Pharmacogenomic diversity in psychiatry: Challenges and Opportunities in Africa

Muktar B. Ahmed, PhD1; Anwar Mulugeta, PhD2,3; Niran Okewole, PhD1; Klaus Oliver Schubert, MD, PhD1,5,6; Scott R. Clark, MBBS, PhD1; Conrad O. Iyegbe, PhD7; Azmeraw T. Amare, MPH, MSc, PhD1

1 Discipline of Psychiatry, School of Medicine, University of Adelaide, Adelaide, SA, Australia

2 Australian Centre for Precision Health, University of South Australia, Adelaide, SA, Australia

3 UniSA Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia

4 Neuropsychiatric Hospital Aro, Abeokuta, Nigeria

5 Northern Adelaide Local Health Network, Mental Health Services, Australia

6 Headspace Adelaide Early Psychosis, Sonder, Adelaide, Australia

7 Department of Genetics and Genomic Sciences, Icahn School of Medicine, Mount Sinai, New York, USA

Correspondence to: Azmeraw T. Amare,

Adelaide Medical School, The University of Adelaide, Adelaide, SA 5000, Australia

Tel: +61 8 83137438

E-Mail: azmeraw.amare@adelaide.edu.au

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Abstract

Background: Pharmacogenomic studies on psychiatric drugs have slowly identified genetic variations that influence drug metabolism and treatment effectiveness in patients with mental illness. Because most of these studies predominantly centered on people of European descent, there remains a substantial knowledge gap on the clinical implications of current pharmacogenomic evidence in multi-ancestry populations such as Africans. Thus, whether pharmacogenomic (PGx) genetic testing implemented in European populations would be valid for a population of African origin is unknown. The objective of this review was to appraise previous psychiatric pharmacogenomic studies in Africa and highlight challenges and opportunities to initiate PGx testing in the region.

Methods: A systematic literature search was conducted on PubMed, Scopus, and Web of Science to identify studies published in the English language from inception up to February 06, 2023. The primary outcomes were treatment response, remission, side effects, and drug metabolism in African psychiatric patients.

Results: The review included 42 pharmacogenomic studies that explored the genetic profiles of psychiatric patients in Africa. Despite the limited number of studies, our review found strong evidence of pharmacogenomic diversity within the African populations, highlighting the importance of pharmacogenomic research in this population. A high degree of variability and differences in the frequencies of cytochrome P450 (CYPs) genotypes have been reported within the African population. It is estimated that 28% of North Africans and Ethiopians are ultrarapid metabolizers of several medications, mainly attributed to the increased activity of the CYP2D6 enzyme. This is significantly higher than the prevalence among Caucasians (10%), or Hispanics, Chinese, or Japanese populations (1%). Due to the defective CYP2C19*2 allele (at a frequency of 14%) and CYP2C19*3 allele (2% frequency), 5.2% of Ethiopians were identified as poor metabolizers of S-mephenytoin, a probe substrate used to assess the activity of the cytochrome P450 enzyme. In Tunisian patients with schizophrenia, genotyping the CYP1A2 gene and using therapeutic drug monitoring (TDM) improved the effectiveness and safety of clozapine. Among South African patients with schizophrenia, antipsychotic treatment response was associated with two gene variants (rs13025959 in the MYO7B gene with the ‘C’ allele and rs10380 in the MTRR gene with the ‘T’ allele).

Conclusion: The review has identified evidence of pharmacogenomic diversity in African populations and recommended expanding pharmacogenomic studies while introducing PGx testing in this population. For the few characterized genes, Africans showed qualitative and quantitative differences in the profile of pharmacogenetic variants when compared to other ethnic groups. Limited research funding, inadequate infrastructure, and a shortage of skilled human resources might be a challenge, but by building upon local successes and through collaborations with international partners, it is possible to establish pharmacogenomic biobanks and leverage global genetic resources to initiate personalized treatment approaches in Africa.

Keywords: Pharmacogenomics, Personalized medicine, Psychiatric disorders, Africa, Genetic variants, depression, schizophrenia
Introduction

Psychiatric disorders continue to be a major global concern, ranking among the top ten leading causes of disease burden worldwide [1]. In 2019, mental disorders accounted for 125.3 million disability-adjusted life years (DALYs) globally, representing 4.9% of the global burden of disease [1]. The prevalence of mental health disorders is a significant challenge in Africa, given the region's socioeconomic and political adversities [2]. According to a scoping review of 36 studies from 12 African countries, lifetime prevalence rates of mood disorders range from 3.3% to 9.8%, anxiety disorders range from 5.7% to 15.8%, substance use disorders range from 3.0% to 13.3%, and psychotic disorders range from 1.0% to 4.4% [3].

To tackle the significant prevalence of mental health disorders, access to pharmacotherapy is widely promoted, and various initiatives have been implemented to enhance the availability of mental healthcare services and medications throughout Africa [4]. However, studies suggest that around 30-35% of patients with mental illness who receive pharmacological therapy do not respond adequately to treatment, regardless of the medication chosen initially [5] partly explained by the influence of genetic factors on drug metabolism or treatment effectiveness. Genetic factors contribute to 30-40% of the interindividual variability in treatment response to mood stabilizers and antipsychotics [6, 7] and common genetic variants account for up to 10% of the variance in the plasma concentration of clozapine and its metabolites [8]. Furthermore, treatment effectiveness in patients with psychiatric disorders is influenced by a complex interplay between genetic and environmental factors. For example, personality traits [9], and stressful life events reported during or immediately before treatment [10] predict poor treatment response in patients with psychiatric disorders.

To date, pharmacogenomic studies have successfully identified genetic variations involved in the metabolism of various psychotropic drugs (e.g., CYP2D6 and CYP2C19) [11] and drug transporters (e.g., 5-HTTLPR), establishing their association with treatment outcomes in psychiatry, including response [12], remission [13], resistance [14] and adverse drug reactions [15]. Genetic polymorphisms located within or near pharmacologically relevant candidate genes and combined scores from these variants [16-20] have shown association with individuals' reactions to psychiatric medications [21]. For instance, in patients with bipolar disorder (BD), a high polygenic loading for schizophrenia (SCZ) or major depressive disorder (MDD) is significantly associated with poor response to lithium treatment [22-24].
and incorporating clinical variables in conjunction with the polygenic scores has enhanced the ability to predict the response to lithium treatment in these patients [25-27]. Similarly, in patients with MDD, the polygenic scores for neuroticism and openness personality were associated with selective serotonin reuptake inhibitors (SSRIs) treatment remission [28].

The large majority of these studies, however, are conducted in developed countries mainly using samples of European ancestry, posing a challenge to the potential application of pharmacogenomic testing (PGx) in other settings, such as in Africa [29-32]. To gain a more profound perspective into the scope of psychiatric pharmacogenomics in African populations, we conducted a systematic review and assessed potential prospects and challenges that could advance psychiatric PGx within the African populace. We also explored current challenges and opportunities and highlighted how the global community could benefit from leveraging the pharmacogenomics diversity of Africans.

Method

Search strategy

Using PubMed, SCOPUS, and Web of Science databases, we searched all pharmacogenomic studies published until 06/02/2023. For PubMed, we used Medical Subject Headings (MeSH) and text word search in our search methodology. For SCOPUS, we conducted the search using Emtree (EMBASE vocabulary) terms and as well as text word search. The search strategy involved a combination of broad keywords, “pharmacogenetics”, “pharmacogenomics”, and "psychiatric disorders" with specific search terms adapted to each database and limited to research in African settings. For pharmacogenomics, we included search terms such as "pharmacogenetics-based dosing" and "pharmacogenomic testing". For psychiatric disorders, "mental illness", "psychological disorders", and "behavioural disorders" were utilized as search terms. To ensure comprehensiveness, the search terms were broadened by including synonymous and related terms for each of the keywords. The keywords were combined using Boolean operators "AND" and "OR". Our search strategy included not only electronic database searches, but also hand-searches of the references included in the study. We extracted information on the relevant genes, treatment outcomes, the type of psychiatric disorders, and the specific population studied. The findings of this systematic review were reported in accordance with the reporting guidelines of Preferred Reporting Items for Systematic Review and Meta-Analyses (PRISMA) [33].
Selection criteria and data extraction

Two reviewers (MBA and AM) evaluated all the articles identified through our search strategy for eligibility based on predefined criteria, which included being conducted in African populations and focusing on pharmacogenomics or pharmacogenetics of psychiatric disorders. Studies published in English and had full-text availability were considered for the full review. In case of disagreement between the two reviewers, a third reviewer (ATA) was consulted to reach a consensus on eligibility. All retrieved records were exported in an Endnote library (version 20) for further analysis.

We used a customized data extraction template to collect relevant information from the selected articles. The two primary reviewers (MA and AM) used this template to summarize the articles, and the extracted data included authors (year), sample size, participant ancestry, psychiatric condition studied, type of medication studied, pharmacogenomic outcome, and reported gene/allele for in PGx studies. The details of the search strategy, inclusion and exclusion criteria, and results of the literature search are provided as Supplementary methods.
Result

Our initial literature search in three databases resulted in a total of 1767 articles. After removing duplicates, 1090 records remained and were screened by independent reviewers based on titles and abstracts. From this process, a total of 42 studies (35 on pharmacogenetics and 7 pharmacogenomics) were consequently retrieved in full text for this systematic review. Figure 1 shows the flow diagram of the literature review process and a stepwise screening of articles for final review (Figure 1).
Figure 1. A flow diagram illustrating the stepwise screening of articles on the pharmacogenomic of psychiatric disorder in African population.

Our review found a considerable variation in the distribution of psychiatric pharmacogenomic studies across Africa. Countries such as South Africa, Zimbabwe, Uganda, Tunisia, Ghana, and Algeria have made comparatively larger research contributions than others. Of all the studies reviewed, the largest proportion of the studies (21%) were conducted in East African regions, followed by the Southern regions of Africa (20%) and the North African region (10%). The West African region was represented by approximately 12% of the studies, while the Central African region had the smallest proportion, accounting for less than 1% of the total. It has been reported that 37% of the studies involved individuals from different ethnic backgrounds (Figure 2).

Figure 2. Distribution of pharmacogenomics and pharmacogenetics studies in patients with psychiatric disorder across Africa

Psychiatric Pharmacogenomics in African populations

Pharmacogenomic research has predominantly centred on Cytochromes P450 (CYPs), a group of enzymes that play a critical role in drug metabolism, including psychiatric
medications [34]. Table 1 provided pharmacogenomic studies included in this review detailing identified genes, psychiatric conditions, type of medication studied, country where the study conducted, population studied, and summary of the main findings. Within African populations, psychiatric pharmacogenomics research has predominantly centred on individuals diagnosed with SCZ and MDD. These studies revealed a substantial pharmacogenomic diversity in the core ADME (Absorption, Distribution, Metabolism, and Excretion) and extra ADME genes, both within Africans and across individuals of African and European ancestry, emphasizing the need for tailored PGx programs that accommodate population specific genetic variations[35].

Psychiatric Pharmacogenomics in patients with Schizophrenia: In studies using samples of African ancestry patients with SCZ, genetic variants within candidate genes such as *CYP1A2* (CYP1A2*1F, -163C>A), *RGS4* (rs2661319, rs2842030, rs951439), *UPP2* (rs11368509), *CNR1* (rs1049353), *MYO7B* (rs13025959), *MTRR* (rs10380), *DNMT3A* (rs2304429), *HDAC5* (rs11079983), *HDAC9* (rs11764843, rs1178119), *GRM3* (rs742226), *COMT* (rs165599), *DRD2* (rs1801028, Taq1A, Taq1B, rs1125394) and *NFKB1* (rs230493, rs230504, and rs3774959) were associated with pharmacotherapeutic outcomes. The CLOZUK study found that people with sub-Saharan African ancestry metabolized clozapine and norclozapine faster than people with European ancestry [36]. In individuals of African ancestry, the presence of genetic variants within *RGS4* gene (rs2661319 and rs2842030) predicted relative responsiveness to atypical antipsychotic treatment (perphenazine). Those who were homozygous for ‘C’ allele of rs951439 in *RGS4* gene had shown a more favourable response to perphenazine compared to quetiapine or ziprasidone [37].

A study involving patients with first-episode of SCZ from Xhosa populations in South Africa identified a frameshift variant, rs11368509 in *UPP2* gene, associated with improved treatment outcome to anti-psychotic medications [38]. In another study, rs13025959 in the *MYO7B* gene and rs10380 in the *MTRR* gene were associated with different aspects of treatment response. While the ‘C’ allele of rs13025959 was linked to reduced improvement in general psychopathological symptoms after antipsychotic treatment, the ‘T’ allele of rs10380 was associated with an improvement in positive symptoms [39]. The *DNMT3A* gene variant rs2304429 ‘CC’ genotype was associated with an improved antipsychotic treatment response in South African SCZ patients compared to those who carry the ‘TC’ allele [40]. On the other hand, the *HDAC5* rs11079983 ‘TT’ genotype was associated with a poorer treatment response when compared to the ‘CC’ genotype. Patients with the *HDAC9* rs11764843 ‘CA’
or HDAC9 rs1178119 ‘GA’ genotype had a slower rate of reduction in negative symptom scores over time on the Positive and negative Syndrome Scale (PANSS) than patients with the ‘AA’ genotype [40]. A similar study in South African patients with SCZ examined the association of noncoding genetic variants within the NFKB1 with treatment response. Of the three SNPs identified, rs230493 and rs230504 were associated with poorer PANSS negative score, while rs3774959 was associated with poorer PANSS negative and PANSS total scores. This study further confirms that these significantly associated variants were present in the 4q24 region [41].

In African American patients, the synonymous polymorphism (rs1049353) in CNR1 gene was associated with a higher weight gain following clozapine and olanzapine treatment. Allelic analysis of rs1049353 (‘CC’ vs ‘CT’ allele) demonstrated that patients who carried the ‘C’ allele gained more weight compared to those with ‘T’ allele [42]. Genetic variants in GRM3, COMT, and DRD2 were associated with changes in PANSS scores in response to risperidone treatment (atypical antipsychotic). In African Americans taking risperidone, the GRM3 SNP-rs724226 was associated with a change in the PANSS total score, while the COMT SNP-165599 was moderately associated with a change in the PANSS negative score for patients on risperidone treatment. In addition, there was a significant association between rs1801028, a SNP in DRD2, and PANSS negative symptoms in African Americans. Moreover, the change in the PANSS negative total increased as the number of ‘G’ alleles increased among African-American patients with ‘AA’, ‘AG’, and ‘GG’ genotypes [43]. Moreover, specific DRD2 variants, such as Taq1A, Taq1B, and rs1125394, have been associated with an improved response to clozapine. Significant differences in the frequencies of the Taq1B allele were observed between responders and non-responders to clozapine, with the "B2" allele being associated with a better response. There were also significant differences in allele frequencies at two other marker sites, with allele 1 of rs1125394 and allele A2 of Taq1A being more frequent among responders. However, no significant association was found between clozapine response and insertion/deletion (ins/Del) site -141C [44].

Genotyping the CYP1A2 gene and the use of therapeutic drug monitoring (TDM) enhanced the effectiveness and safety of Clozapine in Tunisian patients with SCZ [45]. This study found a significant association between the CYP1A2*1F polymorphism and Clozapine metabolism, accounting for 24% of the variability in Clozapine concentration-to-dose ratio. Moreover, the CYP1A2 -163C>A variant plays a crucial role in influencing the plasma levels of Clozapine [45]. In Algerian patients with SCZ, those who carry the ‘G’ allele for a gene
that codes for the 5-HT2A receptor, one of the targeted receptors for antipsychotic drugs, showed a favourable response to conventional antipsychotics [46]. This study reported that the 'G' allele identifies a subgroup of schizophrenic patients who are more likely to experience symptom improvement with antipsychotic drugs, emphasizing the significance of this finding [46].

Psychiatric Pharmacogenomics in patients with depression: Another emerging area of research in African psychiatric pharmacogenomics focuses on studying genetic factors influencing drug metabolism and response among individuals with MDD. These studies revealed the influence of genetic variants such as CYP2C19 (CYP2C19*2), CYP2D6 (2509G>T in CYP2D6*2/*29 genotype) and CRHBP (rs10473984) on the metabolism of antidepressants and treatment effectiveness in African patients. For instance, studies utilizing data from sub-Saharan African patients with MDD have indicated the presence of the CYP2C19*2 loss of function allele, which was likely due to the administration of haloperidol, a weak CYP3A4 inhibitor that interact with voriconazole [47]. In African Americans, it was discovered that the variant rs10473984 within the CRHBP locus was associated with both remission and reduction in depressive symptoms in patients taking citalopram, particularly those with features of anxious depression. In this study, the rs10473984 'T' allele was associated with poorer treatment outcomes[48]. Another study reported a significant relationship between a genetically determined African ancestry or self-reported race and poor treatment response to citalopram [49].

A study on South African patients taking amitriptyline found that a genetic variant, 2509G>T in CYP2D6*2/*29 genotype resulted in an amino acid change (K245N) and amitriptyline treatment-related side effects [50]. A study focused on CYP2D6 genetic variants related to tramadol treatment (fast acting medication for MDD) in an African population revealed a significant difference in the maximum plasma concentrations of the active metabolite (+) R, R-O-desmethyltramadol between the ultra-metabolisers (UMs) and extensive metabolisers (EMs). UMs showed an increased pain threshold and tolerance compared to EMs and nearly 50% of the UM group experienced nausea compared to only 9% of the EM group [51].

Pharmacokinetic genes of African population

This review found that African patients showed a high genetic variability in their drug metabolism gene profile, which can influence their pharmacological treatment outcomes, including psychiatric medications. Studies conducted in Tanzania, Zimbabwe, Sudan,
Somalia, Burundi, Ethiopia, and South Africa demonstrated the wide variability in the frequency of various CYP family genes such as CYP2D6, CYP2C19, CYP3A4, CYP2B6, CYP2, and CYP1A2 [29]. Many of the pharmacogenes studied in the African population belong to the highly polymorphic gene of CYP2D6 that involved in the metabolism of up to 25% of the drugs that are commonly used in psychiatric conditions [52]. For instance, in a study of Tanzanian psychiatric patients, healthy Tanzanian controls, and South African Venda populations, the CYP2D6 genotype was found to predict poor metabolisers in only a small percentage of cases 2.3%, 1.9%, and 2.6%, respectively. Notably, in the Tanzanian population, the frequency of the low-activity CYP2D6*17 allele was significantly higher among psychiatric patients (30%) compared to healthy individuals (20%). In healthy Tanzanian individuals, EMs showed a significantly higher sparteine metabolic ratio compared to white Danish EMs. The frequencies of the CYP2D6*1 and CYP2D6*4 alleles were 9.6% and 4.0%, respectively, and no CYP2D6*3 alleles were found. The frequencies for the CYP2C19*1 and CYP2C19*2 alleles was 9.0%, 1.0%, respectively [53]. Moreover, a study identified a unique allele distribution and two rare novel alleles, CYP2D6*73 and CYP2D6*74 in South African participants [54]. With this pharmacogene, genotyping of black Zimbabwean population on CYP2D6 showed that the frequency of three genes, CYP2D6*A, CYP2D6*B, and CYP2D6*D, was determined to be 0%, 1.8%, and 3.9%, respectively. None of the subjects carried the Xba I 44 kb haplotype, which is a known CYP2D6 allele indicative of poor metabolisers in Caucasians [55]. The CYP2D6*B allele frequency was very low in the Zimbabwean population [56].

The other pharmacogene of interest in African population was the CYP2C19 gene that is known to influence the metabolism of a large number of clinically relevant drugs and drug classes such as antidepressants, benzodiazepines, mephenytoin, proton pump inhibitors (PPIs) [57]. A study using samples from South Africa (Venda), Tanzania, and Zimbabwe reported that a low prevalence of poor metabolisers determined by the frequencies of CYP2C19*2 genotypes[58]. No significant difference was observed in the frequency of CYP2D6 or CYP2C19 poor metabolisers genotypes between psychiatric patients and healthy individuals [58]. A study that examined the CYP2C19 profile on 140 Ethiopians found that 5.2% of them were poor metabolisers of S-mephenytoin, with frequency of 14% for CYP2C19*2 allele and 2% for CYP2C19*3 allele [59]. Among the poor metabolisers, three were homozygous for CYP2C19*2, and the remaining three were heterozygous for both CYP2C19*2 and CYP2C19*3. Furthermore, the CYP2C19*2 and CYP2C19*3 alleles accounted for all
defective CYP2C19 alleles among the Ethiopian poor metabolisers [59]. Ethiopians individuals homozygous for the CYP2C19*1 allele had a different S/R-mephenytoin ratio than those homozygous for CYP2C19*17 with potential implication of this variant to antidepressants treatment [60]. In Ugandans, the frequency of the CYP2C19*1, CYP2C19*2, CYP2C19*3, and CYP2C19*17 alleles was 69.2%, 12.6%, 1.0%, and 17.2%, respectively [61]. A study that investigated the activity of CYP2C19 in 103 Zimbabwean adults also found that four of the subjects were poor metabolizers[62]. Among 84 subjects phenotyped, a mutation in exon 5 of CYP2C19 causes a cryptic splicing site that results in non-functional proteins. Three of the four poor metabolisers were homozygous for the mutation in exon 5 of CYP2C19, but one was heterozygous, suggesting that exon 5 mutations may be predictive of more than 60% of black poor metabolizers [62]. In a study in Burundi, it was reported that 5% of the population were classified as poor metabolisers [63].

CYP3A4 was another important pharmacogene, together with CYP3A5 account for 30% of the hepatic cytochrome P450, and half of medications that are oxidatively metabolised by liver are CYP3A substrates [64]. Ethiopians have a fast P-glycoprotein transport activity, with a higher rate for midazolam (CYP3A4) and bupropion (CYP2B6) [65]. On the other hand, a study comparing two ethnic groups in Botswana showed a significantly higher prevalence of the CYP2C8*2 allele in the San (or Bushmen) than the Bantu-related ethnic groups [66].

A study comparing the activity of CYP1A2 in black Zimbabwean children with Canadian adults found a significantly lower indexes of CYP1A2 activity than that of healthy white urban children from Zimbabwe or healthy Canadian adults [55]. In a study of 136 Sudanese individuals, eight of them were heterozygous for the G191A mutation[67]. However, none of the 50 Somali individuals tested carried the G191A mutation [67]. The Human Leukocyte Antigen (HLA) alleles were also examined in African population for their role in the pharmacogenetics of drug hypersensitivity [68] and studies found both high frequency and unique HLA characteristics such as HLA-DR-DQ haplotypes [69].
Table 1. Psychiatric pharmacogenomics among individuals of African ancestry

<table>
<thead>
<tr>
<th>Author (Year)</th>
<th>Country (N)</th>
<th>Drug</th>
<th>Treatment outcome (Phenotype)</th>
<th>Gene</th>
<th>Psychiatric disorder</th>
<th>Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benmessaoud, D. et al., (2008)[46]</td>
<td>Algeria (88)</td>
<td>Antipsychotics (mainly Haloperidol) for 4 weeks</td>
<td>Treatment-refractory schizophrenia (TRS)</td>
<td>G allele of the -1438A/G 5-HT2A</td>
<td>SCZ</td>
<td>The -1438A/G polymorphism 5-HT2A receptor gene showed association with a favourable response to typical antipsychotics. The ‘G’ allele identified individuals with SCZ who have a higher likelihood of responding to antipsychotics.</td>
</tr>
<tr>
<td>Campbell, D. B. et al., (2008)[37]</td>
<td>Clinical Antipsychotic Trials of Intervention Effectiveness (CATIE). Out of 678 subjects 198 were African only</td>
<td>Perphenazine and Quetiapine</td>
<td>Antipsychotic treatment efficacy, assessed using Positive and Negative Symptoms Scale (PANSS)</td>
<td>RGS4 (rs2661319, rs2842030) for baseline PANSS total score. rs951439 ‘C’ allele for treatment response in African ancestry</td>
<td>SCZ</td>
<td>RGS4 genotypes predicted treatment response. For individuals of African ancestry with rs951439 ‘C’ allele homozygosity, perphenazine was more effective than quetiapine (p=0.010) or ziprasidone (p=0.002).</td>
</tr>
<tr>
<td>Drögemöller et al., (2015)[39]</td>
<td>South Africa (190)</td>
<td>Flupentixol decanoate</td>
<td>PANSS scale</td>
<td>rs13025959 in MYO7B (E1647D) and rs10380 in MTRR (H622Y)</td>
<td>First episode SCZ</td>
<td>rs13025959 in MYO7B gene was linked to a reduced progress in overall psychopathological symptoms following antipsychotic treatment. rs13080 in MTRR was associated with an improvement in positive symptoms after antipsychotic treatment.</td>
</tr>
<tr>
<td>Ammar, H. et al., (2021)[45]</td>
<td>Tunisia (51)</td>
<td>Clozapine</td>
<td>Therapeutic drug monitoring (Variability in mean dose adjustment of clozapine).</td>
<td>CYP1A21F (rs762551; -163C>A), CYP1A21C (rs2069514; -3860 G>A) and CYP2C19*2 (rs4244285; 681G>A)</td>
<td>SCZ</td>
<td>CYP1A21F and CYP1A2 -163C>A variants were linked to variation in Clozapine exposure among Tunisian patients with SCZ. CYP1A21F alone explained 24% of the variability in Clozapine C0/D. The authors recommended genotyping CYP1A2 and using therapeutic drug monitoring (TDM) to improve Clozapine’s effectiveness and safety in treating SCZ patients.</td>
</tr>
<tr>
<td>Study</td>
<td>Population/Design</td>
<td>Antipsychotic</td>
<td>Treatment response</td>
<td>SNP</td>
<td>Treatment effect on SCZ</td>
<td></td>
</tr>
<tr>
<td>------------------------------</td>
<td>--</td>
<td>-----------------</td>
<td>--------------------</td>
<td>----------------</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>Drögemöller et al., (2014)[42]</td>
<td>Mixed ancestry of first-episode SCZ (n=103) and Xhosa (n=222) in South Africa</td>
<td>Antipsychotic</td>
<td>Treatment response</td>
<td>rs11368509</td>
<td>A frameshift variant, rs11368509 in UPP2 found to be associated with improved treatment response to antipsychotics in mixed ancestry (p=0.057) and South African Xhosa populations (p=0.016)</td>
<td></td>
</tr>
<tr>
<td>Ovenden, E. S. et al., (2017)[41]</td>
<td>South African (103)</td>
<td>Flupentixol decanoate</td>
<td>Percentage change in PANSS</td>
<td>MANBA, COL9A2 and NFKB1</td>
<td>Noncoding variants on MANBA, COL9A2, and NFKB1 were examined for their treatment response in antipsychotic response. Three SNPs (rs230493, rs3774959, and rs230504) were associated with poor treatment response in SCZ.</td>
<td></td>
</tr>
<tr>
<td>O’Connell, K. S., et al., (2019)[40]</td>
<td>South African (20)</td>
<td>Flupentixol decanoate</td>
<td>Differential expression of regulatory genes to identify candidate genes for association with antipsychotic treatment response.</td>
<td>(DNMT3A rs2304429, HDAC5 rs11079983, and HDAC9 rs1178119 and rs11764843)</td>
<td>Four variants within differentially expressed genes (DNMT3A rs2304429, HDAC5 rs11079983, and HDAC9 rs1178119 and rs11764843) were significantly associated with treatment response in SCZ. Two of these variants altered the expression of specific genes in brain regions previously implicated in SCZ and treatment response, potentially aiding in the development of biomarkers and novel drug targets for antipsychotic treatment response.</td>
<td></td>
</tr>
<tr>
<td>Antonio F Pardinas et al., (2023)[36]</td>
<td>CLOZUK study (192)</td>
<td>Clozapine</td>
<td>Clozapine and norclozapine plasma concentrations</td>
<td>for Clozapine [DNAJB3, MROH2A, UGT1A1, UGT1A3, UGT1A4, UGT1A5, UGT1A6, UGT1A7, UGT1A8, UGT1A9, UGT1A10, CYP1A1, CYP1A2]; for Norclozapine [UGT2A3, UGT2B4, UGT2B7, UGT2B10, UGT2B11, UGT2B28, DNAJB3,</td>
<td>Individuals of sub-Saharan African ancestry showed lower levels of clozapine (beta -0.088) and norclozapine (beta -0.280) in their plasma compared to Europeans, indicating that they metabolize these drugs faster.</td>
<td></td>
</tr>
<tr>
<td>Name of the Study</td>
<td>Region/Country</td>
<td>Drugs</td>
<td>Type of Study</td>
<td>Genes of Interest</td>
<td>Findings</td>
<td></td>
</tr>
<tr>
<td>-------------------</td>
<td>----------------</td>
<td>-------</td>
<td>--------------</td>
<td>------------------</td>
<td>----------</td>
<td></td>
</tr>
<tr>
<td>Motta, I. et al., (2015)[47]</td>
<td>A case report from Sub-Saharan Africa</td>
<td>Voriconazole and haloperidol</td>
<td>Drug-drug interaction between voriconazole and haloperidol</td>
<td>CYP2C19</td>
<td>The presence of the CYP2C19*2 loss of function allele may be the cause of an interaction that can be explained by the introduction of haloperidol, which is a mild inhibitor of CYP3A4.</td>
<td></td>
</tr>
<tr>
<td>Merwe, N. V. D. et al., (2012)[70]</td>
<td>South Africa. 114 (52 Caucasians and 62 coloured)</td>
<td>Cipramil, cipralex, bupropion and Tamoxifen</td>
<td>Genotyping for CYP2D6 genes and concomitant use of Tamoxifen.</td>
<td>CYP2D6*4, rs3892097</td>
<td>CYP2D6 genotyping can help identify high-risk breast cancer patients who may experience cumulative effects from the concurrent use of Tamoxifen and antidepressants that can interact with each other.</td>
<td></td>
</tr>
<tr>
<td>Eleanor Murphy et al., (2013)[49]</td>
<td>Blacks (299)</td>
<td>Citalopram</td>
<td>Reduction in depressive symptoms using QIDS scores</td>
<td>Genome wide SNP data</td>
<td>Genetic African ancestry found to be associated with poor treatment response to citalopram.</td>
<td></td>
</tr>
<tr>
<td>Mamnoonah Chaudhry et al., (2017)[50]</td>
<td>South African (31)</td>
<td>Amitriptyline</td>
<td>Gene profile of CYP2D6 using a modified tetramer multiplex assay</td>
<td>CYP2D6</td>
<td>The variant 2509G>T in exon 5, which causes amino acid changes (K245N), was observed in a CYP2D6*2/*29 genotype in South African patients experiencing amitriptyline-related side effects. This suggests that K245N may reduce CYP2D6 function towards amitriptyline.</td>
<td></td>
</tr>
<tr>
<td>Dodgen, T. M. et al., (2015)[71]</td>
<td>South African</td>
<td>Risperidone</td>
<td>CYP2D6 on adverse drug reactions</td>
<td>CYP2D6</td>
<td>CYP2D6 poor metabolism was not found to be significantly associated with risperidone ADRs in a South African cohort study. However, an inverse relationship between extrapyramidal symptoms (EPS) and weight gain was observed. A new CYP2D6 allele was identified, but it is unlikely to affect metabolism based on in silico evaluation. The study suggests that CYP2D6 variation may not be a reliable pharmacogenetic marker for predicting risperidone related ADRs.</td>
<td></td>
</tr>
<tr>
<td>Authors</td>
<td>Location (Population)</td>
<td>Study Type</td>
<td>Summary</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------</td>
<td>-----------------------</td>
<td>------------</td>
<td>---------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ajmi, M. et al.</td>
<td>Tunisia (153)</td>
<td>Genotyping</td>
<td>Genotyping of the ABCB1 gene using polymerase chain reaction-restriction fragment length polymorphism. ATP-Binding Cassette sub-family B, member 1 (ABCB1) polymorphisms: C1236T (rs1128503), G2677T (rs2032582) and C3435T (rs1045642) Resistance to Antiepileptic drugs Two polymorphisms (G2677T 'T' and C3435T 'T') of the ABCB1 gene increase the risk of developing AEDs resistance, while the C1236T 'T' allele does not appear to influence the response to AEDs.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kirchheiner, J. et al.</td>
<td>Northern African (22)</td>
<td>Pharmacokinetic profile</td>
<td>Pharmacokinetic profile for CYP2D6, Tramadol as a probe CYP2D6 Opioid adverse events Ultra-rapid metabolisers (UMs) of tramadol showed significantly higher levels of the active metabolite (+) R.R-O-desmethyltramadol in their plasma, as well as increased pain threshold and pain tolerance, stronger miosis, and higher incidence of nausea compared to extensive metabolisers (EMs).</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Médéric Mouterde et al.</td>
<td>Ethiopia (349)</td>
<td>Drug metabolism phenotype</td>
<td>Drug metabolism phenotype using seven probe compounds CYP enzymes (CYP1A2, CYP2B6, CYP2C9, CYP2C19, CYP2D6, and CYP3A4) Drug-metabolizing gene profile Ethiopian were fast in the P-glycoprotein transport activity. Higher rate in Ethiopian for midazolam (CYP3A4) and CYP2B6 for bupropion</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ali, A. A. et al.</td>
<td>Somali (95)</td>
<td>Genotype frequency</td>
<td>Genotype frequency of HLA in Somali population HLA-DR-DQ and UGT1A42 Drug-metabolizing gene profile Somali population displays genetic traits of significance to health and disease. UGT1A42 highest frequency reported in this population. This population reported to have unique human leukocyte antigen (HLA), which seem to differentiate from all other neighbouring regions. HLA-DR-DQ haplotype predisposing for T1DM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Author(s)</td>
<td>Location (Sample Size)</td>
<td>Methodology</td>
<td>Genotype Frequency</td>
<td>Drug-Metabolizing Gene Profile</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>----------------------</td>
<td>------------------------</td>
<td>--</td>
<td>--------------------</td>
<td>-------------------------------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>Afilal, D. et al., (2017)[73]</td>
<td>Morocco (290)</td>
<td>Restriction fragment length polymorphism-polymerase chain reaction genotyping method</td>
<td>genotype frequency of CYP2C9 and CYP2C19</td>
<td>CYP2C92 and CYP2C192</td>
<td>The CYP2C92 and CYP2C192 were the most common alleles, respectively with frequencies of 8% and 11.4%. Regarding CYP2C92 and CYP2C192, approximately 16% and 22% of Moroccans are respectively deficient metabolisers, and thus largely lack this enzymatic activity. Our results suggest that only CYP2C92 and CYP2C192 are likely to substantially contribute to individual and interethnic variability of CYP2C9-19 activity in our population.</td>
<td></td>
</tr>
<tr>
<td>Adehin, A. et al., (2017)[74]</td>
<td>Nigeria (100)</td>
<td>Sequenom MassARRAY platform for some allele and Sanger sequencing for others</td>
<td>Genotype frequency and relationship of CYP1A2 and CYP2A6</td>
<td>CYP1A2 and CYP2A6</td>
<td>The five CYP1A2 haplotypes identified in the Nigerian population were not predictive of metabolic phenotypes, and heterozygous CYP1A21J carriers and homozygous CYP1A21W carriers showed a statistically insignificant decrease in CYP1A2 activity. The CYP2A69/17 genotype was significantly associated with the CYP2A6-poor metabolic phenotype, while CYP2A611 was not detected in the population.</td>
<td></td>
</tr>
<tr>
<td>Adehin, A. et al., (2017)[75]</td>
<td>Nigeria (178)</td>
<td>Sequenom iPLEX MassARRAY platform</td>
<td>Genotype frequency of CYP2C8 and CYP3A5</td>
<td>CYP2C8 and CYP3A5</td>
<td>CYP2C82 was present in about 19.4% of the population, while CYP3A53, CYP3A56, and CYP3A57 were present in 16.0%, 9.6%, and 12.6% of the population, respectively. CYP2C8*3 was not detected. The prevalence of at least one CYP3A5 polymorphism was found to be 60%, indicating potential variability in CYP3A5 activity that could impact drug metabolism and dosing.</td>
<td></td>
</tr>
<tr>
<td>Motshoge, T. et al., (2016)[66]</td>
<td>Botswana (544)</td>
<td>PCR-based restriction fragment length polymorphism analysis</td>
<td>Genotype frequency of CYP2C8*2</td>
<td>CYP2C8*2</td>
<td>Prevalence of the CYP2C8*2 allele is significantly higher among the San population compared to Bantu-related ethnic groups. The results suggest a different genetic background between the two populations, which may have implications for drug clearance and activation among the San group.</td>
<td></td>
</tr>
<tr>
<td>Study</td>
<td>Location</td>
<td>Drug-metabolizing gene profile</td>
<td>Frequency or Profile Details</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>-------------------------</td>
<td>---</td>
<td>--</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wright, G. E. et al., (2010) [54]</td>
<td>South African (15)</td>
<td>Genotyping CYP2D6 frequency CYP2D7</td>
<td>A unique allele distribution was revealed and two rare novel alleles, CYP2D673, and CYP2D674, were identified.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Santovito, A. et al., (2010) [76]</td>
<td>North Ivory Coast (133)</td>
<td>Genotype frequency for CYP1A1, GSTM1, and GSTT1</td>
<td>Frequencies of GSTM1 and GSTT1 null genotypes were 0.361 and 0.331, respectively. No significant differences were noted between men and women. In contrast to published data for Africans, CYP1A1 *Val Allele frequency (0.383) was significantly high (p < 0.001) in this specific population. For the GSTT1 null genotype, no differences were found between the studied and other African populations, the contrary to what occurred for the GSTM1 null genotype in relation to Gambia and Egypt.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Miura, J. et al., (2009) [61]</td>
<td>Ugandans (99)</td>
<td>Genotype frequency for 2C19 genes</td>
<td>The frequency (95% confidence interval) of the CYP2C191, CYP2C192, CYP2C193 and CYP2C1917 alleles in Ugandans was 0.692 (0.601–0.783), 0.126 (0.061–0.192), 0.010 (not calculated due to the small number) and 0.172 (0.097–0.246), respectively.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sim, S. C. et al., (2006) [60]</td>
<td>Ethiopia (126)</td>
<td>Metabolism profile of CYP2C19 gene profile</td>
<td>In Ethiopians a similar difference in the S/R-mephenytoin ratio was observed between individuals homozygous for CYP2C191 (median, 0.20 [interquartile range, 0.12-0.37]) and those homozygous for CYP2C1917 (median, 0.05 [interquartile range, 0.03-0.06]) (P = .013). CYP2C19*17 is likely to cause therapeutic failures in drug treatment with antidepressants.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gyamfi, M. A. et al., (2005) [77]</td>
<td>Black Africans (105 Ghanaians, 12 Nigerians, 2 Ivorians and 1 Ugandan)</td>
<td>Drug metabolism CYP2A6*1</td>
<td>CYP2A6 variants such as *2, *5, *6, *7, *8, *10 and *11 was absent in these black African populations. This study provides, for the first time, the results of the analysis of CYP2A6 allele frequency in black African populations and confirms large ethnic differences in the polymorphic CYP2A6 gene.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Author(s)</td>
<td>Population</td>
<td>Methodology</td>
<td>Genotype Frequency Details</td>
<td>Drug-Metabolizing Gene Profile</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------------</td>
<td>------------</td>
<td>---</td>
<td>---</td>
<td>--</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dandara, C. et al., (2001) [58]</td>
<td>East and Southern Africans (384)</td>
<td>One or a combination of Haloperidol, thioridazine, zuclopenthixol, amitriptyline, fluoxetine, chlorpromazine, fluphenazine, and imipramine</td>
<td>Genotype frequency of CYP2D6 and CYP2C19 in 3 African populations and compare healthy and psychiatric patients.</td>
<td>CYP2D6 and CYP2C19 drug-metabolizing gene profile. The frequency of poor metabolisers of CYP2D6 and CYP2C19 was low in Bantu populations of East and Southern Africa. The prevalence of CYP2D617 allele was higher in Tanzanian psychiatric patients than healthy individuals. The low prevalence of CYP2C192 genotypes predicted the low prevalence of poor metabolisers. However, the high frequency of the low-activity CYP2D6*17 allele may suggest reduced drug metabolism capacity in the Bantu people.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Xie, H. G. et al., (1999) [78]</td>
<td>Black Africans (922)</td>
<td>Mephenytoin</td>
<td>Genotype frequency for CYP2C19</td>
<td>CYP2C19 drug-metabolizing gene profile. The study found that the poor metaboliser (PM) phenotype frequency in healthy black Africans and black Americans ranged from 1.0% to 7.5%, with an overall frequency of 3.9%. The PM genotype frequency was found to be 3.7%, which agrees with the frequency of the PM phenotype. The study concluded that individuals of African descent have a low frequency of the CYP2C19 PM phenotype and genotype, and that the defective CYP2C19 alleles are uncommon, with only a small proportion of heterozygotes existing in the extensive metaboliser (EM) subpopulation.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Griese, E. U. et al., (1999) [79]</td>
<td>West Africans (201)</td>
<td>Debrisoquine, Sparteine</td>
<td>Genotyping for CYP2D6 probe drugs Sparteine and Debrisoquine.</td>
<td>CYP2D6 drug-metabolizing gene profile. The study investigated the correlation between metabolic ratios of sparteine and debrisoquine in individuals with both drugs. The study found a significant correlation between metabolic ratios and lower metabolic clearance for CYP2D6 substrates in West Africans compared to Caucasians. The study also identified a poor metaboliser for sparteine and debrisoquine with the *1/*1 genotype and discovered the existence of unknown non-functional alleles in the West African population.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Author(s)</td>
<td>Study Population</td>
<td>Methods/Gene(s)</td>
<td>Results/Conclusion</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>------------------</td>
<td>--</td>
<td>--</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bathum, L. et al., (1999)[53]</td>
<td>Tanzanians (216)</td>
<td>Sparteine, mephenytoin, proguanil</td>
<td>Determine defective CYP2D6 and CYP2C19 genes and test correlations with proguanil/cycloguanil ratio than mephenytoin S/R ratio. The study found that Tanzanian extensive metabolisers had higher sparteine metabolic ratio than white Danish extensive metabolisers, with only one poor metaboliser for CYP2D6 found. Seven subjects were phenotyped as poor metabolisers for CYP2C19, but only three had a genotype indicative of poor metabolism. The study concluded that African black populations and Caucasian populations have substantial differences in drug metabolism capacity for CYP2D6 and CYP2C19.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bayoumi, R. A. L. et al., (1997)[67]</td>
<td>Sudanese (136)</td>
<td>Genotype for N-acetyltransferase mutation</td>
<td>G191 A</td>
<td>Out of the 136 Sudanese individuals tested, eight were found to be heterozygous for the G191 A mutation, resulting in a frequency of 0.029. The G191 A mutation was not found in any of the 50 Somali individuals tested. When the chi square test was performed, it was observed that the frequency of the G191 A mutation overlapped among Sudanese, Somalis, and Emirates.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Persson, I. et al., (1996)[59]</td>
<td>Ethiopians (114)</td>
<td>CYP2C19 Genotype</td>
<td>CYP2C19</td>
<td>Study found 5.2% of subjects were poor metabolisers of S-mephenytoin. CYP2C192 allele frequency was 0.14, CYP2C193 allele was 0.02, accounting for all defective CYP2C19 alleles among Ethiopian PMs. PM frequency similar in Ethiopians, Zimbabweans, and Caucasians.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Horsmans, Y. et al., (1996)[80]</td>
<td>Zaire (8)</td>
<td>mephenytoin, phenytoin, and tolbutamide</td>
<td>Metabolism of the three drugs by CYP2C9/10 and CYP2C19.</td>
<td>This study found a significant correlation between phenytoin and tolbutamide oxidation in black Africans, suggesting that they may be hydroxylated by the same CYP enzyme(s) in this population. However, there was no correlation between mephenytoin oxidation and either phenytoin or tolbutamide oxidations.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Masimirembwa, C. M. et al., (1995)[55]</td>
<td>Zimbabwe (45)</td>
<td>Caffeine</td>
<td>Activity of hepatic enzyme CYP1A2, xanthine oxidase and N-acetyltransferase-2</td>
<td>Rural black children in Zimbabwe had significantly lower CYP1A2 activity than healthy white urban children from Zimbabwe or Canada, as well as healthy Canadian adults. This suggests a possible impairment of certain liver functions.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
and calls for medical studies.

<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Location</th>
<th>Drug</th>
<th>Metabolizing Gene Profile</th>
<th>Drug Metabolizing Gene Profile</th>
</tr>
</thead>
<tbody>
<tr>
<td>Masimirembwa, C. M. et al., (1995)[62]</td>
<td>Zimbabwe (103)</td>
<td>S-mephenytoin</td>
<td>Enzymatic activity of CYP2C19</td>
<td>Four individuals (4%) were identified as poor metabolisers. Three of the four poor metabolisers were found to be homozygous for the G-->A mutation in exon 5 of CYP2C19, which is predictive of the occurrence of more than 60% of poor metabolisers in black populations.</td>
</tr>
<tr>
<td>Masimirembwa, C. M. et al., (1993)[56]</td>
<td>Zimbabwe (114)</td>
<td>Genotyping of CYP2D6 using Eco RI and Xba I RFLP, and allele specific PCR amplification.</td>
<td>CYP2D6</td>
<td>The frequency of CYP2D6A, CYP2D6B, and CYP2D6D genes was 0%, 1.8%, and 3.9%, respectively, in the Zimbabwean population. No poor metaboliser haplotypes were found, but five individuals had the 29/42 kb haplotype. CYP2D6B allele frequency was very low, suggesting a possible Caucasian origin of the allele. These findings suggest differences in the CYP2D locus among ethnic groups.</td>
</tr>
<tr>
<td>Nsabiyumva, F. et al., (1991)[63]</td>
<td>Burundi (100)</td>
<td>Dextromethorphan</td>
<td>Determining oxidation of the drug</td>
<td>5% of the Burundian populations were poor metabolisers</td>
</tr>
</tbody>
</table>
Discussion

This article presents a systematic review of the status of psychiatric pharmacogenomics in African populations, highlighting the challenges and opportunities for expanding future research efforts in the region. The high genetic variability of African populations is well-documented [81], and this variability has implications on the way drugs are metabolized and affects treatment effectiveness in these populations. By studying the unique genetic characteristics of African populations, researchers have attempted to present novel insights into how the effectiveness of drugs can be influenced by genetic variations. These findings offer a promising opportunity to advance pharmacogenomics research and improve health outcomes for not only Africans but also individuals of all races and ethnicities around the world.

In Africa, the field of pharmacogenomics is evolving very slowly and the number of published studies on psychiatric pharmacogenomics is relatively low; as such, the translation of these findings into clinical practice is very limited compared to other regions of the world [82]. Within African regions, eastern and southern African countries, specifically Zimbabwe and South Africa, have published more psychiatric pharmacogenomics studies compared to Western African countries [38-41, 50, 56]. The main reasons for these disparities may include differences in access to research funding, infrastructure, and expertise, as well as sociocultural and ethical considerations that affect the feasibility of conducting genomic research.

In this review, we assessed 42 pharmacogenomic and pharmacogenetic studies that explored the impact of genetic factors on drug response, remission rates, and drug metabolism in individuals diagnosed with major psychiatric disorders, including SCZ, MDD, and BD. Studies involving individuals with SCZ have identified genetic variations within genes such as CYP2C9, CYP2C19, MYO7B, MTRR, RGS4, CYP1A2, and CYP1A*21F associated with treatment outcomes and influencing drug metabolism [40, 41, 83]. For instance, the CLOZUK study found that individuals of sub-Saharan African ancestry metabolize clozapine faster than people of European descent, which has implications for the dosing and treatment efficacy of this drug [36]. CYP enzymes, such as CYP2D6, CYP1A2, and CYP3A4/5, play a crucial role in the metabolism of antipsychotic medications, and the polymorphic alleles of these proteins are associated with altered plasma levels of these medications [84]. It is well established that an estimated 40% of antipsychotics are metabolized by CYP2D6, 23% by CYP3A4, and 18%
by *CYP1A* [85], making PGx testing useful in guiding drug therapy for better treatment outcomes for psychiatric patients.

The scope of this review extends to pharmacogenomic studies exploring various candidate genes that have been implicated in influencing susceptibility to adverse drug reactions (ADR), a harmful or unpleasant reaction resulting from an intervention related to the use of a medicinal product [86]. The inclusion of ADR as part of drug response criteria is of paramount importance in assessing the efficacy and safety of medications. One such example from this review is the *CYP2D6*/*2/*29 genotype, where the variant 2509G>T causes amitriptyline treatment-related side effects in South African patients, indicating the relevance of genotyping such variants to identify patients at high risk of ADR [50].

The comparison of drug metabolism-related genes between psychiatric patients from Tanzania and South Africa has provided valuable insights into the pharmacogenetics of cytochrome enzymes in African populations. The study revealed that the Bantu people of East and Southern Africa have a low prevalence of individuals with deficient *CYP2D6* and *CYP2C19* activity, but a high frequency of the low-activity *CYP2D6*/*17* allele [58]. A study conducted in Botswana compared the prevalence of the *CYP2C8*/*2* allele between San and Bantu-related ethnic groups found that the San group had a significantly higher prevalence [66]. Another study found that rural black children in Zimbabwe had lower indexes of *CYP1A2* activity than healthy white urban children from Zimbabwe and healthy Canadian children and adults [55]. The study conducted on Zimbabwean adults regarding the *CYP2C19* gene revealed that the mutation in exon 5 of *CYP2C19* resulted in a non-functional protein among adults of poor metabolisers [62]. As many drugs used in psychiatry are metabolized by *CYP2D6* and *CYP2C19* enzymes [87], this finding has significant implications for ADRs through understanding their impact on drug metabolism, helping clinicians in decision-making to optimize the treatment of patients of African origin. Moreover, these studies emphasize the crucial need for additional research to understand the impact of lifestyle and environmental factors on drug response, given the intricate interplay between these factors in determining drug response. Future research should prioritize exploring the interactions between genes and environmental factors to enhance our comprehension [88]. Ultimately, a better understanding of these factors can facilitate the development of personalized and effective drug therapy while minimizing the risk of adverse drug reactions.
Pharmacogenomic testing has shown significant benefit in white Europeans [89] and Asians [90], however, limited studies are available in African populations [91]. Several notable examples have demonstrated the benefits of genetic-guided therapy for psychiatric patients in other ancestries. For instance, when genetic information on \textit{CYP2D6}, \textit{CYP2C19}, \textit{CYP1A2}, \textit{SLC6A4}, and \textit{HTR2A} was used to dose patients at Mayo Clinic in the United States, a significant increase in the number of responders was obtained after 8 weeks of antidepressant therapy compared to standard treatment [92]. Furthermore, in another Norwegian study involving 2,066 patients, \textit{CYP2C19} ultra metabolizers and \textit{CYP2C19} poor metabolizers were found to be more likely to switch escitalopram to another drug [93]. These examples indicate the importance of genetic-guided therapy across ancestries, including African populations. However, it may not be possible to directly translate existing PGx data into genetic testing for African populations since current PGx data originate in populations of European and Asian origin, while African populations are not well characterized. Moreover, differences in linkage disequilibrium (LD) and allele frequency pose challenges to the transferability of such data. For example, the genetic diversity of ADME genes is not uniform across African populations, particularly in terms of high-impact coding variation. The distinct differences between the Southern African population and the far Western African population as well as Europeans indicate that PGx strategies based on European variants may have limited applicability to African populations [94]. In a different disease context, functional variants in the \textit{CYP2B6} gene contribute to a high risk of ADR to efavirenz in HIV patients in sub-Saharan Africa [95], and \textit{CYP2D6} variations negatively influence the efficacy of primaquine [96, 97]. Studies included in this review provide a partial view of ADME variation in the African population and emphasize the importance of further study to understand the full range of variation. Precision medicine guidelines and PGx tools for African populations should take into account the unique ADME landscape found in African population.

Although few, existing studies in African populations underscore the importance of genetic variation in the treatment of patients with mental illness. For example, the \textit{DRD2} gene variant predicts the response of African Americans to clozapine, indicating the need for genotype-guided drug prescribing in patients with similar genetic properties [98]. Additional example is the \textit{GRM3} SNP-rs724226, which is associated with PANSS total score in African Americans who took risperidone [99]. One of the major reasons for the substantial differences in drug metabolism capacities between African black and Caucasian populations is the frequency of
CYP450 alleles, such as CYP2D6*1 and CYP2D6*4. This suggests the need for a highly comprehensive pharmacogenomic testing platform [100, 101].

Studies on the application of pharmacogenomics-guided therapy in African psychiatric practice are insufficient, and there is a lack of standardized methods for conducting pharmacogenomic tests in African countries. This situation raises questions about the feasibility of applying pharmacogenomics-guided therapy in those countries. [35]. As has been shown in other populations, Africans could benefit from the use of PGx testing for monitoring psychiatric medication efficacy and safety. However, there are still gaps in the evidence base for psychiatric pharmacogenomics in African populations, as many candidate genes have proven difficult to replicate [102, 103]. Therefore, addressing these gaps through further research is essential, particularly in sub-Saharan countries where the burden of mental illness is high.

Challenges and opportunities for pharmacogenomics in Africa

This review has revealed that the field of pharmacogenomics research and PGx in Africa is still in its early stages and is likely to encounter several challenges during its implementation [104]. Firstly, various factors such as insufficient financial support for research, inadequate infrastructure, and a shortage of trained staff, laboratories, and equipment to perform the tests could challenge researchers to conduct pharmacogenomic studies [105]. The limited funding available for pharmacogenomics research in Africa, coupled with the reluctance of ‘funding organizations’ to invest due to concerns regarding infrastructure and trained personnel, as well as the perceived complexity of genetic research in Africa, could lead to a vicious cycle where insufficient funding hampers both research capacity and clinical implementation of PGx testing. For example, funding constrain limits our ability to increase the diversity of global pharmacogenomic databases, currently rely on data from European or Asian populations. As a result, the translation of existing pharmacogenomics knowledge to African populations could be limited, and the world may miss out on the potential benefits of utilizing the rare genomic diversity that exists only in African samples. Interestingly, there some encouraging efforts underway to increase funding for pharmacogenomics research in Africa. For example, international organizations such as the NIH, Wellcome Trust, and the EU have a strong interest in providing short-term funding and other resources to support research in low- and middle-income countries, including in Africa [106]. Secondly, the lack of awareness among healthcare professionals, policymakers, and the general public presents a significant
challenge to pharmacogenomics research in Africa. The absence of understanding the potential benefits of pharmacogenomics, can restrict research funding, complicate clinical translation, and pose challenges to public engagement, thereby impeding the collection of essential genetic data. To address these challenges, efforts should be made to increase awareness through training programs, educational campaigns, and community outreach initiatives. It is also crucial to involve African researchers and clinicians in the development and implementation of pharmacogenomics initiatives to ensure that they are culturally appropriate and effective [107-110]. Thirdly, research ethics can be complex, and the research process may take longer than expected as it requires consideration of the diverse cultural and religious beliefs of the people and ensuring that the research is conducted with respect and ethical principles. One way to easily achieve this is by involving local communities, which can help to ensure that the research is culturally appropriate, addresses community needs and concerns, and respects local values and beliefs [111][112].

Moreover, the integration of electronic health records (EHR) and longitudinal cohort allows taking advantage of already collected information to increase sample size to study uncommon exposure, rare treatment outcomes, and carry out standardized analyses. These longitudinal cohorts enable the collection of comprehensive and longitudinal data on individuals’ genetic profiles, drug response, and clinical outcomes over an extended period [113]. By incorporating diverse African populations into such cohorts, researchers can gain valuable insights into the genetic variations that impact drug metabolism and response [114]. This information can guide the development of personalized treatment approaches and enhance medication safety and efficacy. Additionally, longitudinal cohorts provide a platform for studying the influence of environmental factors, socio-economic determinants, and lifestyle choices on drug response [115]. This holistic understanding of individual and population-level factors can inform precision medicine initiatives tailored to the unique African genomic landscape. On top of this, longitudinal cohorts facilitate the assessment of long-term medication effects and the identification of rare or delayed adverse drug reactions specific to African populations [116]. By leveraging the power of longitudinal cohorts, Africa can advance its capacity for PGx research, inform clinical decision-making, and ultimately improve patient outcomes in the field of precision medicine.

Despite the challenges, there are also opportunities to advance pharmacogenomic research in Africa, particularly given the growing global interest in investing in genomic diversity. National governments and international partners are showing a strong commitment to support
genomic research in developing countries, including Africa. By leveraging existing platforms and building on their successes and lessons learned, initiatives such as the African Pharmacogenetics Consortium (APC) [117], the Human Heredity and Health in Africa (H3Africa) [118] and Collaborative African Genomics Network (CAfGEN) [119] have the potential to accelerate pharmacogenomic research and implementation in Africa. The partnerships between academic institutions, research organizations, and governments in Africa are encouraging as they are actively working towards building research infrastructure and expertise, establishing data sharing mechanisms, and setting up ethical review standards across countries [119, 120]. This concerted effort is facilitating the advancement of research, and some African governments have already recognized the importance of pharmacogenomics for their development and they are now investing in research infrastructure and training programs [121, 122]. Pharmaceutical companies and biotechnology firms are also investing in Africa, focusing on repurposing existing drugs and developing new medications for prevalent diseases in the region [123, 124]. International collaborations between African and non-African research institutions are also on the rise; they contribute funding, and expertise, and provide resources that are not available locally, which can accelerate the pace of pharmacogenomic research in the continent [123].

Conclusions

Overall, this review highlights the significant pharmacogenomic diversity observed in individuals of African ancestry. While the number of studies is limited, existing evidence shows variability in the frequency, distribution, and type of genetic variants within drug-metabolizing enzymes and other candidate genes involved in the effectiveness of drugs in Africa. For example, CYP2D6, CYP2C19, CYP3A4, CYP2B6, CYP2, and CYP1A2 vary widely across different African populations. Much of the current pharmacogenomics knowledge in psychiatry is based on small-scale studies, emphasizing the need for increased funding and research infrastructure to enable the implementation of pharmacogenomic testing in psychiatric treatment. To increase the representation of African populations in pharmacogenomic research and enhance our understanding of the genetic factors underlying patients' response to pharmacological therapy, global consortia initiatives should expand access to next-generation sequencing facilities in the region. Further research into psychiatric pharmacogenomics and pharmacogenomic diversity has the potential to revolutionize
scientific knowledge, but it requires a collaborative effort to close the knowledge gap and overcome implementation barriers.

Disclosure of interest

None

Funding

ATA is currently supported by the National Health and Medical Research Council (NHMRC) Emerging Leadership Investigator Grant 2021 – 2008000 and he has received the 2019–2022 National Alliance for Research on Schizophrenia and Depression (NARSAD) Young Investigator Grant from the Brain & Behaviour Research Foundation (BBRF).
References

