted according to a ratio of 2:1:1. Following this, both heel BMD GWAS and fracture
GWAS analyses were performed utilizing the aforementioned GWAS pipeline in training dataset 2 (Figure 2A).

Generation of polygenic risk scores (PRSs)

Based on GWAS summary statistics from 13 traits (i.e., 11 DXA-derived BMD traits, heel BMD and fracture) in training datasets, we then used the PRSice 2 software \(^{59}\) to implement the clumping and threshold approach for developing PRSs for fracture in the validation dataset (Figure 2A). The best predictive PRSs were assessed for transferability and predictivity through the \(P\)-values and Nagelkerke R\(^2\) in logistic model implemented in PRSice 2 software \(^{59}\), which corrected for age, sex, weight and population stratification (first five principal components). After obtaining the \(P\)-values threshold for the best predictive PRS from the validation dataset, we calculated the corresponding PRS for each participant in the test dataset (Figure 2A).

Generation of metaPRS

To generate a combined PRS (i.e., metaPRS), we first removed the 4,248 participants with fracture history at the baseline to generate a validation cohort dataset (N=72,648 controls; N=4,088 cases) (Figure 2A). Based on this validation cohort dataset, we included all 13 PRSs and conducted stepwise Cox regression in the validation cohort dataset, which could automatically select a reduced number of predictor variables for building the best-performing Cox regression model. Accordingly, we computed the metaPRS by summation of single PRS (which were contained in the best-performing model), weighted by beta value from stepwise Cox regression.

Prediction fracture risk
In this analysis, based on test datasets, we further removed the participants with fracture history at the baseline, leaving 76,613 participants as the test cohort datasets for fracture (N=72,629 controls; N=3,984 cases) (Figure 2A). We first generated a basic FRAX-BMD model including clinical risk factors from FRAX tools [i.e., sex (categorical: male and female), age (continuous: years), obesity (categorical: 1st, BMI \(\leq 20; 2^{nd}, 20<BMI\leq25; 3^{rd}, 25<BMI\leq30; 4^{th}, 30<BMI\leq35; 5^{th}, 35<BMI\leq40; 6^{th}, 40<BMI\leq45; 7^{th}, BMI>45), current smoking (categorical: yes and no), current alcohol consumption (categorical: yes and no), and glucocorticoids medicine use (categorical: yes and no)] and heel BMD (Supplementary Table 22). Using Cox regression for fracture, we obtained the predicted values based on the basic FRAX-BMD model in the test dataset. We then employed C-statistic as a quantitative measure to evaluate the accuracy of the basic FRAX-BMD model using these predicted values in the same dataset. Additionally, we quantify the variations in discriminative power when integrating various PRSs into the basic FRAX-heel BMD model (FRAX-heel BMD PRS model). Specifically, for each type of PRS (i.e., heel BMD, 11 DXA-BMD, fracture and metaPRS), we performed a multiple Cox regression for fracture adjusting for age, sex, obesity, smoking, alcohol, glucocorticoids medicine use, heel BMD, and population stratification (the first five principal components). Based on these predicted values, C-statistics and net reclassification improvement (NRI) were used to estimate the improvement in discrimination and reclassification after adding the various PRSs to the basic FRAX-BMD model. The C-statistics change was calculated by \(\frac{(C\text{-statistics}_{\text{FRAX-heel BMD PRS model}} - C\text{-statistics}_{\text{FRAX-heel BMD model}})}{(C\text{-statistics}_{\text{FRAX-heel BMD model}} - 0.5)} \times 100\% \). The difference of C-statistics from various FRAX-heel BMD PRS models were estimated based on student t-test using \textit{cindex.comp} function from “survomp” R package. The optimal cutoff point, which was obtained from the FRAX-BMD metaPRS model, was utilized to calculate NRI.
Additionally, to visualize the cumulative incidence of incident fractures across polygenic risk categories (i.e., low (bottom quartile), intermediate (the second to the third quartile), and high (top quartile) polygenic risk categories according to the quintiles of the metaPRS), we employed the “survminer” R package in the test cohorts consisting of time-to-fracture information and corresponding fracture events as well as polygenic risk categories. We also utilized the `cuminc` function to calculate the cumulative incidence curves. Based on the `survfit` function from “survomp” R, we estimated the 10-year absolute fracture risk, and then assessed the interplay of metaPRS and the clinical risk score (from the basic FRAX-heel BMD model) in impacting the risk of fracture.

Shared genetic basis of BMD and common chronic diseases

Genetic correlation and polygenic overlap

In this study, we first estimated the phenotypic correlation between 11 DXA-derived BMD traits (i.e., arms, femur neck, total femur, head, leg, lumbar spine, pelvis, rib, spine, total body and trunk BMD) using spearman correlation. We then supplied the genetic correlation among them using GCTA software, considering the sample overlap. Additionally, we performed linkage disequilibrium score regression (LDSC) analyses \(^60\), based on 1000 Genomes Project European panel, to assess the genome-wide genetic correlation (\(r_g\)) between DXA-BMD and 13 selected common chronic diseases, including neurodegenerative diseases (Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis and multiple sclerosis) \(^61-64\), cardiovascular diseases (stroke, intracranial aneurysm, atrial fibrillation, coronary artery disease and heart failure) \(^65-69\) and autoimmune diseases (rheumatoid arthritis, systemic lupus erythematosus and inflammatory bowel diseases) \(^70-72\). For BMD phenotypes with statistically significant genetic correlation, we supplied the bivariate causal mixture model (MiXeR) to quantify the polygenic overlap between BMD and selected chronic diseases beyond genetic correlations \(^29\). For a pair of
phenotypes, MiXeR estimated the number of trait-influencing SNPs (i.e., SNPs with effects on the disease not inducted by LD) for each trait and the number of shared trait-influencing SNPs based on a bivariate Gaussian mixture model.

Discovery of the shared risk loci

To discover the pleiotropic genetic variants, we performed conditional/conjunctural false discovery rate (condFDR/conjFDR) analysis using genetic summary statistics. We limited our analysis to BMD phenotypes that have evidence to support the shared genetic architecture with common chronic diseases. Based on an empirical Bayesian statistical framework, in the condFDR method, the association between variant and secondary phenotype was used to re-ranks the test statistics and re-calculate the association of this variant with primary phenotype. The conjFDR is determined as the maximum of two condFDR values, which provides a conservative estimate of the posterior probability that a genetic variant showed association with either trait. In this study, the shared genetic variants were defined as variants with conjFDR <0.05. For these identified risk loci with shared effects, we further used the “coloc” R package to determine whether the association signals for DXA-derived BMD and common chronic diseases would co-localize at the shared loci. After extracting genetic association estimates for variants within 250kb of the lead SNP, the probability of H4 that the two traits share one causal variant were calculated. The loci with a probability of H4>0.5 were considered to colocalize.

Genetic-driven prioritization of drug targets

The therapeutic target lists were obtained from the ChEMBL database (release 29), which curates the drug information from multiple sources (e.g., United States Adopted Name applications, ClinicalTrials.gov, and FDA Orange Book database). Specifically, based on the targets search results, the proteins with values of activity
term ≤ 100 and organisms from homo sapiens remained. Accordingly, a total of
3,329 unique druggable genes that encode human target proteins with ENSG ID for
approved drugs or clinical candidates were retained in the following analyses
(Supplementary Table 23).

We then conducted a series of bioinformatic analyses [i.e., summary-based
Mendelian randomization (SMR) and colocalization] to identify prioritized putative
druggable genes for BMD treatment. First, we assessed whether the potential
genetically regulated expression level of druggable genes were associated with
DXA-BMD using SMR \(^7\). In SMR analyses, the genetic variants were used as
instrumental variables to link the outcome (i.e., DXA-BMD) via the exposure of
interest (i.e., the expression level of candidate gene). And the instrumental variables
were extracted from the cis-eQTLs in three tissues (i.e., muscle, artery tibial, and
whole-blood tissues) from GTEx version 8 projects \(^7\) and from eQTLGen
consortium (whole blood) \(^8\). Linkage clumping was conducted based on default
protocols. For each DXA-dervied BMD phenotype, the SMR results of the
druggable genes were retained with false discovery rate (FDR)-corrected
significance (FDR-corrected \(P_{\text{SMR}}<0.05\) and \(P_{\text{HEIDI}}>0.05\)). Among genes with SMR
evidence, we further assessed whether the eQTL and DXA-dervied BMD
association signals would co-localize at shared loci (i.e., the probability of H4).
Specifically, after extracting genetic association estimates of eQTL and DXA-
dervied BMD traits with variants within 250kb of the lead SNP, colocalization
analyses were performed. The genes with a probability of H4>0.5 were considered
to colocalize \(^7\). The drug information of genes with SMR evidence was obtained
from the GeneCards website (https://www.genecards.org), which collected
information from DrugBank, ApexBio, DGIdb, ClinicalTrials.gov, and/or
PharmGKB.
Acknowledgments

We thank the High-Performance Computing Center at Westlake University for the facility support and technical assistance. This work was supported by China National GeneBank (CNGB) and KingMed Diagnostics, Co., Ltd.

Funds

This work was supported by the National Natural Science Foundation of China (#82370887), the "Pioneer" and "Leading Goose" R&D Program of Zhejiang (#2023C03164), the Chinese National Key Technology R&D Program, Ministry of Science and Technology (#2021YFC2501702), and the funds from the Westlake Laboratory of Life Sciences and Biomedicine (#202208014).

Author contributions

Declaration of interests

The authors declare no competing interests.

Data and code availability

The summary statistics of the present GWAS on 11 DXA-BMD traits were deposited on the website (https://wbbc.westlake.edu.cn/downloads.html). This study does not report the original code.
Reference

42. Gao, J. et al. The Effects of n-3 PUFA Supplementation on Bone Metabolism Markers and Body Bone Mineral Density in Adults: A Systematic Review

52. Bycroft, C. et al. The UK Biobank resource with deep phenotyping and

Figure legends

Figure 1 Genetic architecture of DXA-BMD at multiple skeletal sites. (A) the skeletal sites of 11 DXA-derived BMD traits and the GWAS study design; (B) the associated genetic loci for DXA-derived BMD and fracture; (C) Regional association plots of flanking 250kb region around the rs10840273, based leg BMD GWAS, SWAP70 eQTL and SWAP70 pQTL. The x-axis denotes the physical position of each genetic variant on the chromosome specified, whereas the y-axis indicates the evidence of association, which was shown as $-\log_{10}(P\text{-value})$; (D) Regional association plots of flanking 250kb region around the rs746100, based femur total BMD GWAS and ABCA1 eQTL. The x-axis denotes the physical position of each genetic variant on the chromosome specified, whereas the y-axis indicates the evidence of association, which was shown as $-\log_{10}(P\text{-value})$; (E) Forest plot of the genetic association estimates of two sex-specific genetic variants.

Abbreviations: BMD, bone mineral density; DXA, dual-energy X-ray absorptiometry; eQTL, expression quantitative trait locus; GWAS, genome-wide association study; pQTL, genotype–protein association.

Figure 2 PRS demonstrated marginal improvement in fracture prediction. (A) study design; (B) Forest plot of the association of each PRS with fracture risk, adjusting for age, sex, obesity, smoking, alcohol, glucocorticoids medicine use, heel BMD, and population stratification (the first five principal components); (C) The fracture predictive results of three models. The FRAX model included clinical risk factors from FRAX tools [i.e., sex, age, obesity, current smoking, current alcohol consumption, and glucocorticoids medicine use]. For the FRAX-heel BMD model, heel BMD was integrated with on the FRAX model. For the FRAX-heel BMD metaPRA model, metaPRS was integrated into the FRAX-heel BMD model; (D) The lifetime and 10-year probability of fracture occurrence across metaPRS categories within each clinical risk strata.

Abbreviations: PRS, polygenic risk score

Figure 3 The shared genetic architecture of head BMD and intracranial aneurysm. (A) heatmap of genetic and phenotypic correlation between 11 DXA-derived BMD; (B) the genetic correlations of head BMD with 13 common chronic diseases; (C) Venn diagrams of shared variants between head BMD and intracranial aneurysm, and unique variants per trait; (D) Shared loci between head BMD and intracranial aneurysm. Common genetic variants jointly associated with head BMD and intracranial aneurysm at conjFDR < 0.05 were highlighted in red. (E) Forest plot of the genetic association estimates of four joint-associated variants with head BMD and intracranial aneurysm.

Abbreviations: BMD, bone mineral density.
Figure 4 Prioritization of drug targets. (A) the result of four genes with mendelian randomization evidence. The red downward triangle indicates that genetically predicted expression level of this gene is negatively correlated with BMD, while the blue upward triangle indicates a positive association for BMD; (B) Forest plot of the association of genetically predicted $SREBF1$, $CCR1$, $NCOR1$ and $ESR1$ gene expression with BMD, based on summary-based mendelian randomization analyses; (C) colocalization results of GWAS and eQTL within $SREBF1$, $CCR1$, $NCOR1$ and $ESR1$ gene regions; (D) the drug development status of $SREBF1$, $CCR1$, $NCOR1$ and $ESR1$ genes.

Abbreviations: BMD, bone mineral density; eQTL, expression quantitative trait locus; GWAS, genome-wide association study.
Table 1 the detailed information on genome-wide association studies of 11 bone mineral density sites.

<table>
<thead>
<tr>
<th>Phenotype</th>
<th>Sample size</th>
<th>Conditional independent signals</th>
<th>Heritability</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Known</td>
<td>Novel</td>
</tr>
<tr>
<td>Single BMD phenotype</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Head BMD</td>
<td>31986</td>
<td>69</td>
<td>0</td>
</tr>
<tr>
<td>Arm BMD</td>
<td>31873</td>
<td>34</td>
<td>0</td>
</tr>
<tr>
<td>Femoral neck BMD</td>
<td>32017</td>
<td>36</td>
<td>4</td>
</tr>
<tr>
<td>Femur total BMD</td>
<td>31873</td>
<td>41</td>
<td>3</td>
</tr>
<tr>
<td>Leg BMD</td>
<td>31873</td>
<td>43</td>
<td>1</td>
</tr>
<tr>
<td>Lumbar spine BMD</td>
<td>30449</td>
<td>40</td>
<td>1</td>
</tr>
<tr>
<td>Pelvis BMD</td>
<td>31873</td>
<td>48</td>
<td>1</td>
</tr>
<tr>
<td>Rib BMD</td>
<td>31873</td>
<td>22</td>
<td>0</td>
</tr>
<tr>
<td>Spine BMD</td>
<td>31986</td>
<td>37</td>
<td>0</td>
</tr>
<tr>
<td>Total BMD</td>
<td>31986</td>
<td>61</td>
<td>0</td>
</tr>
<tr>
<td>Trunk BMD</td>
<td>31873</td>
<td>45</td>
<td>1</td>
</tr>
<tr>
<td>All BMD-related phenotypes</td>
<td>\</td>
<td>476 (232 unique)</td>
<td>11 (8 unique)</td>
</tr>
<tr>
<td>Fracture</td>
<td>352,791</td>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>(N=35,192 for cases;</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N=317,599 for controls)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Across phenotypes</td>
<td>\</td>
<td>87</td>
<td>5</td>
</tr>
</tbody>
</table>
Table 2 Summary of novel conditional independent signals for 11 BMD traits

<table>
<thead>
<tr>
<th>Lead SNP of conditional independent locus across all BMD traits</th>
<th>Conditional independent SNP for the single trait</th>
<th>Skeletal sites</th>
<th>Chromosome:Position</th>
<th>Candidate Gene</th>
<th>EA</th>
<th>NEA</th>
<th>EAF</th>
<th>Meta-analysis</th>
<th>P-value for single-trait conditional analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>rs746100</td>
<td>rs1039406</td>
<td>Lumbar spine</td>
<td>9:107748958</td>
<td>ABCA1 (pe)</td>
<td>C</td>
<td>T</td>
<td>0.472</td>
<td>-0.049</td>
<td>0.009</td>
</tr>
<tr>
<td>rs746100</td>
<td>rs746100</td>
<td>Femur neck</td>
<td>9:107749051</td>
<td>ABCA1 (pe)</td>
<td>A</td>
<td>C</td>
<td>0.472</td>
<td>-0.050</td>
<td>0.008</td>
</tr>
<tr>
<td>rs746100</td>
<td>rs746100</td>
<td>Femur total</td>
<td>9:107749051</td>
<td>ABCA1 (pe)</td>
<td>A</td>
<td>C</td>
<td>0.472</td>
<td>-0.050</td>
<td>0.008</td>
</tr>
<tr>
<td>rs746100</td>
<td>rs746100</td>
<td>Pelvis</td>
<td>9:107749051</td>
<td>ABCA1 (pe)</td>
<td>A</td>
<td>C</td>
<td>0.472</td>
<td>-0.049</td>
<td>0.008</td>
</tr>
<tr>
<td>rs746100</td>
<td>rs746100</td>
<td>Trunk</td>
<td>9:107749051</td>
<td>ABCA1 (pe)</td>
<td>A</td>
<td>C</td>
<td>0.472</td>
<td>-0.048</td>
<td>0.008</td>
</tr>
<tr>
<td>rs10840273</td>
<td>rs10840273</td>
<td>Leg</td>
<td>11:9642451</td>
<td>SWAP70 (peh)</td>
<td>T</td>
<td>C</td>
<td>0.405</td>
<td>0.050</td>
<td>0.009</td>
</tr>
<tr>
<td>rs12916774</td>
<td>rs12916774</td>
<td>Femur neck</td>
<td>15:101710165</td>
<td>CHSY1 (peh)</td>
<td>G</td>
<td>A</td>
<td>0.201</td>
<td>-0.062</td>
<td>0.010</td>
</tr>
<tr>
<td>rs12916774</td>
<td>rs11630618</td>
<td>Femur total</td>
<td>15:101710434</td>
<td>CHSY1 (peh)</td>
<td>C</td>
<td>T</td>
<td>0.216</td>
<td>-0.056</td>
<td>0.010</td>
</tr>
<tr>
<td>rs927059</td>
<td>rs927059</td>
<td>Femur neck</td>
<td>20:21914194</td>
<td>PAX1 (pe)</td>
<td>T</td>
<td>C</td>
<td>0.432</td>
<td>0.047</td>
<td>0.008</td>
</tr>
<tr>
<td>rs6013897</td>
<td>rs35194449</td>
<td>Femur total</td>
<td>20:52742047</td>
<td>CYP24A1 (ph)</td>
<td>T</td>
<td>C</td>
<td>0.196</td>
<td>-0.065</td>
<td>0.010</td>
</tr>
<tr>
<td>rs6013897</td>
<td>rs6013897</td>
<td>Femur neck</td>
<td>20:52742479</td>
<td>CYP24A1 (ph)</td>
<td>A</td>
<td>T</td>
<td>0.199</td>
<td>-0.068</td>
<td>0.010</td>
</tr>
</tbody>
</table>

1 For each annotated gene, the meaning of corresponding evidence codes: p for physical annotation; e for eQTL annotation; h for HiC annotation; o for OMIM results.
2 Abbreviations: BMD, bone mineral density; EA, effect allele; EAF, effect allele frequency; eQTL, expression quantitative trait locus; HiC: long-range interactions; NEA, non-effect allele; OMIM: Online Mendelian Inheritance in Man database; SNP, single-nucleotide polymorphisms.
91 unique and independent BMD-related loci, including 5 novel signals
8 fracture signals

GWAS on 91 DXA-BMD (N=30,000) and fracture (N=33,752 for cases, N=317,599 for controls)

91 unique and independent BMD-related loci, including 5 novel signals
8 fracture signals

GWAS on 91 DXA-BMD (N=30,000) and fracture (N=33,752 for cases, N=317,599 for controls)

Conditional analysis (e.g., sex-diet)

Heterogeneity test for variant-trait associations across sexes

Two sex-specific loci
(Female-specific BMD-related loci: rs4546608, CYP24A1; male-specific BMD-related loci: rs26140668, CYP24A1)

Variant annotation using Multi-omics datasets
Physical annotation (ANNOVAR software); eQTL annotation (FUMA website); Hi-C annotation (FUMA website); GEMM results

The association of gene expression with traits
Mendelian randomization
Summary-based Mendelian randomization

Five potential candidate genes (i.e., ABCA1, CHST1, CYP24A1, SWAP70, and PAX1) to five novel loci

rs10840273 P-value = 4.52×10^-6 for leg BMD GWAS

rs746100 P-value = 1.64×10^-10 for femur total BMD GWAS

P-value = 2.68×10^-12 for ABCA1 eQTL

rs26140668 C

CYP24A1 (ph)

CYP24A1 (peh)

SWAP70 (phk)

SWAP70 (pek)

CSX1 (phk)

P-value = 2.42×10^-6 for SWAP70 eQTL

P-value = 2.94×10^-6 for SWAP70 eQTL

P-value = 0.54 (0.012) 0.001

P-value = 0.054 (0.012) 4.24×10^-6

P-value = 0.087 (0.012) 2.75×10^-6

P-value = 0.017 (0.013) 0.186

P-value = 0.009 (0.011) 2.44×10^-6

P-value = 0.017 (0.013) 0.186

P-value = 0.009 (0.011) 2.44×10^-6

P-value = 0.017 (0.013) 0.186

P-value = 0.009 (0.011) 2.44×10^-6

P-value = 0.017 (0.013) 0.186

P-value = 0.009 (0.011) 2.44×10^-6

P-value = 0.017 (0.013) 0.186

P-value = 0.009 (0.011) 2.44×10^-6
Fracture cases from UK Biobank dataset
(N=35,192)
Controls from UK Biobank dataset
(N=317,599)

Training dataset
(N=19,363 for cases; N=171,459 for controls)
Validation dataset
(N=7914 for cases; N=73,070 for controls)
Test dataset
(N=7915 for cases; N=73,070 for controls)

Generation of polygenic risk scores for fracture
PRSice2 software
Providing the weights
Providing the P-threshold

Generation of metaPRS
Stepwise Cox regression of 13 single PRSs
Providing the metaPRS

Accuracy of predicted model:
FRAX-Heel BMD model and FRAX-Heel BMD-PRS model
C-statistic and net reclassification improvement

Cumulative incidence of incident fractures across polygenic risk categories
Survminer R package

10-year absolute fracture risk across polygenic and clinical risk categories
Survomp R package

Polygenic risk score demonstrated marginal improvement in fracture prediction

<table>
<thead>
<tr>
<th>Exposure</th>
<th>HR (95% CI)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>LSBMD PRS</td>
<td>1.031 (1.000-1.064)</td>
<td>0.054</td>
</tr>
<tr>
<td>Leg BMD PRS</td>
<td>1.047 (1.015-1.080)</td>
<td>0.005</td>
</tr>
<tr>
<td>Rib BMD PRS</td>
<td>1.050 (1.018-1.084)</td>
<td>0.003</td>
</tr>
<tr>
<td>Arms BMD PRS</td>
<td>1.052 (1.020-1.086)</td>
<td>0.002</td>
</tr>
<tr>
<td>Spine BMD PRS</td>
<td>1.061 (1.028-1.095)</td>
<td>2.81×10^-4</td>
</tr>
<tr>
<td>Total BMD PRS</td>
<td>1.064 (1.031-1.098)</td>
<td>1.47×10^-4</td>
</tr>
<tr>
<td>Pelvis BMD PRS</td>
<td>1.066 (1.033-1.100)</td>
<td>9.29×10^-4</td>
</tr>
<tr>
<td>Head BMD PRS</td>
<td>1.068 (1.035-1.102)</td>
<td>4.33×10^-4</td>
</tr>
<tr>
<td>FN BMD PRS</td>
<td>1.073 (1.039-1.107)</td>
<td>2.02×10^-3</td>
</tr>
<tr>
<td>Femur total BMD PRS</td>
<td>1.076 (1.043-1.110)</td>
<td>8.58×10^-4</td>
</tr>
<tr>
<td>Trunk BMD PRS</td>
<td>1.081 (1.048-1.116)</td>
<td>1.56×10^-4</td>
</tr>
<tr>
<td>Fracture PRS</td>
<td>1.084 (1.051-1.119)</td>
<td>4.01×10^-4</td>
</tr>
<tr>
<td>Heel BMD PRS</td>
<td>1.106 (1.070-1.144)</td>
<td>5.65×10^-3</td>
</tr>
<tr>
<td>MetaPRS</td>
<td>1.134 (1.097-1.173)</td>
<td>4.15×10^-14</td>
</tr>
</tbody>
</table>

C statistics
0.575 0.600 0.625 0.650

Fracture Predictive Model
FRAX-Heel BMD model
FRAX-Heel BMD metaPRS model

Intervention treatment threshold for a major fracture at age 55 years

10-year probability of fracture occurrence in fracture cases
A

![Heatmap of BMD measurements across different body regions](image)

B

Genetic correlation

- **Head BMD**
- **Intracranial aneurysm**

<table>
<thead>
<tr>
<th>Trait</th>
<th>Phenotype</th>
<th>Beta (SE)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Head BMD</td>
<td>Intracranial aneurysm</td>
<td>-0.060 (0.016)</td>
<td>1.39×10^-4</td>
</tr>
<tr>
<td>Intracranial aneurysm</td>
<td>Head BMD</td>
<td>0.153 (0.041)</td>
<td>2.28×10^-4</td>
</tr>
<tr>
<td>Head BMD</td>
<td>Intracranial aneurysm</td>
<td>-0.047 (0.013)</td>
<td>9.76×10^-6</td>
</tr>
<tr>
<td>Intracranial aneurysm</td>
<td>Head BMD</td>
<td>0.135 (0.031)</td>
<td>9.76×10^-4</td>
</tr>
<tr>
<td>Head BMD</td>
<td>Intracranial aneurysm</td>
<td>-0.036 (0.008)</td>
<td>1.36×10^-5</td>
</tr>
<tr>
<td>Intracranial aneurysm</td>
<td>Head BMD</td>
<td>0.075 (0.019)</td>
<td>1.24×10^-4</td>
</tr>
<tr>
<td>Head BMD</td>
<td>Intracranial aneurysm</td>
<td>-0.063 (0.009)</td>
<td>2.42×10^-11</td>
</tr>
<tr>
<td>Intracranial aneurysm</td>
<td>Head BMD</td>
<td>-0.103 (0.025)</td>
<td>5.51×10^-3</td>
</tr>
</tbody>
</table>

C

![Venn diagram showing relationships between traits](image)

D

- **rs72560793 (ALDH8A1) gene**
- **rs10832558 (SOX6) gene**
- **rs10958404 (RNU105C) gene**

E

Pleiotropic gene

<table>
<thead>
<tr>
<th>Phenotype</th>
<th>beta (SE)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Head BMD</td>
<td>Intracranial aneurysm</td>
<td>-0.063 (0.009)</td>
</tr>
<tr>
<td>Intracranial aneurysm</td>
<td>Head BMD</td>
<td>-0.103 (0.025)</td>
</tr>
</tbody>
</table>
A: Medelian randomization evidence

- **SREBF1**
- **CCR1**
- **NCOR1**
- **ESR1**

B: Exposure and Outcome

<table>
<thead>
<tr>
<th>Exposure</th>
<th>Outcome</th>
<th>beta(SE)</th>
<th>P-value for SMR</th>
<th>P-value for HEIDI test</th>
</tr>
</thead>
<tbody>
<tr>
<td>SREBF1 expression</td>
<td>Head BMD</td>
<td>-0.157 (0.036)</td>
<td>1.27×10^{-5}</td>
<td>0.293</td>
</tr>
<tr>
<td>SREBF1 expression</td>
<td>Total BMD</td>
<td>-0.131 (0.036)</td>
<td>2.57×10^{-4}</td>
<td>0.675</td>
</tr>
<tr>
<td>CCR1 expression</td>
<td>Head BMD</td>
<td>-0.079 (0.016)</td>
<td>1.76×10^{-6}</td>
<td>0.094</td>
</tr>
<tr>
<td>CCR1 expression</td>
<td>Total BMD</td>
<td>-0.084 (0.016)</td>
<td>3.16×10^{-7}</td>
<td>0.053</td>
</tr>
<tr>
<td>NCOR1 expression</td>
<td>Head BMD</td>
<td>0.103 (0.026)</td>
<td>7.99×10^{-5}</td>
<td>0.158</td>
</tr>
<tr>
<td>NCOR1 expression</td>
<td>Total BMD</td>
<td>0.109 (0.026)</td>
<td>3.01×10^{-5}</td>
<td>0.458</td>
</tr>
<tr>
<td>ESR1 expression</td>
<td>Head BMD</td>
<td>-0.296 (0.070)</td>
<td>2.40×10^{-5}</td>
<td>0.356</td>
</tr>
<tr>
<td>ESR1 expression</td>
<td>Leg BMD</td>
<td>-0.586 (0.079)</td>
<td>9.13×10^{-14}</td>
<td>0.078</td>
</tr>
<tr>
<td>ESR1 expression</td>
<td>Pelvis BMD</td>
<td>-0.556 (0.078)</td>
<td>7.08×10^{-13}</td>
<td>0.052</td>
</tr>
<tr>
<td>ESR1 expression</td>
<td>Rib BMD</td>
<td>-0.661 (0.081)</td>
<td>4.94×10^{-16}</td>
<td>0.150</td>
</tr>
<tr>
<td>ESR1 expression</td>
<td>Spine BMD</td>
<td>-0.686 (0.082)</td>
<td>8.98×10^{-17}</td>
<td>0.095</td>
</tr>
<tr>
<td>ESR1 expression</td>
<td>Total BMD</td>
<td>-0.638 (0.081)</td>
<td>2.34×10^{-15}</td>
<td>0.060</td>
</tr>
<tr>
<td>ESR1 expression</td>
<td>Trunk BMD</td>
<td>-0.674 (0.082)</td>
<td>1.93×10^{-16}</td>
<td>0.056</td>
</tr>
<tr>
<td>ESR1 expression</td>
<td>Femur total BMD</td>
<td>-0.457 (0.074)</td>
<td>7.53×10^{-10}</td>
<td>0.108</td>
</tr>
<tr>
<td>ESR1 expression</td>
<td>Femur neck BMD</td>
<td>-0.405 (0.073)</td>
<td>2.55×10^{-8}</td>
<td>0.200</td>
</tr>
</tbody>
</table>

C: Colocalization evidence

- Posterior probability that two traits share a same causal variant
 - 0.985
 - 0.765
 - 0.976
 - 0.086

D: Drug development status

<table>
<thead>
<tr>
<th>Targets</th>
<th>Drug name</th>
<th>Type</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>SREBF1</td>
<td>Doconexent</td>
<td>Inhibitor</td>
<td>Approved</td>
</tr>
<tr>
<td>SREBF1</td>
<td>Omega-3 fatty acids</td>
<td>Inhibitor</td>
<td>Approved</td>
</tr>
<tr>
<td>CCR1</td>
<td>CCX354-C</td>
<td>Inhibitor</td>
<td>Investigational</td>
</tr>
<tr>
<td>NCOR1</td>
<td>\</td>
<td>\</td>
<td>\</td>
</tr>
<tr>
<td>ESR1</td>
<td>Estradiol</td>
<td>Agonist</td>
<td>Approved</td>
</tr>
</tbody>
</table>

All rights reserved. No reuse allowed without permission.

The copyright holder for this preprint this version posted January 20, 2024.

https://doi.org/10.1101/2024.01.18.24301465